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Abstract: The extrapulmonary manifestation of coronavirus disease-19 (COVID-19), caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), became apparent early in the ongoing
pandemic. It is now recognized that cells of the cardiovascular system are targets of SARS-CoV-2
infection and associated disease pathogenesis. While some details are emerging, much remains
to be understood pertaining to the mechanistic basis by which SARS-CoV-2 contributes to acute
and chronic manifestations of COVID-19. This knowledge has the potential to improve clinical
management for the growing populations of patients impacted by COVID-19. Here, we review the
epidemiology and pathophysiology of cardiovascular sequelae of COVID-19 and outline proposed
disease mechanisms, including direct SARS-CoV-2 infection of major cardiovascular cell types and
pathogenic effects of non-infectious viral particles and elicited inflammatory mediators. Finally, we
identify the major outstanding questions in cardiovascular COVID-19 research.

Keywords: SARS-CoV-2; COVID-19; post-acute sequelae of SARS-CoV-2 infection; cardiomyocyte;
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1. Epidemiology of Cardiovascular COVID-19 Manifestations

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has
profoundly impacted global health, health care delivery systems, and the economy, leading
to more than 484 million cases and 6.1 million deaths as of 1 April 2022 [1]. Unfortunately,
the emergence of SARS-CoV-2 variants of concern (VOC) has prolonged and intensified the
current pandemic [2,3]. The ensuing illness, termed coronavirus disease-19 (COVID-19),
predominantly manifests as a respiratory disease, although extrapulmonary involvement
occurs in a sizable number of patients [4,5]. Systemic manifestations of COVID-19 have
been noted across organ systems with predominate involvement of the cardiovascular,
renal, gastrointestinal, and central nervous systems [2–5].

Patients infected with SARS-CoV-2 display a wide range of disease severity, ranging
from asymptomatic or mild infection to critical illness with multiple organ failure [6,7].
Critically ill cases of COVID-19 present with progressive multiorgan system failure and
cardiovascular collapse, often requiring inotropic, vasopressor, and/or mechanical support,
and displaying high mortality rates. Disproportionate rates of critical illness are observed
in vulnerable populations, including the elderly, those with underlying cardiovascular
comorbidities, and underrepresented minorities [8–12]. Throughout the pandemic, pre-
existing cardiovascular disease has continued to represent an important risk factor for
COVID-19 critical illness and mortality [2].

Cardiac complications of COVID-19 occur in 20–44% of acutely hospitalized patients,
and constitute an independent risk factor for COVID-19 mortality [8,13–15]. Factors such
as patient age, the severity of COVID-19 pneumonia, preexistent cardiac disease, im-
munocompromised state, and the use of cardiotoxic therapies predispose these patients to
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cardiovascular complications [16,17]. During acute infection, cardiac manifestations include
myocardial injury (elevated serum troponin levels), myocarditis, pericarditis, heart failure,
acute coronary syndromes, and arrhythmias (Figure 1) [18–27]. Among those patients
presenting with chest pain and/or heart failure, cardiac magnetic resonance imaging has
revealed signs of myocardial and pericardial inflammation (delayed contrast enhancement,
T1 mapping, T2 signal) [28,29]. Surprisingly, MRI evidence of cardiac inflammation was re-
ported in patients who had seemingly recovered, further highlighting an underappreciated
cardiac component of this disease, even in its milder forms [28].
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Figure 1. The cardiac complications of COVID-19. Cardiac involvement during the clinical course
of COVID-19 can manifest as acute myocardial injury with elevated troponin, heart failure with a
decreased ejection fraction, myocarditis, cardiac arrhythmia, thromboembolic events and pericardi-
tis. Evidence of cardiac inflammation can also be present in people who seemingly recover from
acute illness.

Vascular involvement is particularly evident and often presents as acute venous
(deep-vein thrombosis and pulmonary embolism) and arterial (stroke and critical limb
ischemia) thrombosis (Figure 1) [30–34]. Severely ill patients present with coagulopathy and
disseminated intravascular coagulation, while bleeding remains uncommon [35]. Among
laboratory findings, elevated D-dimer, fibrin degradation products, and fibrinogen were
observed among the patients with the most severe form of the disease [36]. The current
in-hospital therapies for COVID-19 patients include thrombosis prophylaxis with heparin
or factor Xa inhibitors [37,38].
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Long-term sequelae of COVID-19 infection are now being identified in patients who
remain symptomatic beyond the acute phase. These manifestations have been termed post-
acute sequelae of SARS-CoV-2 infection (PASC) by the National Institute of Health [39].
Several case reports and studies have emerged describing post-acute COVID-19 symptoms
in the weeks following the initial infection, with significant symptoms observed in young
and otherwise healthy individuals who had mild acute COVID-19 symptoms [39,40]. A
wide array of cardiovascular symptoms have been described in this population, such as
fatigue, exertional dyspnea, chest pain, and palpitations [41]. Remarkably, only 30% of
patients fully recovered 6 months after infection [42]. A recent study of 150,000 patients
revealed that a history of acute COVID-19 predisposed patients to a higher risk of adverse
cardiovascular events, such as arrhythmias, stroke, and heart failure, which occurred over
a 12-month period following the COVID-19 diagnosis. The risk of these events correlated
with the severity of the acute COVID-19, but was significant even for those patients with
mild disease and limited prior risk factors for cardiovascular disease [43]. While much
remains to be learned regarding the epidemiology and natural history of cardiovascular
PASC, these early observations signify that cardiovascular damage is a long-lasting feature
of COVID-19 in select individuals.

Highly effective vaccines against the SARS-CoV-2 spike protein have changed the
course of the COVID-19 pandemic and provided significant protection from severe dis-
ease [44,45]. The successful implementation of these vaccines may reduce the cardiovascular
sequalae by limiting infection and the overall burden of disease. It remains to be eluci-
dated whether breakthrough infections in vaccinated individuals, characteristic of multiple
variants of the virus [46,47], will lead to increased cardiovascular risk. Rare cardiovascular
complications of COVID-19 vaccination are myocarditis and pericarditis, observed with
mRNA-based vaccines [48–51]. The incidence of these complications was highest in the
12–17 age group of males after the second dose of vaccine (22–36 cases per 100,000). It is
important to note that the risk of myocarditis from SARS-CoV-2 infection is 2–7 times higher
than that from vaccination for this age group. Thus, vaccination remains the recommended
preventative strategy for cardiac complications of COVID-19 [52].

2. Pathophysiology

The underlying cause(s) of the cardiovascular manifestations of acute COVID-19 and
PASC remain a topic of considerable debate. Direct viral infection of cardiovascular cell
types, systemic inflammation, and microvascular thrombosis have each been implicated
in the pathogenesis of acute COVID-19 (Figure 2). Patients with acute COVID-19 display
numerous systemic derangements, including marked increases in circulating inflammatory
mediators [53,54], activation of the complement cascade [55], impaired fibrinolysis [56],
platelet activation and aggregation [57]. While associations between systemic inflammation
and acute cardiovascular sequelae of COVID-19 exist [58], a causative relationship is yet to
be rigorously established. Much less is known regarding the pathology of PACS. Cardiac
MRI findings compatible with myocarditis were only observed in a subset of individu-
als [59], and increasing evidence may point towards the involvement of the vasculature [60]
and autonomic nervous systems [61,62].

Postmortem analysis of patients who succumbed to acute COVID-19 has revealed
evidence of cardiac involvement without clinically apparent features of heart failure or
myocarditis. Myocardial necrosis, myocarditis, and microthrombi in capillaries, arterioles,
and small arteries were apparent in approximately 35% of cases. Abundant interstitial
macrophages were present in the majority of cases and multifocal lymphocytic myocardi-
tis in a smaller fraction of cases [63–67]. SARS-CoV-2 RNA was detected within the
myocardium by multiple techniques and co-localized with rare interstitial cells and car-
diomyocytes [64]. The precise identity of the interstitial cells with detectable SARS-CoV-2
RNA is unknown. It is important to note that the majority of autopsy samples are collected
after extended periods of hospitalization, beyond the phase of active viral replication. Thus,
these analyses likely underestimate the extent of viral infection.
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Figure 2. The pathophysiology of cardiac COVID-19. SARS-CoV-2 impacts cardiovascular physiol-
ogy through the direct infection of cardiac cells, systemic inflammation, and viropathology. Direct
infection (top panel) has been described in cardiomyocytes and pericytes. Cardiomyocyte infection
results in the loss of sarcomere structure, a decrease in contractile force generation, the release of
cytokines and chemokines, and the death of infected cells. In pericytes, SARS-CoV-2 infection causes
the production of vasoactive substances and cytokines, and the death of infected cells. Productive
replication contributes to further viral dissemination. Severe lung pathology in COVID-19 elicits
systemic inflammation (middle panel) that contributes to immune cell recruitment and a prothrom-
botic state. SARS-CoV-2 virions act as PAMPs that trigger inflammatory responses in the absence of
productive infection. This is referred to as viropathology (bottom panel). While poorly understood
in the context of the heart, viropathology may regulate the activation of macrophages and endothelial
cells, which do not support the replication of SARS-CoV-2. This mechanism can further contribute to
immune cell recruitment and the generation of local inflammation within the heart.
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Pathological analyses have also been performed on patients with clinical diagnoses
of myocarditis and heart failure. While these biopsy and autopsy studies have included
far fewer subjects, they have each reported macrophage and lymphocyte infiltration, as
well as evidence of interstitial cell and cardiomyocyte SARS-CoV-2 infection. Intriguingly,
interstitial cells adjacent to areas of microthrombi contained SARS-CoV-2 RNA [68–70].
Within the systemic vasculature, endotheliitis with associated viral inclusions and genomes
has been observed [71,72]. Collectively, these studies implicate SARS-CoV-2 infection as
a possible pathological mechanism contributing to cardiac and vascular manifestations
of COVID-19.

3. SARS-CoV-2 Tropism within the Cardiovascular System

In the following sections, we will focus on what is known regarding cardiovascular
cell types that are permissive to SARS-CoV-2 infection. We will discuss key findings related
to mechanisms of viral entry, replication, propagation, and the consequences of infection.
Finally, we will highlight the potential of SARS-CoV-2 virions to trigger local inflammatory
responses in the absence of productive infection.

Several studies have established that extrapulmonary sites are susceptible to SARS-
CoV-2 infection [73–75]. Cellular tropism outside of the lung seems to be dictated by ACE2
expression and the ability of the virus to gain access to extrapulmonary tissues. Whether
SARS-CoV-2 enters the heart and vasculature through hematological seeding or immune
cell trafficking of virions remains unclear. Among myocardial cell types, cardiomyocytes
and pericytes express ACE2 mRNA. Cardiac fibroblasts and vascular smooth muscle cells
may also express ACE2, albeit to a lesser degree [76,77].

While the detection of SARS-CoV-2 RNA and proteins in autopsy and biopsy speci-
mens is suggestive of viral infection, detailed virologic studies are necessary to demonstrate
infectivity. The inoculation of human myocardial cells with SARS-CoV-2 has revealed that
cardiomyocytes and pericytes are susceptible to SARS-CoV-2 infection. Intriguingly, en-
dothelial cells, fibroblasts, and macrophages do not support SARS-CoV-2 replication [68,78].
The observations that endothelial cells and macrophages harbor viral RNAs, but are not
permissive to SARS-CoV-2 infection, could be explained by the ability of these cell types to
interact with and phagocytose viral particles.

The infectious capacity of SARS-CoV-2 towards vasculature remains to be defined.
Non-cardiac endothelial cells do not support productive infection [78,79], despite limited
evidence of viral RNA in these cells being found on autopsy [72,80]. Intriguingly, human
vascular and kidney organoid systems are permissive to SARS-CoV-2, but the targeted
cells have not been identified [74]. It remains to be observed whether pericytes and other
mural cells within the systemic vasculature support viral replication and contribute to the
vascular complications of COVID-19.

4. Mechanisms of Cardiomyocyte Infection

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), human cardiac
slices, and isolated cardiomyocytes are readily infected by SARS-CoV-2 [68,69,75,81–86].
ACE2 serves as the cardiomyocyte cell surface receptor for SARS-CoV-2. Cardiomyocyte
infection can be abrogated by either neutralizing ACE2 antibodies or the genetic disruption
of ACE2. After binding to ACE2, the coronavirus spike proteins must undergo prote-
olytic activation to initiate membrane fusion [87]. Host proteases located at the plasma
membrane (i.e., TMPRSS2) or within endosomes (i.e., cathepsins and calpains) typically
perform this function. The relative contributions of each of these protease families to
SARS-CoV-2 cell entry vary by cell type [87,88]. hPSC-derived cardiomyocytes robustly
express numerous endosomal proteases and low levels of TMPRSS2. Application of the
endosomal cysteine protease inhibitor E-64, which blocks cathepsin and calpain activity,
abolished SARS-CoV-2 cardiomyocyte infection. The blocking of TMPRSS2 activity, using
the serine protease inhibitor camostat mesylate, had no effect on the ability of SARS-CoV-2
to infect cardiomyocytes. Consistent with this result, the introduction of a furin cleavage
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site mutation (∆PRRA) into the spike protein of the SARS-CoV-2 strain, which prevents
TMPRSS2 cleavage and cytoplasmic cell entry [89,90], also had no effect on cardiomyocyte
infectivity. Collectively, these studies demonstrate that SARS-CoV-2 infects cardiomyocytes
by binding to ACE2 and entering the cell through an endosomal pathway.

The replication of SARS-CoV-2 within cardiomyocytes requires the viral RNA-dependent
RNA polymerase and can be readily inhibited by remdesivir [68,81,91–93]. Mature SARS-
CoV-2 virions are thought to be released from cardiomyocytes by the exocytosis of lysoso-
mal vesicles [83]. Interestingly, infected cardiomyocytes form syncytia in culture through
a spike-dependent mechanism that can be mitigated by furin inhibitors or mutation of
the spike furin cleavage site (R682S) [84]. Whether SARS-CoV-2 propagates within the
myocardium by directly spreading between adjacent cells through syncytia and bypasses
traditional cell entry and exit mechanisms is not yet clear.

The consequences of SARS-CoV-2 cardiomyocyte infection in vitro include the acti-
vation of innate immune pathways, reduced contractility and conduction velocity, and
cell death. Infected hPSC-derived cardiomyocytes and human adult cardiomyocytes ex-
press pro-inflammatory chemokines (CCL2, CCL7, CCL5, CCL8, CCL11, CXCL1, CXCL6, and
CXCL12) and elicit type I (IFN-α, -β) and type III (IFN-λ) interferon responses [68,69,83,85,86].
The production of CCL2 by infected cardiomyocytes appeared to mediate monocyte chemo-
taxis. The infection of hamsters, which are naturally permissive to SARS-CoV-2, recapitu-
lated many of these findings throughout the atrial and ventricular myocardium [85]. While
IFN-α and IFN-λ pre-treatment protects cardiomyocytes from infection, the endogenous
role of IFN signaling following infection is yet to be defined [69].

A number of NLRP3 inflammasome-regulated cytokines are elevated in cardiomy-
ocyte infection. However, the role of the inflammasome in cardiomyocyte infection is
not well understood. Inflammasome inhibition has been shown to improve functional
outcomes in multiple models of cardiac injury [94], and has been proposed to be a target
for severe COVID-19 management [95,96]. SARS-CoV-2 proteins can activate the NLRP3
inflammasome in vitro [97,98], and its activation in patients with COVID-19 has also been
reported [99,100]. It remains to be observed, however, whether multiple natural and syn-
thetic inflammasome modulators [94,101] can benefit patients with cardiovascular sequalae
of COVID-19.

SARS-CoV-2 infection also leads to marked reductions in cardiomyocyte contractility.
Engineered heart tissues composed of hPSC-derived cardiomyocytes and cardiac fibroblasts
display reduced force production following infection [68,83]. Cardiomyocyte infection
leads to reductions in the expression of genes important for sarcomere function, excitation
contraction coupling, and metabolism [68,69,83,85,86]. Immunostaining studies have fur-
ther revealed evidence of sarcomere breakdown and fragmentation. Each of these findings
were evident in autopsy and biopsy samples collected from patients with COVID-19 my-
ocarditis [68,69]. The mechanistic basis of sarcomere breakdown is of considerable interest
and remains under investigation.

Electrophysiological alterations and cardiomyocyte cell death represent late sequelae
of cardiomyocyte infection [68,69,75,81–86]. Cardiomyocyte cell death has been observed
across cardiomyocyte preparations. The inhibition of viral replication was sufficient to
prevent cell death and innate immune responses. Conversely, innate immune responses
triggered by the sensing of viral nucleic acids failed to impact the extent of cardiomy-
ocyte cell death or sarcomere breakdown [68]. Further studies are necessary to clarify the
cell death pathways activated by infection, and to define the mechanistic links between
infection, innate immune responses, sarcomere maintenance, and metabolism.

5. Mechanisms of Pericyte Infection

Pericytes isolated from the human heart or derived from organoids are also permis-
sive to SARS-CoV-2 infection (Brumback and Dmytrenko, in revision) [102,103]. Cardiac
pericytes robustly express ACE2 [104]. Pericytes have a critical role in maintaining en-
dothelial integrity and vascular homeostasis. Conceptually, the infection of pericytes could
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contribute to the observed vascular manifestations of SARS-CoV-2 infection, including
thrombosis, inflammation, and hemodynamic derangements [30–34]. The close proximity
between pericytes and vascular endothelial cells may explain why vascular structures
within the myocardium contained SARS-CoV-2 RNA [68–72]. Indeed, in situ hybridization
and immunostaining for pericyte markers, in addition to SARS-CoV-2 RNAs and proteins
in autopsy samples, confirmed that pericytes are a target for SARS-CoV-2.

SARS-CoV-2 readily infects cardiac pericytes within primary cultures and organotypic
heart slice preparations (Brumback and Dmytrenko et al., submitted). It is not yet clear
if pericytes across tissues and organ systems are all permissive to SARS-CoV-2 infection.
It should be noted that cardiac pericytes are unique from an embryologic standpoint,
as they are derived from the epicardium [105] and may have properties distinct from
pericytes found in other locations. As well as occurring across variants of concern, cardiac
pericyte infection is dependent on cell surface ACE2 expression, and proceeds through the
endosomal route of entry. The propagation of SARS-CoV-2 between pericytes is not yet
understood, but presumably involves viral egress via exocytosis [106]. The role of syncytia
formation remains to be addressed.

The consequences of SARS-CoV-2 pericyte infection include cytokine production,
the generation of vasoactive mediators, and cell death. RNA sequencing of infected
pericytes revealed marked differential expression of genes associated with the innate
immune response to pathogens, type I interferon signaling, leukocyte chemotaxis, and
degranulation. Upregulation of vasoactive genes, including endothelin 1 and 2 (EDN1
and EDN2), and downregulation of ACE2, a hallmark of SARS-CoV-2 infection [107], were
also observed.

Infected cardiac pericytes remain viable for several days in culture, suggesting that
they may serve as a previously unrecognized site of replication and reservoir of the virus.
Cardiac pericyte cells did undergo cell death at later stages of infection. The loss of
endothelial integrity, endothelial cell dysfunction, basement membrane exposure, and
microvascular thrombosis may represent sequelae of cardiac pericyte cell death. Future
studies are required to elucidate the pathophysiological consequences of pericyte infection
in vivo and their collective contribution to cardiovascular manifestations of COVID-19.

6. Non-Infectious Effects of SARS-CoV-2 Virions

SARS-CoV-2 can elicit damaging host responses in various cell types, independent
of their permissibility to infection. This phenomenon is referred to as viropathology and
implies that viral proteins on the surface of virions act as pathogen-associated molecular
patterns (PAMPs). Viropathology differs from intracellular viral nucleic acid sensing as it
does not necessarily require cell fusion or viral replication, and, thus, it is not restricted to
host cells that express viral entry receptors or replication-competent virions. It is impor-
tant to note that cells infected by many RNA viruses, including coronaviruses, produce
large numbers of replication-incompetent virions that harbor defective viral genomes.
SARS-CoV-2 has a particularly high capacity to produce replication-incompetent virions,
as a consequence of microhomology-driven genome recombination [108,109]. Replication-
incompetent virions have been shown to act as danger signals that induce the production
of type I and III IFNs, TNF, IL-6, IL-1β, and other pro-inflammatory cytokines. Consistent
with this concept, host inflammatory responses appear to correlate with the emergence of
replication-incompetent virions during the later stages of infection [110].

SARS-CoV-2 virions express four structural proteins. Three of these proteins, spike (S),
envelope (E), and membrane (M), are expressed on the virion surface; the fourth protein,
nucleocapsid (N), is expressed inside the virion and interacts with the viral RNA genome.
Purified SARS-CoV-2 S and E proteins induce reactive oxygen species generation, type I
IFN, and NFkB responses in multiple cell types, including macrophage cell lines, peritoneal
macrophages, alveolar macrophages, and epithelial cells. The N protein may also generate
inflammatory responses [98]. Importantly, intratracheal delivery of inactivated SARS-CoV-2
or purified S and E proteins was sufficient to trigger immune cell infiltration into the lung
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and associated inflammatory gene expression in intact mice [111–113]. Type I IFN and
NFkB responses induced by E and S require Toll-like receptor 4 (TLR4). Biochemical
assays have demonstrated that the S1 subunit of S binds to TLR4 in mouse and human
macrophages [114,115].

Our understanding of the potential contributions of viropathology to the pathogenesis
of cardiovascular sequelae of COVID-19 is in its infancy. The engulfment of SARS-CoV-2
virions by macrophages and endothelial cells, and the subsequent activation of PRRs,
may explain why these cell types contain SARS-CoV-2 RNA in autopsy specimens and
display inflammatory phenotypes. The full range of cardiovascular cell types influenced
by viropathology is unknown. Intriguingly, the expression of S (S1 subunit) on the surface
of cardiomyocytes is sufficient to drive immune cell infiltration, inflammation, and LV
remodeling [116]. Future studies in this area are likely to provide key insights pertaining to
the etiology of cardiovascular inflammation, myocardial injury, and thrombosis associated
with COVID-19.

7. Outstanding Questions and Future Directions

As the pandemic has unfolded, scientists and physicians have astutely recognized
cardiovascular manifestations of COVID-19 and identified cell types within the heart and
vasculature that are susceptible to SARS-CoV-2 infection. Early studies have provided
important initial insights into mechanisms of viral cell entry, propagation, and the cellular
consequences of infection. However, there remains an enormous amount to learn from
both virology and host immune standpoints. The key topics are summarized in Box 1.

To date, the majority of cardiovascular COVID-19 studies have relied on pathological
specimens obtained from infected patients, cell culture, and engineered heart tissue models.
Animal models of SARS-CoV-2 infection are critically needed to interrogate host–pathogen
responses that contribute to the cardiovascular manifestations of COVID-19. Hamsters
are naturally susceptible to SARS-CoV-2 and show evidence of cardiac infection. Viral
RNA, inflammatory infiltrates, and microthrombi are present within the heart following
the intratracheal inoculation of hamsters with SARS-CoV-2 [85,117]. Mice are permissive
to select SARS-CoV-2 variants of concern (B.1.1.7 and B.1.351), and mouse-adapted SARS-
CoV-2 viruses have been generated for these purposes [118–120]. In addition, transgenic
mice that express human ACE2 either ubiquitously or in select tissues and cell types have
been generated and utilized to model SARS-CoV-2 infection [118,121]. The adaption of
these reagents to study cardiovascular SARS-CoV-2 infection offers an attractive approach
to harness the power of mouse genetics.
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Box 1. Outstanding questions in cardiac manifestations of COVID-19.

• How does SARS-CoV-2 spread to the heart? SARS-CoV-2 infection originates in the lung and
disseminates to multiple organs in the body, including the heart. It is not clear if cardiac SARS-
CoV-2 infection occurs through transient viremia, immune cell trafficking, or by exposure to
the virus originating from the pleural and/or pericardial spaces.

• Do cardiomyocytes and pericytes express co-receptors for viral entry in addition to ACE2?
Multiple alternate receptors for SARS-CoV-2 have been identified in cell lines of various origins,
including CD147 [122], LFA-1 [123], and heparan sulfate [124]. The role of these receptors in
cardiac infection remains unknown.

• What is the role of cardiomyocyte syncytia formation in clinical disease? Both viral infection
and restricted spike protein expression have been shown to cause syncytia formation between
hPSC-derived cardiomyocytes. However, syncytia have rarely been observed in human heart
specimens and their contribution to cardiac dysfunction remains to be investigated.

• Are there intrinsic defense mechanisms that protect host cardiomyocytes from infection?
While SARS-CoV-2 causes robust infection and cell death of cardiomyocytes in vitro, cardiac
infection and injury in human specimens appear more restricted. These observations suggest
the existence of restriction factors that may limit viral entry and replication or promote viral
clearance and cell survival.

• What is the role of direct cardiomyocyte and pericyte infection in acute and post-acute
COVID-19 disease progression? The relative contribution of cardiomyocyte and pericyte in-
fection to cardiac pathology is unclear. Animal models with restricted viral receptor expression
may help separate their respective contributions.

• Does viropathology contribute to cardiovascular complications of COVID-19?
Macrophages and endothelial cells do not support SARS-CoV-2 replication. However,
they may become activated by structural components of SARS-CoV-2 and contribute to organ
dysfunction. Immune activation and inflammation without direct viral infection contribute to
cardiovascular phenotypes. Animal models will be crucial to dissect this question.

• Do variants of concern contribute differently to the progression of cardiac COVID-19?
SARS-CoV-2 variants of concern (VOC) harbor mutations that allow them to be transmit-
ted more easily and potentially increase disease severity. While VOC have been shown to
infect cardiac cells, it is not clear if they lead to worsened cardiac pathology or outcomes.

• Does vaccination provide protection against long-term cardiac complications after break-
through infections? Vaccines have changed the course of the pandemic by dramatically
decreasing the transmission and disease severity of COVID-19. However, breakthrough in-
fections still occur in vaccinated individuals. It is unclear if the risks and mechanisms of
cardiac complications that follow these breakthrough infections are different from those in
unvaccinated cases.

8. Concluding Remarks

Cardiovascular involvement in patients with COVID-19 has become increasingly ap-
preciated over the course of the pandemic. Acutely ill individuals present with arrhythmias,
myocardial injury, and thromboembolic events. Chronic manifestations include exercise in-
tolerance, chest pain, and fatigue. Recent studies by multiple groups have shown evidence
of SARS-CoV-2 RNAs and proteins in the hearts of COVID-19 patients. Cardiomyocytes
and cardiac pericytes are permissive to SARS-CoV-2 infection that is dependent on ACE2
and progresses through an endosomal route of cell entry. Infection leads to the release
of immune mediators, changes in essential cell function, and the ultimate death of in-
fected cells. Additionally, inflammatory responses elicited by SARS-CoV-2 virions and
elaborated cytokines involving a broader array of cardiovascular cell types contribute to
cardiac disease. Many key questions remain unanswered and robust animal models are
urgently needed to link proposed disease mechanisms to the cardiovascular manifestations
of COVID-19 observed in patients.
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