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Abstract: Bombyx mori nucleopolyhedrovirus (BmNPV) is a pathogen that causes severe disease in
silkworms. In a previous study, we demonstrated that by using the CRISPR/Cas9 system to disrupt
the BmNPV ie-1 and me53 genes, transgenic silkworms showed resistance to BmNPV infection. Here,
we used the same strategy to simultaneously target lef8 and lef9, which are essential for BmNPV
replication. A PCR assay confirmed that double-stranded breaks were induced in viral DNA at
targeted sequences in BmNPV-infected transgenic silkworms that expressed small guide RNAs
(sgRNAs) and Cas9. Bioassays and qPCR showed that replication of BmNPV and mortality were
significantly reduced in the transgenic silkworms in comparison with the control groups. Microscopy
showed degradation of midgut cells in the BmNPV-infected wild type silkworms, but not in the
transgenic silkworms. These results demonstrated that transgenic silkworms using the CRISPR/Cas9
system to disrupt BmNPV lef8 and lef9 genes could successfully prevent BmNPV infection. Our
research not only provides more alternative targets for the CRISPR antiviral system, but also aims to
provide new ideas for the application of virus infection research and the control of insect pests.

Keywords: BmNPV; CRISPR/Cas9; transgenic silkworm; antiviral therapy

1. Introduction

Sericulture is one of the main sources of income for farmers in China, India, Brazil,
Vietnam, and Thailand [1,2]. Silkworms are susceptible to a variety of diseases caused by
bacteria, fungi, protozoans, and viruses that can impair cocoon production. This results in
considerable economic loss. Bombxy mori nucleopolyhedrovirus (BmNPV) is one of the viral
pathogens that is a threat to silkworm growth and to the sustainability of the sericulture
industry in China and worldwide.

BmNPV is a member of the genus Alphabaculovirus of the family Baculoviridae, which
are double-strand DNA viruses with large circular genomes. The BmNPV genome is about
128 kilobase pairs [3,4] with a structure very similar to that of the Autographa californica
multiple nucleopolyhedrovirus (AcMNPV) genome [4–6]. BmNPV contains 38 core genes
which are present in all sequenced baculovirus genomes. The genes of baculoviruses are
transcribed in four temporally regulated expression phases during the infection cycle:
immediate early, delayed early, late, and very late phases [4]. The expression of immediate
early genes completely depends on the gene expression products of host cells without any
virus gene products. Delayed early genes rely on the expression products of immediate
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early genes to synthesize proteins necessary for viral DNA replication. The late and very
late genes were changed to use the RNA polymerase encoded by the virus in AcMNPV [7–9].
The baculovirus RNA polymerase from AcMNPV has four subunits encoded by p47, lef4,
lef8, and lef9 [10]. Their homologs have been identified in BmNPV [11]. The lef8 and lef9
genes are indispensable for viral replication, and LEF8 and LEF9 contain conserved motifs
present in the large subunits of other DNA-directed RNA polymerases [12,13]. The lef8
is located at positions 35,594–38,227 in the BmNPV genome; it has a length of 2634 bp.
The lef8 is an essential gene, since lef8-KO BmNPV mutants are unable to initiate very
late transcription or produce infectious virions [14,15]. The lef9 is located at positions
44,402–45,874 in the BmNPV genome; it has a length of 1473 bp. The gene encodes a protein
of 491 amino acids with a predicted molecular mass of 54 kDa [16]. Although lef8 and lef9
encode homologs of RNA polymerase subunits, the functions of these genes in BmNPV
have not been characterized.

Various methods have been used to downregulate pathogen genes in silkworms,
including RNA interference-mediated gene silencing [17,18] and the overexpression of
endogenous or exogenous resistance genes [19–21]. In a previous study, we engineered
silkworms that expressed small guide RNAs (sgRNAs) and Cas9 to direct the disruption
of ie-1 and me53 intermediate early genes and showed cleavage of the BmNPV genome
DNA to promote virus clearance [22]. Recently, we developed an inducible CRISPR/Cas9
antiviral system targeting BmNPV, and the results showed enhanced antiviral efficacy [23].

In order to determine the efficiency of multigene editing and to identify more efficient
antiviral target sites in this study, we targeted the lef8 and lef9 genes. The lef8 and lef9
transgenic hybrid lines also had significantly higher survival rates upon inoculation with
105 and 106 BmNPV occlusion bodies (OBs) per larva. Thus, gene editing of lef8 and lef9
increases the survival of silkworm larvae infected with BmNPV, suggesting a route towards
controlling the viral infection of silkworms. Our research provides more alternative targets
for the CRISPR antiviral system, as well as new insights into the application of virus
infection research.

2. Materials and Methods
2.1. Silkworm and Virus Inoculation

The multivoltine, nondiapausing silkworm strain B. mori (Nistari) [24] was used in
this study. Larvae were reared on fresh mulberry leaves at 25 ◦C with 70–85% relative
humidity. To propagate BmNPVs (GenBank accession no. JQ991008), the occlusion bodies
(OBs) were harvested from the infected larvae. The virus stock was prepared as previously
described [22,25].

2.2. Vector Construction

The piggyBac-based transgenic plasmids were constructed for target gene editing. The
sgRNA targets in lef8 and lef9 were selected according to the GG-N19-GG rule [26]. Plasmids
were constructed as described previously [22]. The plasmid pBac [IE1-EGFP-IE1-Cas9] (IE1-
Cas9) was used for the constitutive expression of Cas9 and EGFP under control of the IE1
promoter. The four targeting cassettes expressing the gRNAs targeting lef8 and lef9 under
the separate control of the silkworm small nuclear RNA promoter U6 were constructed
through a series of cloning steps using the ClonExpress MultiS One Step Cloning Kit
(Vazyme) to generate the final plasmid pBac [IE1-EGFP-IE1-Cas9-U6-lef8 + lef9 sgRNAs]
(Figure 1A). Primers used in this study are listed in Supplementary Table S1.
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Figure 1. Construction of transgenic silkworm lines that express Cas9 and sgRNAs targeting 
BmNPV lef8 and lef9. (A) Schematic representation of the location of targeted sequences within the 
BmNPV genome. The rectangle represents the BmNPV genome, and the two large black arrows 
represent the lef8 and lef9 genes. The drawing is not to scale. The target sequences are green, and the 
PAM sequences are red. (B) Schematics of the plasmid pBac [IE1-EGFP-IE1-Cas9-U6-lef8 + lef9 sgR-
NAs] for expression of Cas9 and sgRNAs. (C–E) Locations of genomic insertions of the pBac [IE1-
EGFP-IE1-Cas9-U6-lef8 + lef9 sgRNAs] construct in TG-A (C), TG-B (D), and TG-C (E) transgenic B. 
mori lines. The vertical arrows indicate the insertion sites in the chromosome. The horizontal black 
arrows represent contiguous genes of the insertion sites. The interspace distance between the inser-
tion sites of the construct and its contiguous genes is indicated in base pairs. 
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follow-up experiments. 
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Figure 1. Construction of transgenic silkworm lines that express Cas9 and sgRNAs targeting BmNPV
lef8 and lef9. (A) Schematic representation of the location of targeted sequences within the BmNPV
genome. The rectangle represents the BmNPV genome, and the two large black arrows represent
the lef8 and lef9 genes. The drawing is not to scale. The target sequences are green, and the PAM
sequences are red. (B) Schematics of the plasmid pBac [IE1-EGFP-IE1-Cas9-U6-lef8 + lef9 sgRNAs]
for expression of Cas9 and sgRNAs. (C–E) Locations of genomic insertions of the pBac [IE1-EGFP-
IE1-Cas9-U6-lef8 + lef9 sgRNAs] construct in TG-A (C), TG-B (D), and TG-C (E) transgenic B. mori
lines. The vertical arrows indicate the insertion sites in the chromosome. The horizontal black arrows
represent contiguous genes of the insertion sites. The interspace distance between the insertion sites
of the construct and its contiguous genes is indicated in base pairs.

2.3. Generating Transgenic Silkworms

The piggyBac helper plasmids and transgenic plasmids were microinjected into G0
preblastodermal embryos for germline transformation. The putative transgenic adults were
mated with wild type moths, and the G1 mutants were scored for ubiquitous presence
with the EGFP fluorescence using fluorescence microscopy (Nikon AZ100). Three healthy
transgenic lines (TG-A, TG-B, and TG-C) were obtained and we used them for follow-
up experiments.

2.4. Inverse Transcription-PCR and Sequencing of the Transgenic Silkworm

Inverse PCR was performed as previously described [27] to determine the insertion
locations in the transgenic silkworms. Briefly, genomic DNA was extracted from G1 trans-
genic silkworms by standard SDS lysis–phenol treatment after incubation with proteinase
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K, followed by RNase treatment and purification. DNA was digested with BfucI and
circularized by ligation overnight at 37 ◦C. PCR amplification was carried out using the
circularized fragments as templates with primers designed from the 3′ arm of the piggyBac
vector. All primers are listed in Supplementary Table S1.

2.5. Viral Inoculation and Mortality Analyses

Newly exuviated third instar transgenic silkworms from lines TG-A, TG-B, and TG-C,
in addition to WT silkworms (72 per group) were exposed to BmNPV. The silkworms,
which were starved for 12 h, were inoculated orally with a suspension of 105, 106, or
107 OBs/mL on 1 cm2 diameter fresh mulberry leaf. It took about 12 h for a silkworm to eat
the entire virus-coated leaf. We noted the time at which the larvae had consumed the entire
leaf piece after 12 h of feeding as 0 h. Silkworm larvae of the third instar, fed with fresh
mulberry leaves treated with distilled water, served as a negative control group. Larvae
were then reared on fresh mulberry leaves, and larvae from all experimental groups were
maintained under the same conditions. Mortality was recorded daily for 10 days. Each
group contained 72 larvae.

2.6. Mutagenesis Analysis of the Viral Target Genes

Genomic DNA was extracted from eight whole larvae of the transgenic and wild type
(WT) silkworms treated with 106 OBs/larva using standard SDS lysis–phenol treatment.
PCR amplification was performed with BmNPV-specific primers at 48 h post-infection (hpi)
using 50 ng genomic DNA as the template. PCR products were cloned into the pJET-1.2
vector (Fermentas) and sequenced. Primer sequences are listed in Supplementary Table S1.

2.7. RNA Isolation and Quantitative Real-Time PCR (qPCR) of Viral Genes

Total RNA was extracted from whole larvae treated with 106 OBs/larva using the
Trizol reagent (Invitrogen), as per the manufacturer’s protocol. Whole larvae samples were
separately collected from silkworms in the TG-A, TG-B, TG-C, and WT groups treated with
106 OBs/larva (n = 6 per group) harvested for analysis every 12 h from 0 to 72 hpi. RNA
was quantified by spectrophotometry and purity was evaluated by gel electrophoresis.
First-strand cDNA was prepared with the Thermo RevertAid First Strand cDNA Synthesis
Kit (Thermo Fisher Scientific, Waltham, MA, USA) following the manufacturer’s protocol.
To quantify the relative transcription levels of targeted genes, gene-specific primer sets
were designed and used for qPCR performed with 2× SYBR Green PCR Master Mix
(Toyobo). The housekeeping gene Rp49 (GenBank accession number AB048205.1) [28]
was used as an internal control to standardize the variance of the different templates, and
analyzed using the 2−44CT method [29]. The mRNA measurements were quantitated in
three independent biological replicates and three independent technical replicates. Primers
are listed in Supplementary Table S1.

2.8. Microscopy of Infected Midguts

The midguts of TG-A, TG-B, and TG-C transgenic silkworms and WT silkworms
treated with 106 OBs/larva were collected at 60 hpi on ice and fixed in Qurnah’s fixative
(methanol/chloroform/acetic acid, 6:3:1 v/v/v) overnight. Samples were dehydrated in
anhydrous ethanol, followed by xylene and embedded in paraffin. Paraffin-embedded
midguts were sectioned with a Leica RM2235 microtome to obtain 5 µm thick sections.
Sections were dewaxed using xylene, serially rehydrated with ethanol, and stained with a
mixture of hematoxylin and eosin. Photographs were obtained by fluorescence microscopy
(Olympus BX51).

2.9. Statistical Analysis

Each experiment was biologically repeated three times. The experimental data were
analyzed using one-way ANOVA or two-way ANOVA, * p < 0.05, ** p < 0.01, *** p < 0.001.
The values are shown as the mean ± standard deviation of three independent experiments.
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3. Results
3.1. Generation of Transgenic Silkworms

We previously described a CRISPR/Cas9 anti-BmNPV system that targeted intermedi-
ate early genes [22]. Here, we targeted the essential genes lef8 and lef9 simultaneously at
two sites per gene (Figure 1A). The lef8 and the lef9 genes from the BmNPV genome were
cloned and the verified sequences were used as selected target sites for sgRNAs. The Cas9
protein and the fluorescent maker EGFP under the IE1 promoter and the sgRNA arrays
under the control of the B. mori U6 promoter were expressed in the germline (Figure 1B),
as previously described [22]. We injected the vector into the cytoplasm of zygotes and
identified putative transgenic animals based on EGFP expression. Three independent
G0 transgenic lines—TG-A, TG-B, and TG-C—were selected, and the genomic insertion
sites were identified by inverse PCR and Sanger sequencing. The results showed that the
transgenes in TG-A, TG-B, and TG-C line were located in chromosome 11, chromosome 10,
and chromosome 16, respectively (Figure 1C–E).

3.2. Normal Growth and Development in the Transgenic Lines

In order to ensure that the growth and development of the transgenic lines were
normal, we carefully compared the developmental time and weight in larval stages with
the WT. In transgenic silkworms, we found no significant differences in body weight
between the transgenic and WT lines, with approximately 1 g per larva in fifth larval instar
day 4 (Figure 2A). In addition, we did not observe any differences in larval progression
between WT and transgenic animals within the 17–19-day range (Figure 2B–E).
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Figure 2. Normal growth and development in the transgenic lines. (A) No significant change in
larval weight was observed between WT and transgenic animals. (B–E) No significant change in the
stages of larval development in WT and TG-A, TG-B, and TG-C (L1, first instar; L2, second instar; L3,
third instar; L4, fourth instar; L5, fifth instar).

3.3. Transgenic Silkworms Showed Higher Survival Rate after BmNPV Infection

To determine whether transgenic silkworms are more able to survive viral infection
than WT silkworms, the third instar larvae of the transgenic and WT lines were orally
infected with BmNPV with 105, 106, and 107 OBs/larva, and mortality was monitored from
0 to 10 days post-infection. The survival rates of the TG-A, TG-B, and TG-C were approxi-
mately 97.22%, 100%, and 100%, respectively, at 10 dpi with 105 OBs/larva, whereas only
79.17% of WT silkworms were alive at 10 dpi (Figure 3A). Under 106 OBs/larva infection
condition, the survival rate of WT silkworms was 63.89%, which was significantly lower
than that of transgenic silkworms (TG-A, TG-B, and TG-C were 93.06%, 88.89%, and 94.44%,
respectively) (Figure 3B). In the experimental group infected with 107 OBs/larva, all WT
silkworms were dead by 7 dpi, whereas at 10 dpi, TG-A, TG-B, and TG-C exhibited 79.17%,
77.78%, and 73.61% of transgenic silkworms remaining alive, respectively (Figure 3C). WT
silkworms infected with BmNPV had enhanced locomotor activity relative to infected
transgenic animals, and at 60 hpi they became yellow and puffy with swelling of the
segmental membrane (Figure 3D). In contrast, the TG silkworms appeared normal in shape,
with no difference from healthy uninfected silkworms.
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Figure 3. Transgenic silkworms had higher survival rates than wild type silkworms after infection
with BmNPV. (A–C) Time course of survival rate of larvae after oral inoculation with 105 (A),
106 (B), and 107 (C) OBs/larva. Each group included 72 larvae. The mortality was scored at 10 dpi.
(D) Photographs of representative TG-A and wild type silkworms at 60 hpi with 106 OBs/larva.
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3.4. Targeted Mutations of BmNPV lef8 and lef9 in Infected Transgenic Silkworms

To evaluate gene-editing efficiencies and to precisely analyze effects on lef8 and lef9 in
BmNPV-infected silkworms, DNA samples were extracted from whole larvae of transgenic
and WT silkworms treated with 106 OBs/larva of BmNPV. Sanger sequencing and qPCR
analyses were performed. The three transgenic lines have the same antiviral efficiency
(Figure 3) and the CRISPR system cuts the virus genome randomly; therefore, we then
took TG-A as an example for detecting the knockout efficiency of the target gene by the
transgenic system. In TG-A larvae infected with BmNPV, PCR analysis indicated various
types of genome editing events presented in lef8 and lef9 (Figure 4A). qPCR analysis of
RNA samples extracted from infected transgenic silkworm larvae and WT larvae at 48 hpi
revealed that lef8 and lef9 mRNAs were expressed at negligible levels in the transgenic
larvae, whereas levels of these mRNAs were higher in WT larvae (Figure 4C). No gene
editing was found in the BmNPV DNA from WT, while there are many types of mutations,
insertions, small and large deletions in the BmNPV DNA recovered from the transgenic
silkworms (Figure 4D). These results indicated that the transgenic CRISPR/Cas9 system
effectively disrupted BmNPV lef8 and lef9.
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Figure 4. The BmNPV genome is edited in transgenic silkworms. (A,B) PCR-based amplification
of regions in lef8 (A) and lef9 (B) in TG-A and WT silkworms infected with 106 OBs/larva. The
blue arrowheads indicate the complete full-length gene sequence and red arrowheads indicate the
truncated edited gene sequence. (C) The lef8 and lef9 mRNA levels in TG-A and WT silkworms
infected with 106 OBs/larva. mRNA levels were normalized to those of Bmrp49. (D) Various fragment
deletions were detected in TG-A silkworms. The red sequence indicates the PAM sequence. For each
gene, the open reading frame in the WT sequence is shown at the top, with the start and stop codons
highlighted in yellow, the target sites in green, the PAM sequences in red, and the inserted bases in
blue. The net change in length caused by each indel mutation is given to the right of the sequence
(+, insertion; −, deletion).

3.5. Microscopy Analysis of Midgut Cells in the Infected Transgenic and WT Silkworms

Baculovirus infection starts in the larval midgut cells and then spreads to other tissues
including fat body, hemocytes, trachea, neurons, and the brain [30]. The midgut is vital
for nutrient metabolism and is a source of innate immunity in the silkworm. A micro-
sectioning analysis showed that at 60 hpi the midgut columnar epithelial cells were normal,
and that there was no structural damage in the midgut tissues of the infected transgenic
silkworms, whereas midgut columnar epithelial cells were disordered in the infected WT
silkworm (Figure 5).
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Figure 5. Microscopy of midguts of the transgenic and WT silkworms after BmNPV infection. The
midguts of TG-A (A), TG-B (B), TG-C (C), and WT (D) silkworms infected with 106 OBs/larva at
60 hpi were collected and subjected to HE staining microscopy. The midgut cells of the infected trans-
genic silkworms were tidily arranged; however, those of the infected WT silkworms were dislodged.

3.6. BmNPV Replication was Inhibited in Transgenic Silkworms

Baculovirus infection of permissive insects proceeds in a cascade fashion with the
transcription of immediate early, early, late, and very late genes. Transcription of early
genes activates late-phase gene expression. To explore BmNPV gene expression in the
transgenic silkworms, the levels of different viral transcripts, immediate early gene ie-1,
early gene p143, late gene vp39, and very late gene p10, were quantitatively analyzed. qPCR
data showed a clear decrease in the expression levels of each of these genes at 60 hpi with
106 OBs in transgenic silkworms compared with WT animals (Figure 6A–D).

To further examine the effect of lef8 and lef9 deletion on virus replication in the
transgenic animals, total DNA was extracted from silkworms treated with 106 OBs/larva,
and the relative copy numbers of several representative BmNPV genes were analyzed
by qPCR in WT and transgenic silkworms. In the WT silkworms, relative copy numbers
increased up to 72 hpi, whereas very little BmNPV DNA was detected in transgenic
silkworms (Figure 6D,E). These results showed that BmNPV replication was significantly
inhibited in the transgenic silkworm.
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Figure 6. NPV transcription and replication are inhibited in transgenic silkworms. (A–D) Expression
levels of ie1 (A), p143 (B), vp39 (C), and p10 (D) transcripts at 60 hpi in the transgenic and WT
silkworms infected with 106 OBs/larva of BmNPV. Transcript levels were determined relative to
levels of BmRp49. Data are means ± SEM. *** p < 0.001 by one-way ANOVA. (E,F) Relative numbers
of copies of viral DNA from the regions of gp64 (E) and lef3 (F) in the transgenic and WT silkworms
at different points after viral inoculation with 106 OBs/larva.

4. Discussion

BmNPV is highly pathogenic to B. mori, and infections from this virus result in con-
siderable economic damage to the sericulture industry. Targeted genomic modification of
BmNPV is a powerful antiviral strategy. The CRISPR-Cas9 genome-editing system has
been used to knock out key BmNPV genes, including ie-1 and me53 [22], ie-0 and ie-2 [31],
and iap2 [32], and all resulting in the inhibition of viral replication. This study engineered
transgenic silkworms that express Cas9 and sgRNAs, targeting the BmNPV essential genes
lef8 and lef9. This also resulted in the inhibition of viral replication; the transgenic silkworms
had significantly increased resistance to BmNPV infection compared with WT silkworms.
This result showed an antiviral effect similar to our previous study which reported using
ie-1 and me53 as targets [22]. In our transgenic Cas9 system, somatic mutagenesis were
induced in Cas9-expressed and sgRNA-expressed lines, and the cleavage efficiency may
vary in different lines and individuals. Herein, the PCR and qPCR results indicated that
the transgenic CRISPR/Cas9 system effectively disrupted BmNPV lef8 and lef9.

The host provides energy and biosynthetic precursors necessary for baculovirus repli-
cation, and editing-related host genes could improve resistance to BmNPV. Bmcas-1, Bmcytc,
Bmapaf-1, and BmNc are all expressed at significantly different levels in resistant strains [33].
Bmcas-1 and BmNc function in the apoptosis pathway in vitro to influence the pathology of
BmNPV [34,35]. These genes could potentially be manipulated as an antiviral strategy, but
the antiviral strategies showed limited success because they were identified in BmN cell
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lines [34,35]. In addition, targeting host genes may have impacts on host developments.
Therefore, results suggest that targeting viral genes may be more effective than targeting
host genes for generating viral resistant strains.

In addition to BmNPV, viruses such as B. mori cytoplasmic polyhedrosis virus, B. mori
densovirus, and B. mori infectious flacherie virus infect silkworms, leading to significant
economic losses. Currently, there are few effective measures to mitigate the effects of viral
diseases in silkworms. The approach we used here will be further explored so as to generate
transgenic silkworms resistant to other viruses in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v14061119/s1, Table S1: Primers used in this study.
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