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Abstract: Background. Interferon is a marker of host antiviral immunity, which is disordered in
COVID-19 patients. ERV can affect the secretion of interferon through the cGAS-STING pathway. In
this study, we explored whether IFN-I and HERV-K (HML-2) were activated in COVID-19 patients
and whether there was an interaction between them. Methods. We collected blood samples from
COVID-19 patients and healthy controls. We first detected the expression of HERV-K (HML-2)
gag, env, and pol genes and IFN-I-related genes between patients and healthy people by qPCR,
synchronously detected VERO cells infected with SARS-CoV-2. Then, the chromosome distributions
of highly expressed HERV-K (HML-2) gag, env, and pol genes were mapped by the next-generation
sequencing results, and GO analysis was performed on the related genes. Results. We found that the
HERV-K (HML-2) gag, env, and pol genes were highly expressed in COVID-19 patients and VERO
cells infected with SARS-CoV-2. The interferon-related genes IFNB1, ISG15, and IFIT1 were also
activated in COVID-19 patients, and GO analysis showed that HERV-K (HML-2) can regulate the
secretion of interferon. Conclusions. The high expression of HERV-K (HML-2) might activate the
increase of interferon in COVID-19 patients, proving that HERV-K does not only play a negative role
in the human body.

Keywords: SARS-CoV-2; COVID-19; interferon; HERV-K (HML-2); Gene Ontology

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the seventh coro-
navirus to infect humans, has been raging around the world since the end of 2019 [1,2].
Most patients with COVID-19 show mild or moderate symptoms, such as fever and cough.
The disease progression of severe patients is often more serious and can progress to acute
respiratory distress syndrome (ARDS), pneumonia, acute heart injury, multiple organ
failure, and secondary infection [3–8]. Irreversible pulmonary fibrosis is also present in
cured patients, and potential damage to the reproductive and haematopoietic systems can
occur [9]. These injuries are associated with the development of uncontrolled systemic
inflammation in the organism following infection.

As an important effector molecule of the innate immune signalling pathway, interferon
(IFN) is closely related to cytokine storms in patients with COVID-19, and it is also a
hallmark of host antiviral immunity. Interferon can be divided into three types [10]. Type I
interferon (IFN-I) includes IFN-α, -β, -ε, -κ, and -ω in humans, type II interferon (IFN-II)
has only IFN-γ, and type III interferon (IFN-III) includes IL-29 (IFN-λ1), IL-28A (IFN-λ2)
and IL-28B (IFN-λ3). Secreted IFN binds the receptor IFNAR to the cell surface and then
activates Janus-activated kinase-signal transducers and activators of transcription (JAK-
STAT1) to induce the expression of IFN-stimulated gene (ISG) and interferon-induced
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proteins with tetratricopeptide repeats (IFIT) [11,12]. Working together with ISGs, IFIT
family proteins are involved in many processes in response to viral infection, mainly
by reducing virus replication [13,14]. This disruption of the intrinsic immune system is
concerning, as we found in our previous work that interferon was significantly elevated in
patients with moderate or severe COVID-19 [15–18].

A study in Cell showed that endogenous retrovirus (ERV) activates the cGAS-STING
pathway in mice to affect the secretion of interferon [19]. Human endogenous retroviruses
(HERVs) are ancient integrations of exogenous viruses. Through Mendelian inheritance
and evolutionary processes spanning millions of years, they now occupy approximately
8% of the human genome [20]. HERV-K (HML-2) is the most active transcriptional subtype
recently acquired and plays a critical role in embryogenesis [21–23]. HERV-K is silenced in
most cell types in healthy adults, and studies have shown that its reactivation is associated
with a variety of cancers [24–26]. As the main functional genes, HERV-K gag, env and pol
gene encode matrix protein, envelope and polymerase, respectively [27]. High expression
of HERVs was also found in the lavage fluid of COVID-19 patients [28], but the activation
of HERV-K in patients with different clinical types was not reported. In view of the above
phenomena, we suspected that HERV-K (HML-2) has an important ability to activate
interferon, thus we explored whether the activation of interferon in moderate COVID-19
patients and severe COVID-19 patients is related to HERV-K (HML-2).

In this study, COVID-19 patients were divided into two groups: moderate and severe.
We first detected the activation of HERV-K (HML-2) and the expression of interferon-related
genes, then mapped the chromosome distribution of highly expressed HERV-K (HML-2)
gag, env, and pol genes, and finally analysed the related genes by GO. The overall results
confirmed our conjecture that the activation of HERV-K (HML-2) in COVID-19 patients
is related to the increase in interferon, thus providing a new idea for the mechanism of
interferon production in COVID-19 patients.

2. Materials and Methods
2.1. Patients and Healthy Donors

Sixty-four SARS-CoV-2-positive individuals (COVID-19) and thirty-two healthy in-
dividuals were enrolled from Beijing Youan Hospital. The study was approved by the
Beijing Youan Hospital Research Ethics Committee (No. 2020-037, 15 April 2020). Written
informed consent was obtained from all participants According to the Chinese Government
Diagnosis and Treatment Guidelines (8th edition), the clinical classification was divided
into moderate and severe patients. To inactivate the whole blood sample complement, all
samples were incubated in a water bath at 56 ◦C for 30 min.

2.2. Virus Infection

Vero E6 cells were cultured in Dulbecco’s modified Eagle medium (DMEM, Gibco,
New York, NY, USA) supplemented with 10% foetal bovine serum (FBS) and 1% penicillin–
streptomycin (Gibco, New York, NY, USA). To prepare the virus stock, 5 × 106 Vero E6
cells were infected with SARS-CoV-2 (BetaCoV/Beijing/AMMS01/2020) at a multiplicity
of infection (MOI) of 0.01. After culturing for 48 h, the cells were incubated in a water bath
at 56 ◦C for 30 min. The cells in the culture flask were completely lysed with 6 mL TRIzol.
The cell control procedure was the same as above and without infection with SARS-CoV-2.
All experiments with the SARS-CoV-2 virus were conducted in the BSL-3 laboratory.

2.3. Total RNA Extraction

Total RNA was extracted from whole blood using the automatic nucleic acid separation
and purification system (MagNA Pure LC 2.0 Roche, Basel, Switzerland) following the RNA
Isolation Kit-High Performance (REF.03542394001) without modification. RNA samples
were evaluated by NanoPhotometer-N60 (Implen, München, Germany), showing a ratio of
260/280 of approximately 2.0 and a concentration ranging from 10 ng/mL to 100 ng/mL.
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2.4. Reverse Transcription

Using a HIFIScript gDNA Removal cDNA Synthesis Kit (NO. CW2582 M, Cowin Bio,
Suzhou, China), each sample was first placed in a PCR amplification instrument (Bio–Rad
T100, Hercules, CA, USA) according to the proportion of 1 µL 10 × gDNA eraser buffer,
0.5 µL gDNA eraser, and 8.5 µL RNA template (total 2.5 ng) and incubated at 42 ◦C for
5 min to remove gDNA. Then, 10 µL gDNA-free reaction solution, 1 µL HIFIScript, 1 µL
primer mix, 4 µL 5 × ScriptRT buffer, and 4 µL RNase-free water were placed in a PCR
amplification instrument (Bio–Rad T100, Hercules, CA, USA) and incubated at 42 ◦C for
30 min followed by 85 ◦C for 5 min. Finally, cDNA was obtained.

2.5. Quantitative Reverse Transcription PCR (qRT–PCR)

qRT–PCR was performed with MagicSYBR Mixture (NO. CW3008H, Cowin Bio,
Suzhou, China) using a Roche LightCycler 480 II System. The amplifications were run
in a 96-well plate at 95 ◦C for 10 min, followed by 40 cycles of 95 ◦C for 5 s, 60 ◦C for
30 s, and 72 ◦C for 10 s, and then a melting curve analysis was performed to confirm the
specificity of the PCR. Each sample was run in triplicate. Relative quantification of target
gene transcripts was performed with the ∆Ct method, and the ∆Ct value was corrected by
the corresponding β-actin (HERV-K-related gene) or GAPDH (IFN-β-related gene) control
Ct values. The primer sequences are provided in Table 1.

Table 1. Primers used in this study.

Gene Name Direction Primer Sequence (5′-3′)

β-actin-F Forward CCACGAAACTACGTTCAACTCC
β-actin-R Reverse GTGATCTCCTTCTGCATCCTGT

HERV-K (HML-2) env-F Forward CTGAGGCAATTGCAGGAGTT
HERV-K (HML-2) env-R Reverse GCTGTCTCTTCGGAGCTGTT
HERV-K (HML-2) pol-F Forward TCACATGGAAACAGGCAAAA
HERV-K (HML-2) pol-R Reverse AGGTACATGCGTGACATCCA
HERV-K (HML-2) gag-F Forward AGCAGGTCAGGTGCCTGTAACATT
HERV-K (HML-2) gag-R Reverse TGGTGCCGTAGGATTAAGTCTCCT

GAPDH-F Forward GGCATGGACTGTGGTCATGAG
GAPDH-R Reverse TGCACCACCAACTGCTTAGC

IFNβ-F Forward ACGCCGCATTGACCATCTAT
IFNβ-R Reverse TAGCCAGGAGGTTCTCAACA
ISG15-F Forward GAGAGGCAGCGAACTCATCT
ISG15-R Reverse CTTCAGCTCTGACACCGACA
IFIT1-F Forward TACAGCAACCATGAGTACAA
IFIT1-R Reverse TCAGGTGTTTCACATAGGC

2.6. Genome-Wide Distribution Map

The samples of COVID-19 patients were amplified by PCR with the same qPCR
primers, and the products were purified and sent for next-generation sequencing (SinoGeno-
Max, Beijing, China). The sequencing results were aligned to the reference genome
(GRCh38/hg38) on UCSC (www.genome.ucsc.edu, accessed on 10 December 2021). The
chromosomal loci with identity values greater than 97% were screened, and the gene
expression rates of these loci were counted by uniqueseqs values. Then, we used the R
packet RIdeogram to construct the distribution location of HERV-K (HML-2) gag, env, and
pol high expression fragments on chromosomes and provide a visual heatmap for tracking
labels [29–31].

2.7. Functional Annotation and Classification

To identify functional categories of highly expressed genes, Gene Ontology (GO) [32]
enrichment analysis was performed using the GREAT Input: Genomic Regions Enrichment
of Annotations Tool (http://great.stanford.edu/public/html/, accessed on 29 December 2021).

www.genome.ucsc.edu
http://great.stanford.edu/public/html/
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2.8. Statistical Analysis

All continuous variables are described as medians (IQRs), and categorical charac-
teristics are described as numbers (%). Means for continuous variables were compared
using independent group t tests when the data were normally distributed; otherwise, the
Mann–Whitney test was used. All statistical analyses were performed using SPSS (Sta-
tistical Package for the Social Sciences) version 21.0 software (SPSS Inc, CA, USA). The
values * p < 0.05, ** p < 0.01, and *** p < 0.001 were considered significant; ns stands for
not significant.

3. Results
3.1. Demographic Characteristics

The demographic characteristics of 72 COVID-19 patients are summarized in Table 2.
This study included 49 moderate and 23 severe COVID-19 patients. There were 42 females
and 30 males; the median age was 63.8 years, and 72.22% of patients were over the age of
60. We enumerated the PCR-positive detection time of moderate and severe patients and
found that there was no difference in PCR-positive detection time between the two groups
by the Mann–Whitney test. The average ages of moderate and severe patients were similar;
63.6 and 64.3, respectively.

Table 2. Baseline characteristics of patients infected with COVID-19.

Characteristics
Moderate Patients Severe Patients Total

(n = 49) (n = 23) (n = 72)

Sex
Female 30 12 42
Male 19 11 30

Age, y
35–39 2 1 3
40–49 3 0 3
50–59 10 4 14
60–69 20 13 33
70–79 11 4 15
80–89 3 1 4

Median (IQR) 63.6 (58–71) 64.3 (60.5–69) 63.8 (58.8–70.2)
Days after PCR positivity

1–7 6 3 9
8–14 11 5 16

15–21 2 2 4
22–28 14 4 18
29–35 12 7 19
36–42 3 1 4
43–49 1 1 2

Median (IQR) 22.4 (12–30) 22.6 (12–32.5) 22.5 (12–31)

3.2. SARS-CoV-2 Infection Increased the Expression of HERV-K (HML-2) gag, env, and pol

Previous studies have shown that interferon production is related to ERV in mice [19],
and we detected the expression of HERV-K (HML-2) gag, env, and pol genes in the whole
blood of COVID-19 patients and VERO cells infected with SARS-CoV-2 (Figure 1). The ex-
pression of HERV-K (HML-2) gag, env, and pol genes was increased in moderate and severe
COVID-19 patients (p < 0.05), but there were no differences between the two clinical types.

In VERO cells infected with SARS-CoV-2, we found that the expression of HERV-K
(HML-2) env and pol genes was significantly increased (p < 0.05), while the HERV-K (HML-2)
gag gene expression was increased, but not significantly (p > 0.05).
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Figure 1. Comparison of the HERV-K (HML-2) gag, env, and pol genes in COVID-19 patients and
VERO cells infected with SARS-CoV-2. (A–C) The expression of HERV-K (HML-2) gag, env, and
pol genes in health donor (green dot), moderate (blue dot) and severe COVID-19 patients (red dot).
(D–F) The expression of HERV-K (HML-2) gag, env, and pol genes in VERO cells control (black column)
and VERO cell infected with SARS-CoV-2 (grey column). Each point represents three repeats. The
box plots show the medians (middle line) and first and third quartiles (boxes), and the whiskers show
the minimum and maximum. Mann–Whitney test p values are depicted in the plots. Mann-Whitney
test P-values are depicted in the plots. * p < 0.05, **** p < 0.0001.

3.3. SARS-CoV-2 Infection Increased the Expression of Interferon-Related Genes

To explore the mechanism of the increase in interferon, we detected the expression of
genes related to interferon expression, including IFNB1 (interferon beta 1), ISGs, and IFITs.
Expression of the IFNB1 and IFIT1 genes in moderate COVID-19 and severe COVID-19
patients was higher than that in healthy people (p < 0.05), but there was no difference
between the two clinical types, which was consistent with that of serum IFN-γ. There was
no difference in the expression of the ISG15 gene among the three groups (Figure 2).

In VERO cells, we found that the expression of the IFIT1 gene decreased in VERO cells
infected with SARS-CoV-2 (p < 0.05), there was no difference in the expression of the ISG15
gene between infected and uninfected VERO cells, and the expression of the IFNB1 gene
could not be detected in either group.
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Figure 2. Comparison of interferon-related genes in COVID-19 patients and VERO cells infected
with SARS-CoV-2. (A–C) The expression of IFNB1, ISG15, and IFIT1 in health donor (green dot),
moderate (blue dot) and severe COVID-19 patients (red dot). (D–E) The expression of ISG15 and
IFIT1 in VERO cells control (black column) and VERO cell infected with SARS-CoV-2 (grey column).
Each point represents three repeats. The box plots show the medians (middle line) and first and third
quartiles (boxes), and the whiskers show the minimum and maximum. Mann–Whitney test p values
are depicted in the plots. Mann-Whitney test P-values are depicted in the plots. * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001.

3.4. Chromosomal Location of Highly Expressed HERV-K (HML-2) gag, env, pol

After next-generation sequencing and screening of chromosome loci with identity
greater than 97%, we found that 25 HERV-K (HML-2) gag, 36 env and 37 pol loci were
highly expressed in the human genome (Figure 3, Supplementary Table S1). The highest
expression site of gag was on chr 12 (approximately 58,335,037–58,335,251), and the lowest
expression site was on chr 1 (approximately 75,378,750–75,378,940). The highest expression
site of env was on chr 3 (approximately 101,699,823–101,699,990), and the lowest expression
site was on chr 19 (approximately 22,580,569–22,580,735). The highest expression site of pol
was on chr 7 (approximately 4,586,046–4,586,188), and the lowest expression site was on
chr 1 (approximately 13,212,726–13,212,855).
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purple circle, the pol locus is represented by an orange triangle, and the gradual colour represents the
relative gene expression at different loci.

3.5. Gene Ontology (GO) Classifications

GO analysis provides a description of gene products in terms of their associated
biological process (BP), cellular component (CC), and molecular function (MF) [33,34].
Typical enriched GO terms are shown in Figure 4 (Supplementary Table S2). Regarding
HERV-K (HML-2) gag, a total of 34 unigenes were categorized into 39 GO terms, including
12 biological processes, 17 cellular components, and 10 molecular function terms. Biological
regulation (GO:0065007), membrane (GO:0016020), and protein binding (GO:0005488)
were the most highly represented GO terms in BP, CC, and MF, respectively. Regarding
HERV-K (HML-2) env, a total of 48 unigenes were categorized into 42 GO terms, including
12 biological processes, 18 cellular components, and 12 molecular function terms. Biological
regulation (GO:0065007), membrane (GO:0016020), and protein binding (GO:0005488)
were the most highly represented GO terms in BP, CC, and MF, respectively. Regarding
HERV-K (HML-2) pol, a total of 51 unigenes were categorized into 42 GO terms, including
12 biological processes, 18 cellular components, and 12 molecular function terms. Biological
regulation (GO:0065007), membrane (GO:0016020), and protein binding (GO:0005488) were
the most highly represented GO terms in BP, CC, and MF, respectively.
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3.6. “Interferon Gamma Signalling” Was Highly Enriched According to KEGG Mapping

The Kyoto Encyclopedia of Genes and Genomes (KEGG) database is a collection of
various pathways representing molecular interactions and reaction networks [35]. To clar-
ify the signal transduction pathway of the gene at the chromosome site where HERV-K
(HML-2) gag, env, and pol were highly expressed in COVID-19 patients, we mapped the
KEGG database and found that the identified differentially expressed genes (DEGs) were
significantly enriched in 30 KEGG pathways (p value ≤ 0.05, Supplementary Table S3).
The top 10 enriched pathways of HERV-K (HML-2) gag, env, and pol genes are shown in
Figure 5. DEGs were highly clustered in several signalling pathways, such as “SUMO is pro-
teolytically processed”, “Ligand–receptor interactions”, “Beta defensins”, “Defensins”, and
“Netrin-1 signalling”, suggesting that HERV-K (HML-2) gag, env, and pol genes may per-
form their functions through these pathways. Notably, “interferon gamma signalling” was
identified as the second most significantly enriched pathway in KEGG analysis (enrichment
ratio = 8.0898 and p value < 0.05).
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4. Discussion

A central paradigm of immunity is that IFN-mediated antiviral responses precede
proinflammatory responses, optimizing host protection and minimizing collateral dam-
age [36,37]. Some studies have shown that IFN-γ is significantly increased in COVID-19
patients, and the antiviral activity of IFN-I, IFN-II, and IFN-III counterbalances ACE2
inducibility and restricts SARS-CoV-2 [38]. Although coronavirus can evade and inhibit the
IFN response to achieve high pathogenicity [39–43], much evidence has shown that IFN-I
and IFN-III still have the potential to treat SARS, MERS, and COVID-19 [44–50]. As a HERV
family closely related to the growth and development of the host, HERV-K is often related
to the abnormal activation of diseases, and many biomarkers of disease take this as the
development point [26,51,52]. In this study, we confirmed that the activation of HERV-K
leads to the activation of the IFN pathway, which provides a new direction for the potential
mechanism of interferon production; at the same time, it also provides a new view of the
physiological function of HERV-K. We think that when disease occurs, HERV-K participates
in the regulation of immunity and accelerates the recovery from disease.

Our study first noticed a significant increase in serum IFN-γ in moderate and severe
COVID-19 patients, and IFN-γwith antiviral ability was also characterized to be associated
with the titre of the neutralizing antibody in COVID-19 patients [53]. IFN-γ participates in
the cytokine storm and can interact with TNF-α to activate inflammatory CXCL10+ CCL2+
macrophage subsets and cause inflammatory cell death, tissue damage, and mortality via
SARS-CoV-2 infection [10,54]. In addition, IFN-γ is a double-edged sword; a large number
of researchers have found that IFN-γ can be used as an effective method to treat cytokine
storms in COVID-19 patients, and the treatment effect is better in severe patients [55]. IFN-I
has a strong ability to interfere with virus replication, and recombinant IFN-β has the
potential to reduce the disease risk of severe COVID-19 patients [56,57]. Our study found
that the high expression of IFN-β in COVID-19 patients induced an increase in ISG15 and a
high expression of IFIT1 (ISG56), the main subclass of ISG proteins with broad-spectrum
antiviral activity, which may be the antiviral immune mechanism induced by SARS-CoV-2
infection [13,58,59].

VERO cells are derived from African green monkey kidney and act as hosts for ERV
and SARS-CoV-2, which is a good model for this study. VERO cells are also widely used
in the study of the molecular mechanism of virus infection, as well as the production of
vaccines and recombinant proteins, and are regarded as an ideal cell model for cultivating
influenza vaccines and studying the molecular mechanism of virus infection [60–62]. VERO
cells could not secrete interferon α/β when infected with a virus because of their inherent
genetic defects. Barrett tried to infect VERO cells with Newcastle disease virus, Sendai
virus, and rubella virus to produce interferon, while the results showed that VERO cells
could not express the antiviral protein interferon [63]. Interestingly, our study found that
no significant changes in IFNB1 or ISG15 were detected in VERO cells infected with SARS-
CoV-2. However, the expression of IFIT1, a negative feedback regulator that dampens
virus-induced innate immune signalling, decreased significantly [64]. Even if SARS-CoV-2
can antagonize interferon, we suspect that the vaccine produced by a cell line that secretes
interferon in its entirety would be more effective. However, it is difficult to find a cell
line that can not only adapt to viral infection but also secrete interferon by itself, and this
conjecture needs to be confirmed by much research.

Djalma S. used mouse subjects and found that cDNA formed by reverse transcription
of highly expressed ERVs after microbial infection of the skin activates the cGAS-STING
pathway and induces the production of IFN-I [19]. HERVs are also aberrantly activated
in many diseases. Here, we selected the HERV-K (HML-2) family, which is closely related
to human development, to explore whether SARS-CoV-2 could also activate HERV-K
(HML-2) through upper respiratory tract infection. Significantly high expressions of the
HERV-K (HML-2) gag, env, and pol genes were detected in both moderate and severe
COVID-19 patients. The gene expression of HERV-K (HML-2) is under the direct control of
its long terminal repeats (LTRs), studies have shown that the HIV-1 tat gene can induce
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transcriptional activation of HERV-K(HML-2) LTR [65–67]. We speculate that the high
expression of HERV-K (HML-2) gag, env, and pol genes in whole blood of COVID-19
patients may also be due to the similar activation of some specific SARS-CoV-2 genes,
which increase the expression of the LTR region. While HERVs were randomly inserted
into the human genome, we further identified the chromosome site where the highly
expressed HERV-K (HML-2) gag, env, and pol genes are located. Through GO analysis of the
possible signalling pathways regulated by these sites, it was found that HERV-K (HML-2)
gag was related to the interferon signalling pathway, and Pearson correlation analysis
showed that HERV-K (HML-2) gag was positively correlated with IFNB1, ISG15, and IFIT1
(Supplementary Figure S1, p < 0.05), which perfectly confirmed the hypothesis that HERV-K
(HML-2) activated interferon secretion in COVID-19 patients. Unfortunately, we did not
have enough whole blood samples from COVID-19 patients to verify this finding at the
protein level, which leads to a limitation of our study.

In our GO analysis, we found that the HERV-K (HML-2) gag, env, and pol genes all
regulated the SUMO proteolytic process. SUMOylation is a reversible posttranslational
modification that distinctly regulates IFN synthesis, IFN signalling and the expression
and function of IFN-stimulated gene (ISG) products and plays a key role in the interferon
pathway and antiviral defence [68,69]. Therefore, HERV-K (HML-2) may not only activate
the cGAS-STING signal but also perhaps control interferon secretion by regulating the
SUMO pathway. In addition, previous studies have found that IFN-λ1 IFN-I and beta
defensins are upregulated in COVID-19 patients over 15 years of age. Our GO analysis
results show that HERV-K (HML-2) is also closely related to beta defensins. High expression
of HERV-K (HML-2) may affect the secretion of beta defensins and promote immune
defence [70,71].

We suggest that the role of HERV-K in regulating human diseases may be bidirectional.
Previous studies have found that HERV-K is activated in a variety of cancers, and HERV-
K env antagonizes the antiviral activity of Tetherin, so most scholars believe that the
significance of HERVs is negative [72,73]. Research on HERV-K and disease tends to
take HERV-K as a biomarker of disease. In contrast, we believe that HERV-K can also
play a positive role in the human body. Our research strongly supports our idea that
HERV-K (HML-2) activation in COVID-19 patients might promote cGAS-STING pathway
activation and regulate the SUMO pathway and β-defensin production, thus inducing
IFN-I production.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14050996/s1, Table S1: HERV-K(HLM-2) gag, env, pol gene high
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Figure S1: Correlation coefficient heat map.
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