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Abstract: Climate variability and anomalies are known drivers of the emergence and outbreaks
of infectious diseases. In this study, we investigated the potential association between climate
factors and anomalies, including El Niño Southern Oscillation (ENSO) and land surface temperature
anomalies, as well as the emergence and spillover events of bat-borne viral diseases in humans and
livestock in the Asia–Pacific region and the Arabian Peninsula. Our findings from time series analyses,
logistic regression models, and structural equation modelling revealed that the spillover patterns
of the Nipah virus in Bangladesh and the Hendra virus in Australia were differently impacted by
climate variability and with different time lags. We also used event coincidence analysis to show that
the emergence events of most bat-borne viral diseases in the Asia–Pacific region and the Arabian
Peninsula were statistically associated with ENSO climate anomalies. Spillover patterns of the Nipah
virus in Bangladesh and the Hendra virus in Australia were also significantly associated with these
events, although the pattern and co-influence of other climate factors differed. Our results suggest
that climate factors and anomalies may create opportunities for virus spillover from bats to livestock
and humans. Ongoing climate change and the future intensification of El Niño events will therefore
potentially increase the emergence and spillover of bat-borne viral diseases in the Asia–Pacific region
and the Arabian Peninsula.

Keywords: bat-borne virus; spillover; SARS-CoV-2; Nipah virus; Hendra virus; climate change; El Niño
Southern Oscillation; event coincidence analysis; temporal analysis; structural equation modelling

1. Introduction

Most zoonotic and vector-borne diseases are climate-sensitive, particularly to tem-
perature or precipitations [1], and several are also sensitive to climate variability and
anomalies [2–4]. The El Niño Southern Oscillation (ENSO), with its alternating warming
(El Niño), cooling (La Niña), and neutral phases, is one of the most important climate phe-
nomena due to its ability to modify the global atmospheric circulation and the temperature
and precipitation patterns across the globe [5]. The ENSO has significant cascade effects on
ecosystems [6–8] and agriculture productivity [9]. ENSO-related climate variability is also
a known driver of the emergence and outbreaks of infectious diseases [3,10]. Outbreaks of
numerous infectious diseases, such as cholera [11], Rift Valley fever [12], visceral leishmani-
asis [13], dengue [14,15], Zika virus [16], and malaria [17], among others, have been linked
to the ENSO. The emergences of some viral diseases of bat origin, such as the Hendra
virus (HeV) in Australia and the Nipah virus (NiV) in Malaysia, have also been associated
with El Niño events [18,19]. Several mechanisms by which the ENSO affects and facilitates
the transmission of zoonotic diseases have been suggested, including modifications of
seasonal cycles, population dynamics, and distribution ranges of vectors and hosts of
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zoonotic pathogens, as well as alterations of the replication and transmission patterns of
these pathogens [1,3,4].

In this study, we reviewed the emergence events and recurring spillover events of
bat-borne viral diseases in humans and livestock in the Asia–Pacific region and the Arabian
Peninsula, i.e., two regions highly affected by El Niño/La Niña events [20]. Furthermore,
we investigated the potential association between climate anomalies, El Niño/La Niña
events, and these emergence and spillover events. First, we tested the potential association
between the spillover events of HeV in Australia and NiV in Bangladesh, i.e., two bat-borne
viruses characterized by a high number of recurring spillover events in these two regions,
and climate factors (temperature, rainfall) and anomalies (ENSO and land surface tem-
perature anomalies) using time-series analyses, logistic regression models, and structural
equation modelling. Second, we assessed potential simultaneities between the emergence
events of bat-borne viruses in human and livestock populations and El Niño/La Niña
events using event coincidence analysis (ECA) [21]. We then discussed the potential ecolog-
ical mechanisms that may explain the emergence and spillover events of bat-borne viruses
in relation to climate factors and events of El Niño/La Niña.

2. Materials and Methods
2.1. Data

Bat-borne viral pathogens were defined as viruses with bats (Chiroptera) as their natu-
ral animal hosts, i.e., the long-term ecological niche of a viral population [22], or viruses
whose closest viral relatives have bats as their natural hosts. The zoonotic sources of
these viruses in human populations was either bats or another host species involved as an
intermediate host in their emergence. Emergence events were defined as the first detection
of a bat-borne viral pathogen in human or in livestock populations or the first detection of
a bat-borne viral pathogen in a region significantly distant from any other regions where it
was previously observed (e.g., Nipah virus emergence events in Malaysia, India, and the
Philippines). Recurring spillover events correspond to subsequent pathogen detections af-
ter its first emergence in the same region. Data on the emergence of bat-borne viral diseases
in human and livestock populations in the study area during the period 1990–2020 were
gathered from original sources (Table 1) and from several databases (Emerging Infectious
Diseases Repository (EIDR), https://eidr.ecohealthalliance.org/ (accessed on 17 May 2022);
World Animal Health Information System (OIE-WAHIS), https://wahis.oie.int/#/home
(accessed on 17 May 2022); PROMED). Data on recurring spillover events of the Nipah virus
in Bangladesh and India (Table 2) were obtained from three studies [23–25], while data on
recurring spillover events of the Hendra virus in Australia were obtained from the Queens-
land Government database (https://www.business.qld.gov.au/industries/service-industries-
professionals/service-industries/veterinary-surgeons/guidelines-hendra/incident-summary
(accessed on 17 May 2022)) (Table 3).

Table 1. Emergence of bat-borne viruses in the Asia–Pacific region and the Arabian Peninsula in
relation to El Niño Southern Oscillation (ENSO)-driven climate anomalies (data on ENSO were
retrieved from NOAA).

Emergence Viral Family Natural Reservoir Intermediate host Date, Location ENSO Phase References

Hendra virus Paramyxoviridae Pteropodid bats Horse Aug 1994, Australia Warm
Phase/El Niño

Giles et al.,
2018 [18]

Australian
bat lyssavirus Rhabdoviridae Pteropodid bats None Oct 1996, Australia Neutral Phase Field et al.,

1999 [26]

Menangle virus Paramyxoviridae Pteropodid bats Pig Jun 1997, Australia Warm
Phase/El Niño

Chant et al.,
1998 [27]

Nipah virus Paramyxoviridae Pteropodid bats Pig Sep 1998, Malaysia Cool
Phase/La Niña

Ang et al.,
2018 [25]

Nipah virus Paramyxoviridae Pteropodid bats None Jan 2001, India Cool
Phase/La Niña

Ang et al.,
2018 [25]

https://eidr.ecohealthalliance.org/
https://wahis.oie.int/#/home
https://www.business.qld.gov.au/industries/service-industries-professionals/service-industries/veterinary-surgeons/guidelines-hendra/incident-summary
https://www.business.qld.gov.au/industries/service-industries-professionals/service-industries/veterinary-surgeons/guidelines-hendra/incident-summary
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Table 1. Cont.

Emergence Viral Family Natural Reservoir Intermediate host Date, Location ENSO Phase References

SARS-CoV-1 Coronaviridae Rhinolophid bats Small carnivores Nov 2002, China Warm
Phase/El Niño

Ge et al.,
2013 [28]

Melaka virus Reoviridae Pteropodid bats None Mar 2006, Malaysia Cool
Phase/La Niña

Chua et al.,
2008 [29]

Kampar virus Reoviridae Pteropodid bats None Aug 2006, Malaysia Neutral Phase Chua et al.,
2008 [29]

MERS-CoV Coronaviridae Vespertilionid bats Camel Apr 2012,
Middle East

Cool
Phase/La Niña

Zaki et al.,
2012 [30]

Nipah virus Paramyxoviridae Pteropodid bats Horse Mar 2014,
The Philippines Neutral phase Ching et al.,

2015 [31]

SADS-CoV Coronaviridae Rhinolophid bats Pig (no
human cases) Oct 2016, China Cool

Phase/La Nina
Gong et al.,

2017 [32]

SARS-CoV-2 Coronaviridae Rhinolophid bats ? December 2019,
China

Warm
Phase/El Niño

Zhu et al.,
2020 [33]

Table 2. Recurring spillover events of the Nipah virus after its first emergence in South Asia (India
and Bangladesh) in relation to El Niño Southern Oscillation (ENSO)-driven climate anomalies (data on
ENSO were retrieved from NOAA). Data on outbreaks were retrieved from Rahman and Chakraborty
(2012) [23], Ang et al. (2018) [25], and Rahman et al. (2021) [24].

Country Date (Month/Year) ENSO Phase

Bangladesh April 2001 Neutral Phase
Bangladesh January 2003 Warm Phase/El Niño
Bangladesh January 2004 Neutral Phase
Bangladesh April 2004 Neutral Phase
Bangladesh January 2005 Warm Phase/El Niño
Bangladesh January 2007 Warm Phase/El Niño
Bangladesh March 2007 Neutral Phase
Bangladesh April 2007 Neutral Phase

India April 2007 Neutral Phase
Bangladesh February 2008 Cool Phase/La Niña
Bangladesh April 2008 Cool Phase/La Niña
Bangladesh January 2009 Cool Phase/La Niña
Bangladesh February 2010 Warm Phase/El Niño
Bangladesh January 2011 Cool Phase/La Niña
Bangladesh January 2012 Cool Phase/La Niña
Bangladesh January 2013 Neutral Phase
Bangladesh January 2014 Warm Phase/El Niño
Bangladesh January 2015 Warm Phase/El Niño
Bangladesh February 2015 Neutral Phase
Bangladesh March 2015 Warm Phase/El Niño
Bangladesh February 2017 Neutral Phase
Bangladesh February 2018 Cool Phase/La Niña
Bangladesh April 2018 Cool Phase/La Niña

India May 2018 Neutral Phase
India June 2019 Neutral Phase
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Table 3. Recurring spillover events of the Hendra virus after its first emergence in Australia in
relation to El Niño Southern Oscillation (ENSO)-driven climate anomalies (data on ENSO were
retrieved from NOAA). Data on outbreaks were retrieved from the Queensland Government
database (https://www.business.qld.gov.au/industries/service-industries-professionals/service-
industries/veterinary-surgeons/guidelines-hendra/incident-summary, accessed on 17 May 2022).

Country Date (Month/Year) ENSO Phase

Australia September 1994 Warm Phase/El Niño
Australia January 1999 Cool Phase/La Niña
Australia October 2004 Warm Phase/El Niño
Australia December 2004 Warm Phase/El Niño
Australia June 2006 Neutral Phase
Australia October 2006 Warm Phase/El Niño
Australia June 2007 Neutral Phase
Australia July 2007 Cool Phase/La Niña
Australia June 2008 Cool Phase/La Niña
Australia July 2008, Neutral Phase
Australia July 2009 Neutral Phase
Australia September 2009 Warm Phase/El Niño
Australia May 2010 Neutral Phase
Australia June 2011 (4 events) Cool Phase/La Niña
Australia July 2011 (8 events) Neutral phase
Australia August 2011 (5 events) Cool Phase/La Niña
Australia October 2011 Cool Phase/La Niña
Australia January 2012 Cool Phase/La Niña
Australia May 2012 (2 events) Neutral Phase
Australia June 2012 Neutral Phase
Australia July 2012 (2 events) Neutral Phase
Australia September 2012 Neutral Phase
Australia October 2012 Neutral Phase
Australia January 2013 Neutral Phase
Australia February 2013 Neutral Phase
Australia June 2013 (2 events) Neutral Phase
Australia July 2013 (4 events) Neutral Phase
Australia March 2014 Neutral Phase
Australia June 2014 (2 events) Neutral Phase
Australia July 2014 Neutral Phase
Australia June 2015 Warm Phase/El Niño
Australia July 2015 Warm Phase/El Niño
Australia September 2015 Warm Phase/El Niño
Australia December 2016 Cool Phase/La Niña
Australia May 2017 Neutral Phase
Australia July 2017 Neutral Phase
Australia August 2017 (2 events) Neutral Phase
Australia September 2018 Neutral Phase
Australia June 2019 Warm Phase/El Niño
Australia June 2020 Neutral Phase

Data on ENSO values were retrieved from the National Oceanic and Atmospheric
Administration (NOAA, https://www.noaa.gov, accessed on 17 May 2022). The ‘NINO
3.4’ index is the most commonly used index used to define El Niño and La Niña events and
to study climate–rainfall or climate–disease connections [3]. The NINO 3.4 index is based
on a 5-month running mean of the sea surface temperature (SST) in the region bounded by
5◦ N to 5◦ S, from 170◦ W to 120◦ W. El Niño (warm phase) and La Niña (cool phase) are
defined when anomalies in the NINO 3.4 index exceeds +0.4 ◦C or −0.4 ◦C, respectively
(NOAA, https://www.noaa.gov, accessed on 17 May 2022). The R package rsoi [34] was
used to import the NINO 3.4 index values for the period 1990–2020 and the corresponding
defined El Niño (warm phase) and La Niña (cool phase) phases from the NOAA website.

https://www.business.qld.gov.au/industries/service-industries-professionals/service-industries/veterinary-surgeons/guidelines-hendra/incident-summary
https://www.business.qld.gov.au/industries/service-industries-professionals/service-industries/veterinary-surgeons/guidelines-hendra/incident-summary
https://www.noaa.gov
https://www.noaa.gov
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Data on the average monthly temperature and rainfall data in Australia and Bangladesh were
also gathered from the World Bank database (https://climateknowledgeportal.worldbank.org,
accessed on 17 May 2022) and data on the global land surface temperature anomalies
were obtained from the NOAA (https://www.ncei.noaa.gov/access/monitoring/global-
temperature-anomalies, accessed on 17 May 2022) to investigate the impact of other climate
factors (rainfall, temperature) and climate variability (global land surface temperature
anomalies), in addition to the ENSO anomalies, on the occurrence of recurring spillover
events of HeV and NiV viruses.

2.2. Statistical Analyses

First, we investigated the potential association between the spillover events of HeV in
Australia and NiV in Bangladesh and several climate factors. For this, we used: (1) time-
series analyses to investigate the temporal association between HeV/NiV spillover events,
and temperature, rainfall, ENSO, and land surface temperature anomalies and to estimate
their time lag values; (2) logistic regression models to determine the significant factors
(temperature, rainfall, ENSO, land surface temperature anomalies) explaining the spillover
events using the time lag values computed from the results of the time-series analyses;
and (3) structural equation modelling to test a causal chain of correlation that may explain
the spillover events using the results of the logistic regression analyses. Second, we assessed
potential simultaneities between the emergence events of all bat-borne viruses in human
and livestock populations and El Niño/La Niña events using event coincidence analysis to
test the hypothesis that HeV/NiV spillover events were statistically preceded by an event
of El Niño/La Niña.

2.2.1. Time-Series Analysis

Time-series analyses were used to study the temporal patterns of ENSO anomalies
(using the NINO 3.4 index), as well as the average monthly temperature and rainfall in
Australia and Bangladesh using the ncf function implemented in R [35]. The time series
included 330 months in total from January 1993, i.e., one year before the first spillover event
recorded in our dataset, to June 2020. The residual autocorrelation function (ACF) was
examined to determine the general form of the model to be fitted. A wavelet analysis was
used to decompose a time series to reveal periodic signals at each time point in the series.
The wavelet analysis coefficients show the correlation magnitudes of ENSO anomalies
(NINO 3.4 index), temperature, or rainfall for each year and period length of the time series
(i.e., 1993 to 2020), displayed using a power spectrum over the full time series using the
biwavelet and WaveletComp packages [36,37] implemented in R [38]. The ccf function
was then used to compute the cross-correlation or cross-covariance between univariate
series, i.e., ENSO (NINO 3.4 index); the average monthly temperature; the average monthly
rainfall; land surface temperature anomalies; and either HeV or NiV recurring spillover
events in Australia and in Bangladesh, respectively.

2.2.2. Logistic Regression with Time Lag Analysis

Logistic regression modelling with a logit function and lag was used to test the
significant effects of monthly rainfall; monthly temperature; anomalies in land surface
temperature; and ENSO anomalies (NINO 3.4 index) on the recurring spillover events
of HeV and NiV in Australia and Bangladesh, respectively. The most significant lag
values computed by time-series cross-correlation analysis, as described above, and the glm
function implemented in R with the family binomial [38] were used.

The initial general linear model with logit function was of the form:
Recurrent spillover of HeV/NiV ~ lag(NINO 3.4 index, lag value)
+ lag(average temperature Australia/Bangladesh, lag value)
+ lag(average rainfall Australia/Bangladesh, lag value)
+ lag(global land surface temperature anomalies, lag value)

https://climateknowledgeportal.worldbank.org
https://www.ncei.noaa.gov/access/monitoring/global-temperature-anomalies
https://www.ncei.noaa.gov/access/monitoring/global-temperature-anomalies
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Initial models included variables with significant lag values obtained from cross-
correlation time-series analysis. Final models were selected using backward selection and
AIC criterion using the stepAIC function of the MASS package [39] implemented in R.

2.2.3. Structural Equation Modelling

Structural equation modelling (SEM) was used to investigate the temporal rela-
tionships between recurring outbreaks of HeV and NiV, respectively, in Australia and
Bangladesh, in relation to monthly rainfall, monthly temperature, anomalies in land sur-
face temperature, and the NINO 3.4 index values. SEM combines measurement models
(e.g., reliability) with structural models (e.g., regression), thus testing a chain of causality
(path analysis) between outbreaks of HeV and NiV in Australia and Bangladesh and these
climatic factors. SEM was performed using the ‘piecewiseSEM’ package [40]. The following
structural equation model was tested for the period from January 1993 to June 2020 of
the dataset:

F (outbreaks of HeV or NiV) = f1 (lag NINO 3.4 index) + f2 (lag temperature Australia
or Bangladesh) + f2 (lag rainfall Australia or Bangladesh) + f2 (lag global land surface
temperature anomalies) + b1

G (lag temperature Australia or Bangladesh) = g1 (lag NINO 3.4 index) + b2
H (lag rainfall Australia or Bangladesh) = h1 (lag NINO 3.4 index) + b3
I (lag anomalies of the land surface temperature) = i (lag NINO 3.4 index) + b4
with lag values computed by time-series cross-correlation analysis.

2.2.4. Event Coincidence Analysis

Finally, event coincidence analysis (ECA) was used to test if events of a given type
are causally influenced by the timing of events of second type [41] and to investigate the
statistical interdependence between emergence and spillover events of bat-borne viruses
and El Niño/La Niña events. ECA was implemented in the CoinCalc R package [42] to test
whether the observed coincidence rates are significantly different from two independent
random events [41]. ECA defines the precursor coincidence rate (pcr) and the trigger coinci-
dence rate (tcr). The pcr describes the fraction of first-type events, i.e., emergence/spillover
events, preceded by at least one second-type event, i.e., El Niño/La Niña events. The tcr
describes the fraction of second-type events, i.e., El Niño/La Niña events, followed by
at least one first-type event, i.e., emergence/spillover events (see [41]). CoinCalc com-
puted the probability of the precursor and trigger coincidence rates occurring by chance,
with the null hypothesis that the observed precursor and trigger coincidence rates can be
explained by two independent series of randomly distributed events [42]. The p-value
of the corresponding analytical significance test corresponds to the probability that the
two types of events are randomly distributed and independent of each other (following
two independent Poisson processes) and sufficiently rare.

We tested the hypothesis that the pcr describing the emergence of bat-borne viruses or
recurrent spillover events of NiV and HeV were statistically preceded by an El Niño/La
Niña event, while the tcr did not depart from a random association. For the analysis of the
recurrent spillover events of NiV in Bangladesh and HeV in Australia, the time lag values
estimated in months using cross-correlation among the time series of outbreak events and
NINO 3.4 index values were used. The time lag values were also moved around their
estimates to explore the stability and constancy of the association given by ECA.

3. Results

A total of ten bat-borne viruses, belonging to the Coronaviridae (n = 4), Paramyx-
oviridae (n = 3), Reoviridae (n = 2), and Rhabdoviridae (n = 1) families, emerged in the
Asia–Pacific region and the Arabian Peninsula in the period 1990–2020 (Table 1; Figure 1).
Nine of these viruses emerged in humans, while the swine acute diarrhea syndrome coro-
navirus (SADS-CoV) emerged in swine populations but was never detected in humans.
Natural bat hosts of the Coronaviridae viruses were vespertilionid and rhinolophid bats,
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while their intermediate hosts included several mammal species. Pteropodid bats were
the hosts of the emerging Paramyxoviridae, Reoviridae, and Rhabdoviridae, and livestock
(horses and pigs) were involved as intermediate hosts in the emergence of HeV and NiV.
Most of these viruses emerged in a single geographic area; only NiV emerged in several
distant locations over a 16-year period. It first emerged in Malaysia in 1998, before then
emerging in Bangladesh and India in 2001 and in the Philippines in 2014 (Table 1; Figure 1).
After their first emergence, NiV and HeV then regularly spilled over in Bangladesh and
Australia, respectively (Tables 2 and 3).

Figure 1. (A) Map showing the locations of emergence of bat-borne viruses in the Asia–Pacific region
and the Arabian Peninsula (see Table 1) and the bat reservoir of each virus. Virus names are colored



Viruses 2022, 14, 1100 8 of 20

according to the ENSO phase at the time of their emergence: neutral phase (black), cool-phase La
Niña (blue), or warm-phase El Niño (red). (B) Variations of the NINO 3.4 index characterizing
the El Niño Southern Oscillation (ENSO) retrieved from the National Oceanic and Atmospheric
Administration (NOAA, https://www.noaa.gov, accessed on 17 May 2022) from 1990 to 2020. Red
and blue threshold lines indicate warming El Niño or cooling La Niña climate anomalies, respectively.
Arrows indicate the emergence time of new bat-borne viruses in the Asia–Pacific region and the
Arabian Peninsula (see Table 1). Virus names are colored according to the ENSO phase at the time of
their emergence: neutral phase (black), cool-phase La Niña (blue), or warm-phase El Niño (red).

Five emergence events, including NiV in Malaysia and India, Melaka virus, Middle
East respiratory syndrome coronavirus (MERS-CoV), and SADS-CoV, occurred during
a cool phase (La Niña event), while four of them, i.e., HeV, Menangle virus, and severe
acute respiratory syndrome coronavirus 1 and 2 (SARS-CoV-1 and -2), occurred during
a warm phase (El Niño event) (Figure 1; Table 1). The remaining three emergence events
of bat-borne viruses, Kampar virus, Australian bat lyssavirus, and NiV in the Philippines
occurred during a neutral phase. However, the spillover of the Australian bat lyssavirus to
a human might not be considered as a natural emergence since the infection was acquired
from a pet fruit bat living in captivity [26]. It should also be noted that the emergence
of NiV in the Philippines in March 2014 followed the major volcanic activity of Mayon
volcano that started in May 2013 [43].

3.1. Time-Series Analyses for HeV and NiV

There were strong and significant seasonal patterns of 12 months for temperature
and rainfall, both in Bangladesh and Australia, as shown by the ACF and wavelet analysis
(Figure 2A–D). Significant patterns over 24 and 36 months were observed for NINO 3.4 index
(Figure 2E). Moreover, an increasing trend in the global land surface temperature anomalies
was observed from 1990 to 2020 (Figure S1).

Cross-correlation analysis among pairs of temporal series of spillover events of NiV
and HeV revealed several significant correlations with climate variables (Figure 3; Table 4).
Significant correlations were observed for recurring spillover events of NiV with monthly
rainfall (lag of 1 month), monthly temperature (lag of 1 month), and land surface temper-
ature anomalies (lag of 10 months) (Figure 3A,B,D; Table 4). No significant correlation
was observed for recurring spillover events of NiV with NINO 3.4 index values, although
the best correlation was observed for no lag (Figure 3C; Table 4). Significant correlations
were observed for recurring spillover events of HeV with NINO 3.4 index values (lag
of 7 months), monthly rainfall (lag of 1 month), monthly temperature (no lag), and land
surface temperature anomalies (lag of 3 months) (Figure 3E–H; Table 4). Cross-correlation
analysis among pairs of temporal series of monthly rainfall, monthly temperature, and
land surface temperature anomalies revealed few significant correlations with NINO 3.4
index values (Table 4). There was a significant correlation between land surface tempera-
ture anomalies and NINO 3.4 index values (lag of 3 months) and a significant correlation
between monthly rainfall in Australia and NINO 3.4 index values (no lag) (Table 4). Non-
significant correlations were observed for the monthly temperature in Australia (lag of
7 months), as well as for the monthly temperature and monthly rainfall in Bangladesh
(with lags of 10 and 11 months, respectively) (Table 4).

3.2. Logistic Regression Analyses

The above results were used to build two initial logistic regression models based
on the lag values obtained by the time-series cross-correlation analysis (see Figure 3 and
Table 4). The selected model of the recurring spillover events of HeV in Australia show
the significant effects of temperature (with no lag), the global land surface temperature
anomalies (with a lag of 3 months), and NINO 3.4 index values (with a lag of 7 months).
Rainfall was retained as a variable in the best explanatory model for HeV but had no
significant effect(Table 5). The selected model of the recurrent spillover events of NiV in
Bangladesh show the only significant effect of rainfall (with a lag of one month), but no

https://www.noaa.gov
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effects of global land surface temperature anomalies, the NINO 3.4 index, and the mean
temperature (Table 5).

Figure 2. Time series and residual autocorrelation function (ACF) with significant auto-correlation
values in dashed lines (left column) and wavelet power spectrum (right column) from January 1993 to
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June 2020 (330 months) of (A) monthly temperature in Bangladesh, (B) monthly rainfall in Bangladesh,
(C) monthly temperature in Australia, (D) monthly rainfall in Australia, and (E) NINO 3.4 index
values decomposed in smooth trend and seasonal effect. Wavelet power values increased from blue
to red, and black contour lines indicate a 5% significance level.

Figure 3. Temporal correlation from January 1993 to June 2020 (330 months) with significant auto-
correlation values in dashed lines between spillover events of the Nipah virus in Bangladesh and
the Hendra virus in Australia, as well as the monthly temperature (A,E), the monthly rainfall (B,F),
the NINO 3.4 index (C,G), and anomalies of the land surface temperature (D,H).



Viruses 2022, 14, 1100 11 of 20

Table 4. Results of temporal cross-association between spillover events of the Hendra virus
(HeV), the Nipah virus (NiV), NINO 3.4 index, the average monthly temperature in Australia and
Bangladesh, the average monthly rainfall in Australia and Bangladesh, and land surface temperature
anomalies (monthly lag values were obtained from time-series cross-correlation analysis). Significant
correlations are highlighted in bold.

First Time-Series Second Time-Series Lag Correlation
(p Value)

Spillover events of HeV (Australia) NINO 3.4 index 7 months 0.13 (0.018)
Rainfall (Australia) 1 month 0.18 (0.002)

Temperature (Australia) 0 month 0.24 (< 0.001)
Land surface temperature anomalies 3 months 0.14 (0.012)

Spillover events of NiV (Bangladesh) NINO 3.4 index
Rainfall (Bangladesh)

0 month
1 month

0.05 (0.35
0.22 (0.008)

Temperature (Bangladesh) 1 month 0.32 (0.008)
Land surface temperature anomalies 10 months 0.10 (0.047)

NINO 3.4 index Rainfall (Australia) 0 month 0.16 (0.007)
Temperature (Australia) 7 months 0.08 (0.35)

Rainfall (Bangladesh) 10 months 0.03 (0.58)
Temperature (Bangladesh) 11 months 0.06 (0.27)

Land surface temperature anomalies 3 months 0.40 (<0.0001)

Table 5. Results of the logistic regression modelling with lags to explore the temporal association be-
tween spillover events of the Hendra virus (HeV) and the Nipah virus (NiV) from January 1993 to June
2020. The initial models included the following variables: the NINO 3.4 index, the average monthly
temperature in Australia/Bangladesh, the average monthly rainfall in Australia/Bangladesh, and the
land surface temperature anomalies with lag values obtained from time-series cross-correlation
analysis (Table 4). The best explanatory models were selected using a backward procedure with AIC
criterion. Significant p-values are highlighted in bold.

Response Variable Predictor Variable Estimate
(Std Err)

Odds Ratio
(2.5–97.5 %) p R2

(Global)

HeV spillover
events (Australia) NINO 3.4 index (lag = 7 months) −0.72 (0.23) 0.49 (0.30–0.75) 0.002

Rainfall (lag = 1 month) −0.01 (0.01) 0.99 (0.96–1.00 0.16
Temperature (lag = 0 month) −0.11 (0.04) 0.90 (0.82–0.98) 0.013

Land surface temperature anomalies
(lag = 3 months) 3.43 (1.03) 30.96 (4.32–254.30) 0.001 0.21

NiV spillover
events (Bangladesh) Rainfall (lag = 1 month) −0.03 (0.01) 0.97 (0.95–0.99) 0.008 0.30

3.3. Structural Equation Modelling

SEM confirmed the above results for HeV. Significant correlations were observed
between the series of recurring HeV spillovers and the mean monthly temperatures in
Australia (with no lag, p = 0.003), the anomalies in the land surface temperature (with a
lag of 3 months, p < 0.001), and NINO 3.4 index values (with a lag of 7 months, p < 0.001)
(Figure 4A; Table 6). The mean monthly rainfall (with a lag of 1 month) and anomalies of
the land surface temperature (with a lag of 3 months) were also significantly correlated
with NINO 3.4 index values (p = 0.003 and p < 0.001, respectively) (Figure 4A; Table 6),
with respective lags taking into account their estimated values given in Table 4.
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Figure 4. Results of structural equation modelling of (A) spillover events of the Hendra virus
in Australia and (B) spillover events of the Nipah virus in Bangladesh on temporal trends from
January 1993 to June 2020 (330 months) based on results obtained from temporal series analyses
(Figure 2) and logistic regression analyses with lags (Table 4). Significant partial correlations are
presented in continuous lines and non-significant partial correlations are presented in dashed lines
with values of standardized estimates.
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Table 6. Results of the structural equation modelling (SEM) to explore the temporal associations
between spillover events of the Hendra virus (HeV) or the Nipah virus (NiV), the monthly tempera-
ture, the monthly rainfall, the NINO 3.4 index, and land surface temperature (LST) anomalies from
January 1991 to June 2020. Lag values were obtained from the time-series analyses and the logistic
regression analyses (Table 4). Significant p-values are highlighted in bold.

Model Response Variable Predictor Variable Estimate
(Std Err), df

Standardized
Estimate p R2

(Individual)

HeV Spillover events
of HeV

‘NINO 3.4′

(lag = 7 months) −0.077 (0.022), 313 −0.204 <0.001

Rainfall
(lag = 1 month) −0.001 (0.001), 313 −0.067 0.28

Temperature
(lag = 0 month) −0.078 (0.022), 313 −0.190 0.003

LST anom
(lag = 3 months) 0.3123 (0.095), 313 0.201 <0.001 0.11

Rainfall
(lag = 1 month)

‘NINO 3.4′

(lag = 1 month) −5.223 (1.7670), 316 −0.1638 0.003 0.027

Temperature ‘NINO 3.4′

(lag = 7 months) 0.271 (0.313), 316 0.049 0.389 0.002

LST anomalies
(lag = 3 months)

‘NINO 3.4′

(lag = 6 months) 0.101 (0.012), 316 0.434 <0.001 0.19

NiV Spillover events
of NiV

‘NINO 3.4′

(lag = 0 month) −0.014 (0.015), 312 −0.887 0.38

Rainfall
(lag = 1 month) −0.0001 (0.0001), 312 −0.718 0.47

Temperature
(lag = 1 month) −0.020 (0.005), 312 −3.689 0.003

LST anom
(lag = 10 month) 0.098 (0.067), 312 1.443 0.15 0.12

Rainfall
(lag = 1 month)

NINO 3.4′

(lag = 11 months) 6.730 (11.178), 315 0.602 0.55 0.001

Temperature
(lag = 1 month)

NINO 3.4′

(lag = 12 months) 0.254 (0.231), 315 1.100 0.272 0.004

LST anomalies
(lag = 10 months)

‘NINO 3.4′

(lag = 13 months) 0.092 (0.012), 315 7.774 <0.001 0.16

We included the same variables in SEM for NiV and HeV using the lag with the
best correlation, although some were non-significant (Table 4). SEM shows that the series
of recurring NiV spillovers was only correlated with the mean monthly temperature in
Bangladesh (with a lag of one month, p < 0.001) (Table 6; Figure 4B), while the monthly
rainfall had no significant effect, contrary to what was suggested by the GLM (Table 5).
The land surface temperature anomalies were evidently significantly correlated with NINO
3.4 index values (p < 0.001), with lag taking into account values given in Table 4.

3.4. Event Coincidence Analysis

Using the locations and dates of the emergence, as well as the series of spillover events
of bat-borne viruses (Tables 1–3) and the corresponding ENSO phases (warm, neutral,
cool) (Figure 1B; Table 1), we tested the hypothesis that the outbreaks of bat-borne viral
diseases were directly preceded (no lag) by an ENSO-driven El Niño/La Niña climate
event. The results of the ECA show a random association between an emergence event
of bat-borne viral disease (Table 1) following an El Niño/La Niña event (n = 12) given
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by the non-significant value of the precursor coincidence rate (0.67, p= 0.066) and the
non-significant value of the trigger coincidence rate (0.05, p = 0.28) (Figure 5A). However,
a non-random association was observed with a significant value of precursor coincidence
rate (0.80, p= 0.014) when the Australian bat lyssavirus (1996) and the Nipah virus in the
Philippines (2014) were removed, as other factors may have impacted these emergence
events, as explained above.

Figure 5. Event coincidence analyses of the association between (A) an emergence event of bat-borne
virus in the Asia–Pacific region and the Arabian Peninsula, (B) a spillover event of the Nipah virus
in Bangladesh, and (C) a spillover event of the Hendra virus in Australia with an ENSO event (El
Niño or La Niña phases) with values of precursor coincidence rate (pcr) and its associated probability
and lag value between paired events (lags values used for Nipah virus and Hendra virus analyses
correspond to the results of cross-temporal series correlations, shown in Figure 3 and Table 4).

Even if there were no significant associations between NINO 3.4 index values and
the NiV outbreak events using time-series analyses or SEM (see above), we explored a
possible association using event coincidence analysis. We observed a random statistical
relationship between an outbreak event of NiV in Bangladesh (Table 2) and events of El
Niño/La Niña (n = 22) with no lag (best correlation observed in our cross-correlation
analysis, as shown in Table 4). However, a non-random statistical and highly significant
relationship between an outbreak event of NiV in Bangladesh and events of El Niño/La
Niña using a lag of 3 months was observed, with a significant precursor coincidence rate
(0.73, p= 0.003) and the non-significant value of a trigger coincidence rate (0.10, p = 0.09),
suggesting a global lag effect of an ENSO event, whatever its phase (El Niño or La Niña)
(Figure 5B). There was a non-random statistical relationship observed between an outbreak
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event of HeV in Australia (n = 40) following an event of El Niño/La Niña (a significant
precursor coincidence rate = 0.63, p= 0.006; a trigger coincidence rate = 0.14, p = 0.15)
(Figure 5C)), with a lag of 7 months estimated by cross-correlation time-series analysis
(Figure 3G; Table 4).

4. Discussion

Numerous studies have investigated the origins and drivers of emergence of bat-
borne viruses [44–48], with several pinpointing the importance of climate factors and
their variability [49,50]. Abnormal rainfall, temperature, and vegetation development
associated with ENSO climatic anomalies are known to create appropriate ecological
conditions for pathogen emergence, transmission, and propagation [3]. Here, our main
objective was to further investigate the potential statistical correlation between emergence
and spillover events of several bat-borne viruses and climate factors, such as rainfall,
temperature, global surface temperature anomalies, and ENSO events, using a single
analytical framework. We used diverse methodologies, such as time-series analyses, logistic
regression, SEM, and ECA, to better depict the complex relationships between these climate
factors, variability, and anomalies, as well as the emergence and spillover events of bat-
borne viruses in the Asia-Pacific region and the Arabian Peninsula.

While it has already been suggested that the emergences of HeV in Australia in 1994
and NiV in Malaysia in 1998 were associated with El Niño events [18,19,51], the long-
term surveillance data of NiV in Bangladesh and HeV in Australia provided a better
assessment of the influence of climate variability on the recurring spillovers of these bat-
borne viruses. Our findings revealed that the spillover patterns of these two closely related
paramyxoviruses, both belonging to the genus henipavirus and with closely related flying
fox hosts (Pteropus spp.), are differently impacted by climate variability and with different
time lags, according to our time-series cross-correlation analysis.

NiV outbreaks occurred almost annually in Bangladesh since 2001, following a sea-
sonal pattern with most outbreaks occurring during the winter months [52]. Even if some
livestock and domestic animals were found infected by NiV in Bangladesh [53], contact with
sick livestock or domestic animals is not considered an important risk factor of spillover
infections in Bangladesh [54]. The seasonal timing and spatial distribution of outbreaks
coincide with patterns of raw date palm sap production and consumption [52], suggesting
that human behavior and the consumption of date palm sap contaminated by Pteropus bats
play an important role in these spillovers [54]. However, the fact that the number of NiV
spillover events varies greatly from year to year suggests that additional factors influencing
bat ecology and movement must be at play [55–57]. This was confirmed by a serological
survey of Pteropus medius bats in Bangladesh which indicated that NiV viral shedding by
bats can happen at any time of year and that viral dynamics are cyclical, but not annual or
seasonal [58].

So far, a single climatic factor, winter temperature, was shown to be linked to NiV
spillover, with colder winter temperatures being associated with more spillovers [56].
Our study confirms the influence of temperature, but our logistic regression models also
suggest a correlation between NiV spillover and monthly rainfall, with a short time lag
of one month, with lower rainfall being associated with more spillover events. Our cross-
correlation analysis, logistic regression models, and SEM did not detect any significant
direct correlation between the NINO 3.4 index and NiV spillover events. However, our ECA
findings suggest that NiV spillovers in Bangladesh were significantly associated with ENSO
events, either El Niño or La Niña phases, with a time lag of three months. This suggests that
climate anomalies related to both warm and cool ENSO events may be linked to increased
risk of NiV spillover from bats in Bangladesh, which may be explained by the fact that El
Niño and La Niña events are characterized by similar rainfall and temperature anomalies
in large regions of Bangladesh [59]. ENSO events are associated with the incidence of
other diseases in Bangladesh, such as dengue and cholera [60,61]. Climate change will
lead to warmer winter temperatures in Bangladesh over the next few decades [62], which
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may reduce the number of NiV spillover events in the country, as the negative correlation
between temperature and NiV outbreaks was clearly demonstrated in this study and
others [56]. However, droughts are expected to significantly increase in some regions
of Bangladesh under global warming [62,63]. This could negatively impact bat food
resources, induce increased bat movement, and potentially lead to more NiV spillover
events, as shown by the negative correlation between rainfall and NiV spillover events
observed in this study.

Our study revealed a stronger correlation between climate variability and the spillover
pattern of HeV in eastern Australia than NiV in Bangladesh. HeV prevalence in flying foxes
in Australia has shown multi-year inter-epidemic periods, suggesting that viral dynamics
are not annual, but the ecological drivers and the climate influence behind this pattern
remain unclear [64–66]. Numerous factors including food shortage, low concentration
of nectar-based resources, extreme temperatures, dry conditions, phenology of eucalypt
forests, physiological stress, flying fox foraging behavior, and use of wintering roosts in ur-
ban and agricultural areas were all suggested to be associated with increased HeV shedding
in Australian flying foxes [18,66,67]. Our logistic regression models and SEM show that
seasonal climate factors (monthly temperature), but also multi-annual climate variability
(ENSO 3.4 index) and long-trend climate anomalies (land surface temperature anomalies),
significantly influence the complex pattern of HeV spillover events in Australia. Our ECA
also confirmed the hypothesis that HeV outbreaks were preceded by an ENSO-driven El
Niño/La Niña climate event with a time lag of seven months. Interestingly, our results
show no time lag between the mean monthly temperature recorded in Australia and the
spillovers of HeV, suggesting a direct influence of climate seasonality. McMichael et al. [68]
hypothesized that this correlation between lower winter temperature and increased HeV
shedding in flying foxes could be mediated by the physiological cost of thermoregulation.
The temporal lags observed between the ENSO 3.4 index (7 months) or the anomalies of
the land surface temperature (3 months) suggest an indirect effect of the climate variabil-
ity through ecological cascades that may affect food availability, bat migration patterns,
and physiological stresses. A previous study [18] showed that the significant impact of
ENSO on the flowering phenology of eucalypt, and consequently on bat foraging activities,
was characterized by a time lag (3–8 months) similar to the one we observed between
ENSO and HeV spillover events in this study (7 months). Lower eucalypt flowering and
bat foraging activities induced by an El Niño event may lead to increased HeV prevalence
a few months later [18].

Stress induced by climate variability can have a profound effect on disease dynamics in
wild animal populations, mostly in relation to immune changes [69] or behavioral changes,
such as climate-driven temporary migrations [18]. Bats undergo seasonal physiological
changes, including immunological functions, which affect viral shedding [69]. Flying fox
immunocompetence is challenged during food shortages driven by climatic anomalies, and
HeV (sero) prevalence in Australian pteropid bats increased when their body condition
decreased [67,70]. Immunological stress caused by physiological and behavioral changes
during the breeding season has been suggested as a contributing factor in HeV shedding in
some studies [67], but has been found to have no effect in others [70].

Beyond NiV and HeV, our findings suggest that the emergence of most viral diseases
of bat origin was likely driven by ENSO climatic anomalies, as 9 out of 12 bat-borne viruses
emerged in the Asia–Pacific region and the Arabian Peninsula after an ENSO event over
the last three decades (Table 1; Figure 1). Removing the emergence of the Australian bat
lyssavirus and NiV in the Philippines, given that other factors may have impacted these
emergence events, gave a high prior probability for the emergence of bat virus after an
event of El Niño/La Niña in our ECA (Figure 5). The recent emergence of SARS-CoV-2,
responsible of the coronavirus disease COVID-19 in China in late 2019, also followed an
important El Niño event, which had particularly affected China [71].

The emergence of Nipah in the Philippines in March 2014 was not linked to a warm or
cool ENSO phase, but did occur following major volcanic activity at Mt Mayon that started
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one year prior to the emergence [43]. A study conducted after the more recent eruption of
Mt. Mayon in 2018 showed large vegetation and environmental impacts of this eruption,
which have affected the whole archipelago up to the northern part of Borneo [72]. Studies
have also stressed the likely impacts of volcanic activities on disease outbreaks [73].

Retrospectively, our findings question the absence of emergence reports during major
El Niño-La Niña events before 1994. This may be related to an important limitation of our
study and the fact that several past spillover events of bat-borne viruses likely remained
undetected. The successful detection of spillover events requires an efficient surveillance
system adapted to wildlife, or bats in this case, and many countries are still lacking such a
wildlife and human health surveillance system [74]. It is also important to note that climate
is not the only factor influencing the emergence of bat-borne viruses. Several additional key
drivers that promote cross-species transmission and emergence of zoonotic pathogens have
been identified in Asia and include rapidly urbanizing populations, widespread wildlife
trade and wildlife consumption, intensive livestock production, deforestation, habitat
fragmentation, land-use change, and biodiversity loss [75,76]. Therefore, the absence of
bat-borne virus emergence report before 1994 may also be explained by increased contact
between bat and human/livestock populations over the last three decades due to land-
use change, deforestation, intensification of farming practice, and the expansion of the
distribution range of certain bat species linked to climate changes [49,75,76].

Climate modelling strongly suggests an intensification of extreme El Niño events
in the future [77,78], which will potentially increase the occurrence and outbreaks of
infectious diseases and the emergence of bat-borne viral diseases. Climate change will
also continue to shift the global distribution of bats and drive changes in bat richness
which will increase the risk of bat-borne coronaviruse emergence in the near future [49].
This study and its findings also stress the necessity of improving our knowledge of bat
ecology. Close monitoring of bat populations will improve our understanding of viral
spillover mechanisms, as demonstrated for HeV in eastern Australia and NiV in Bangladesh,
and will contribute to better prediction and prevention strategies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14051100/s1. Figure S1: Global land surface temperature
anomalies 1993–2020. Table S1: Emergence and spillover data used in the study. R code S1: R code
used to conduct the analyses described in the study. R code S2: R code used to obtain Figure 1B.

Author Contributions: Both authors contributed equally. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was part of the FutureHealthSEA project funded by the French ANR
(ANR-17-CE35-0003-01).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data and codes used in the used in the study are available as
Supplementary Materials (Table S1, R code S1, R code S2).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. McIntyre, K.M.; Setzkorn, C.; Hepworth, P.J.; Morand, S.; Morse, A.P.; Baylis, M. Systematic Assessment of the Climate Sensitivity

of Important Human and Domestic Animals Pathogens in Europe. Sci. Rep. 2017, 7, 7134. [CrossRef] [PubMed]
2. Anyamba, A.; Chretien, J.-P.; Small, J.; Tucker, C.J.; Linthicum, K.J. Developing global climate anomalies suggest potential disease

risks for 2006–2007. Int. J. Health Geogr. 2006, 5, 60. [CrossRef] [PubMed]
3. Anyamba, A.; Chretien, J.-P.; Britch, S.C.; Soebiyanto, R.P.; Small, J.L.; Jepsen, R.; Forshey, B.M.; Sanchez, J.L.; Smith, R.D.; Harris,

R.; et al. Global Disease Outbreaks Associated with the 2015–2016 El Niño Event. Sci. Rep. 2019, 9, 1930. [CrossRef] [PubMed]
4. Morand, S.; Owers, K.A.; Waret-Szkuta, A.; McIntyre, K.M.; Baylis, M. Climate variability and outbreaks of infectious diseases in

Europe. Sci. Rep. 2013, 3, 1774. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/v14051100/s1
https://www.mdpi.com/article/10.3390/v14051100/s1
http://doi.org/10.1038/s41598-017-06948-9
http://www.ncbi.nlm.nih.gov/pubmed/28769039
http://doi.org/10.1186/1476-072X-5-60
http://www.ncbi.nlm.nih.gov/pubmed/17194307
http://doi.org/10.1038/s41598-018-38034-z
http://www.ncbi.nlm.nih.gov/pubmed/30760757
http://doi.org/10.1038/srep01774
http://www.ncbi.nlm.nih.gov/pubmed/23639950


Viruses 2022, 14, 1100 18 of 20

5. Hanley, D.E.; Bourassa, M.A.; O’Brien, J.J.; Smith, S.R.; Spade, E.R. A Quantitative Evaluation of ENSO Indices. J. Clim. 2003, 16,
1249–1258. [CrossRef]

6. Kogan, F.N. Satellite-Observed Sensitivity of World Land Ecosystems to El Niño/La Niña. Remote Sens. Environ. 2000, 74,
445–462. [CrossRef]

7. Rifai, S.W.; Girardin, C.A.J.; Berenguer, E.; del Aguila-Pasquel, J.; Dahlsjö, C.A.L.; Doughty, C.E.; Jeffery, K.J.; Moore, S.; Oliveras,
I.; Riutta, T.; et al. ENSO Drives interannual variation of forest woody growth across the tropics. Philos. Trans. R. Soc. B Biol. Sci.
2018, 373, 20170410. [CrossRef]

8. McPhaden, M.J.; Santoso, A.; Cai, W. El Niño Southern Oscillation in a Changing Climate; John Wiley & Sons: Hoboken, NJ,
USA, 2020.

9. Iizumi, T.; Luo, J.-J.; Challinor, A.J.; Sakurai, G.; Yokozawa, M.; Sakuma, H.; Brown, M.; Yamagata, T. Impacts of El Niño Southern
Oscillation on the global yields of major crops. Nat. Commun. 2014, 5, 3712. [CrossRef]

10. Kovats, R.S.; Bouma, M.J.; Hajat, S.; Worrall, E.; Haines, A. El Niño and health. Lancet 2003, 362, 1481–1489. [CrossRef]
11. Rodó, X.; Pascual, M.; Fuchs, G.; Faruque, A. ENSO and cholera: A nonstationary link related to climate change? Proc. Natl. Acad.

Sci. USA 2002, 99, 12901–12906. [CrossRef]
12. Nicholls, N. A method for predicting murray valley encephalitis in southeast australia using the southern oscillation. Aust. J. Exp.

Biol. Med Sci. 1986, 64, 587–594. [CrossRef]
13. Chaves, L.F.; Calzada, J.E.; Valderrama, A.; Saldana, A. Cutaneous leishmaniasis and sand fly fluctuations are associated with El

Niño in Panamá. PLoS Negl. Trop. Dis. 2014, 8, e3210. [CrossRef] [PubMed]
14. Vincenti-Gonzalez, M.F.; Tami, A.; Lizarazo, E.; Grillet, M.E. ENSO-driven climate variability promotes periodic major outbreaks

of dengue in Venezuela. Sci. Rep. 2018, 8, 5727. [CrossRef] [PubMed]
15. Pramanik, M.; Singh, P.; Kumar, G.; Ojha, V.P.; Dhiman, R.C. El Niño Southern Oscillation as an early warning tool for dengue

outbreak in India. BMC Public Health 2020, 20, 1498. [CrossRef] [PubMed]
16. Caminade, C.; Turner, J.; Metelmann, S.; Hesson, J.C.; Blagrove, M.S.C.; Solomon, T.; Morse, A.P.; Baylis, M. Global risk model

for vector-borne transmission of Zika virus reveals the role of El Niño 2015. Proc. Natl. Acad. Sci. USA 2017, 114, 119–124.
[CrossRef] [PubMed]

17. Dhiman, R.C.; Sarkar, S. El Niño Southern Oscillation as an early warning tool for malaria outbreaks in India. Malar. J. 2017,
16, 122. [CrossRef]

18. Giles, J.R.; Eby, P.; Parry, H.; Peel, A.J.; Plowright, R.K.; Westcott, D.A.; McCallum, H. Environmental drivers of spatiotemporal
foraging intensity in fruit bats and implications for Hendra virus ecology. Sci. Rep. 2018, 8, 9555. [CrossRef]

19. Daszak, P.; Zambrana-Torrelio, C.; Bogich, T.L.; Fernandez, M.; Epstein, J.H.; Murray, K.A.; Hamilton, H. Interdisciplinary
approaches to understanding disease emergence: The past, present, and future drivers of Nipah virus emergence. Proc. Natl.
Acad. Sci. USA 2012, 110 (Suppl. 1), 3681–3688. [CrossRef]

20. Rojas, O.; Li, Y.; Cumani, R. Understanding the Drought Impact of El Niño on the Global Agricultural Areas: An Assessment Using FAO’s
Agricultural Stress Index (ASI); Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2014.

21. Donges, J.F.; Schleussner, C.-F.; Siegmund, J.F.; Donner, R.V. Event coincidence analysis for quantifying statistical interrelationships
between event time series. Eur. Phys. J. Spéc. Top. 2016, 225, 471–487. [CrossRef]

22. Corman, V.M.; Muth, D.; Niemeyer, D.; Drosten, C. Chapter Eight—Hosts and Sources of Endemic Human Coronaviruses. In
Advances in Virus Research 100; Kielian, M., Mettenleiter, T.C., Roossinck, M.J., Eds.; Academic Press: Cambridge, MA, USA, 2018;
pp. 163–188.

23. Rahman, M.; Chakraborty, A. Nipah virus outbreaks in Bangladesh: A deadly infectious disease. WHO South-East Asia J. Public
Health 2012, 1, 208–212. [CrossRef]

24. Rahman, M.Z.; Islam, M.M.; Hossain, M.E.; Rahman, M.M.; Islam, A.; Siddika, A.; Sultana, S.; Klena, J.; Flora, M.; Daszak, P.; et al.
Genetic diversity of Nipah virus in Bangladesh. Int. J. Infect. Dis. 2021, 102, 144–151. [CrossRef] [PubMed]

25. Ang, B.S.P.; Lim, T.C.C.; Wang, L.; Kraft, C.S. Nipah Virus Infection. J. Clin. Microbiol. 2018, 56, e01875-17. [CrossRef] [PubMed]
26. Field, H.; McCall, B.; Barrett, J. Australian Bat Lyssavirus Infection in a Captive Juvenile Black Flying Fox. Emerg. Infect. Dis. 1999,

5, 438–440. [CrossRef] [PubMed]
27. Chant, K.; Chan, R.; Smith, M.; Dwyer, D.E.; Kirkland, P. Probable human infection with a newly described virus in the family

Paramyxoviridae. Emerg. Infect. Dis. 1998, 4, 273–275. [CrossRef]
28. Ge, X.-Y.; Li, J.-L.; Yang, X.-L.; Chmura, A.A.; Zhu, G.; Epstein, J.H.; Mazet, J.K.; Hu, B.; Zhang, W.; Peng, C.; et al. Isolation and

characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013, 503, 535–538. [CrossRef]
29. Chua, K.B.; Voon, K.; Crameri, G.; Tan, H.S.; Rosli, J.; McEachern, J.A.; Suluraju, S.; Yu, M.; Wang, L.-F. Identification and

Characterization of a New Orthoreovirus from Patients with Acute Respiratory Infections. PLoS ONE 2008, 3, e3803. [CrossRef]
30. Zaki, A.M.; Van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Isolation of a Novel Coronavirus from a

Man with Pneumonia in Saudi Arabia. N. Engl. J. Med. 2012, 367, 1814–1820. [CrossRef]
31. Ching, P.K.G.; de los Reyes, V.C.; Sucaldito, M.N.; Tayag, E.; Columna-Vingno, A.B.; Malbas, F.F.; Bolo, G.C.; Sejvar, J.J.; Eagles, D.;

Playford, G.; et al. Outbreak of Henipavirus Infection, Philippines, 2014. Emerg. Infect. Dis. 2015, 21, 328–331. [CrossRef]
32. Gong, L.; Li, J.; Zhou, Q.; Xu, Z.; Chen, L.; Zhang, Y.; Xue, C.; Wen, Z.; Cao, Y. A New Bat-HKU2-like Coronavirus in Swine,

China, 2017. Emerg. Infect. Dis. 2017, 3, 1607–1609. [CrossRef]

http://doi.org/10.1175/1520-0442(2003)16&lt;1249:AQEOEI&gt;2.0.CO;2
http://doi.org/10.1016/S0034-4257(00)00137-1
http://doi.org/10.1098/rstb.2017.0410
http://doi.org/10.1038/ncomms4712
http://doi.org/10.1016/S0140-6736(03)14695-8
http://doi.org/10.1073/pnas.182203999
http://doi.org/10.1038/icb.1986.62
http://doi.org/10.1371/journal.pntd.0003210
http://www.ncbi.nlm.nih.gov/pubmed/25275503
http://doi.org/10.1038/s41598-018-24003-z
http://www.ncbi.nlm.nih.gov/pubmed/29636483
http://doi.org/10.1186/s12889-020-09609-1
http://www.ncbi.nlm.nih.gov/pubmed/33008350
http://doi.org/10.1073/pnas.1614303114
http://www.ncbi.nlm.nih.gov/pubmed/27994145
http://doi.org/10.1186/s12936-017-1779-y
http://doi.org/10.1038/s41598-018-27859-3
http://doi.org/10.1073/pnas.1201243109
http://doi.org/10.1140/epjst/e2015-50233-y
http://doi.org/10.4103/2224-3151.206933
http://doi.org/10.1016/j.ijid.2020.10.041
http://www.ncbi.nlm.nih.gov/pubmed/33129964
http://doi.org/10.1128/JCM.01875-17
http://www.ncbi.nlm.nih.gov/pubmed/29643201
http://doi.org/10.3201/eid0503.990316
http://www.ncbi.nlm.nih.gov/pubmed/10341182
http://doi.org/10.3201/eid0402.980215
http://doi.org/10.1038/nature12711
http://doi.org/10.1371/journal.pone.0003803
http://doi.org/10.1056/NEJMoa1211721
http://doi.org/10.3201/eid2102.141433
http://doi.org/10.3201/eid2309.170915


Viruses 2022, 14, 1100 19 of 20

33. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from
Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [CrossRef]

34. Albers, S.; Campitelli, E. Rsoi: Import Various Northern and Southern Hemisphere Climate Indices. R Package Version 05.
Available online: https://cran.r-project.org/web/packages/rsoi (accessed on 17 May 2022).

35. Bjornstad, O.N.; Cai, J. ncf: Spatial Covariance Functions. R Package Version 12-8. Available online: https://cran.r-project.org/
web/packages/ncf (accessed on 17 May 2022).

36. Rösch, A.; Schmidbauer, H. WaveletComp 1.1: A Guided Tour through the R Package. Available online: http://www.hs-stat.
com/projects/WaveletComp/WaveletComp_guided_tour.pdf (accessed on 17 May 2022).

37. Gouhier, T.; Grinsted, A.; Simko, V. biwavelet: Conduct Univariate and Bivariate Wavelet Analyses. R Package Version 02017.
Available online: https://cran.r-project.org/web/packages/biwavelet/ (accessed on 17 May 2022).

38. R Core Team. R: A language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020.
39. Venables, W.; Ripley, B.D. Statistics Complements to Modern Applied Statistics with S, 4th ed.; Springer: Berlin/Heidelberg,

Germany, 2002.
40. Lefcheck, J.S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol.

Evol. 2016, 7, 573–579. [CrossRef]
41. Siegmund, J.F.; Sanders, T.G.; Heinrich, I.; Van der Maaten, E.; Simard, S.; Helle, G.; Donner, R. Meteorological Drivers of Extremes

in Daily Stem Radius Variations of Beech, Oak, and Pine in Northeastern Germany: An Event Coincidence Analysis. Front. Plant
Sci. 2016, 7, 733. [CrossRef] [PubMed]

42. Siegmund, J.F.; Siegmund, N.; Donner, R.V. CoinCalc—A new R package for quantifying simultaneities of event series. Comput.
Geosci. 2017, 98, 64–72. [CrossRef]

43. Global Volcanism Program. Report on Mayon (Philippines). In Bulletin of the Global Volcanism Network; Wunderman, R., Ed.;
Smithsonian Institution: Washington, DC, USA, 2013; Volume 38. [CrossRef]

44. Brierley, L.; Vonhof, M.J.; Olival, K.J.; Daszak, P.; Jones, K.E. Quantifying Global Drivers of Zoonotic Bat Viruses: A Process-Based
Perspective. Am. Nat. 2016, 187, E53–E64. [CrossRef] [PubMed]

45. Olival, K.J.; Hosseini, P.R.; Zambrana-Torrelio, C.; Ross, N.; Bogich, T.L.; Daszak, P. Host and viral traits predict zoonotic spillover
from mammals. Nature 2017, 546, 646–650. [CrossRef]

46. Letko, M.; Seifert, S.N.; Olival, K.J.; Plowright, R.K.; Munster, V.J. Bat-borne virus diversity, spillover and emergence. Nat. Rev.
Genet. 2020, 18, 461–471. [CrossRef]

47. Latinne, A.; Hu, B.; Olival, K.J.; Zhu, G.; Zhang, L.; Li, H.; Chmura, A.A.; Field, H.E.; Zambrana-Torrelio, C.; Epstein, J.H.; et al.
Origin and cross-species transmission of bat coronaviruses in China. Nat. Commun. 2020, 11, 4235. [CrossRef]

48. Wells, K.; Morand, S.; Wardeh, M.; Baylis, M. Distinct spread of DNA and RNA viruses among mammals amid prominent role of
domestic species. Glob. Ecol. Biogeogr. 2020, 29, 470–481. [CrossRef]

49. Beyer, R.M.; Manica, A.; Mora, C. Shifts in global bat diversity suggest a possible role of climate change in the emergence of
SARS-CoV-1 and SARS-CoV-2. Sci. Total Environ. 2021, 767, 145413. [CrossRef]

50. Buceta, J.; Johnson, K. Modeling the Ebola zoonotic dynamics: Interplay between enviroclimatic factors and bat ecology. PLoS
ONE 2017, 12, e0179559. [CrossRef]

51. McFarlane, R.; Becker, N.; Field, H. Investigation of the Climatic and Environmental Context of Hendra Virus Spillover Events
1994–2010. PLoS ONE 2011, 6, e28374. [CrossRef] [PubMed]

52. Gurley, E.S.; Hegde, S.T.; Hossain, K.; Sazzad, H.M.S.; Hossain, M.J.; Rahman, M.; Sharker, M.A.Y.; Salje, H.; Islam, M.S.; Epstein,
J.H.; et al. Convergence of Humans, Bats, Trees, and Culture in Nipah Virus Transmission, Bangladesh. Emerg. Infect. Dis. 2017,
23, 1446–1453. [CrossRef] [PubMed]

53. Chowdhury, S.; Khan, S.U.; Crameri, G.; Epstein, J.H.; Broder, C.C.; Islam, A.; Peel, A.J.; Barr, J.; Daszak, P.; Wang, L.-F.; et al.
Serological Evidence of Henipavirus Exposure in Cattle, Goats and Pigs in Bangladesh. PLOS Neglected Trop. Dis. 2014, 8, e3302.
[CrossRef] [PubMed]

54. Hegde, S.T.; Sazzad, H.M.S.; Hossain, M.J.; Alam, M.-U.; Kenah, E.; Daszak, P.; Rollin, P.; Rahman, M.; Luby, S.; Gurley, E.S.
Investigating Rare Risk Factors for Nipah Virus in Bangladesh: 2001–2012. EcoHealth 2016, 13, 720–728. [CrossRef]

55. Cortes, M.C.; Cauchemez, S.; Lefrancq, N.; Luby, S.P.; Hossain, M.J.; Sazzad, H.; Rahman, M.; Daszak, P.; Salje, H.; Gurley, E.S.
Characterization of the Spatial and Temporal Distribution of Nipah Virus Spillover Events in Bangladesh, 2007–2013. J. Infect. Dis.
2018, 217, 1390–1394. [CrossRef]

56. McKee, C.D.; Islam, A.; Luby, S.P.; Salje, H.; Hudson, P.J.; Plowright, R.K.; Gurley, E. The Ecology of Nipah Virus in Bangladesh:
A Nexus of Land-Use Change and Opportunistic Feeding Behavior in Bats. Viruses 2021, 13, 169. [CrossRef]

57. Olival, K.J.; Latinne, A.; Islam, A.; Epstein, J.H.; Hersch, R.; Engstrand, R.C.; Gurley, E.S.; Amato, G.; Luby, S.P.; Daszak, P.
Population genetics of fruit bat reservoir informs the dynamics, distribution and diversity of Nipah virus. Mol. Ecol. 2020, 29,
970–985. [CrossRef]

58. Epstein, J.H.; Anthony, S.J.; Islam, A.; Kilpatrick, A.M.; Khan, S.A.; Balkey, M.D.; Ross, N.; Smith, I.; Zambrana-Torrelio, C.;
Tao, Y.; et al. Nipah virus dynamics in bats and implications for spillover to humans. Proc. Natl. Acad. Sci. USA 2020, 117,
29190–29201. [CrossRef]

59. Wahiduzzaman, M.; Luo, J.-J. A statistical analysis on the contribution of El Niño–Southern Oscillation to the rainfall and
temperature over Bangladesh. Meteorol. Atmos. Phys. 2021, 133, 55–68. [CrossRef]

http://doi.org/10.1056/NEJMoa2001017
https://cran.r-project.org/web/packages/rsoi
https://cran.r-project.org/web/packages/ncf
https://cran.r-project.org/web/packages/ncf
http://www.hs-stat.com/projects/WaveletComp/WaveletComp_guided_tour.pdf
http://www.hs-stat.com/projects/WaveletComp/WaveletComp_guided_tour.pdf
https://cran.r-project.org/web/packages/biwavelet/
http://doi.org/10.1111/2041-210X.12512
http://doi.org/10.3389/fpls.2016.00733
http://www.ncbi.nlm.nih.gov/pubmed/27375625
http://doi.org/10.1016/j.cageo.2016.10.004
http://doi.org/10.5479/si.gvp.bgvn201304-273030
http://doi.org/10.1086/684391
http://www.ncbi.nlm.nih.gov/pubmed/26807755
http://doi.org/10.1038/nature22975
http://doi.org/10.1038/s41579-020-0394-z
http://doi.org/10.1038/s41467-020-17687-3
http://doi.org/10.1111/geb.13045
http://doi.org/10.1016/j.scitotenv.2021.145413
http://doi.org/10.1371/journal.pone.0179559
http://doi.org/10.1371/journal.pone.0028374
http://www.ncbi.nlm.nih.gov/pubmed/22145039
http://doi.org/10.3201/eid2309.161922
http://www.ncbi.nlm.nih.gov/pubmed/28820130
http://doi.org/10.1371/journal.pntd.0003302
http://www.ncbi.nlm.nih.gov/pubmed/25412358
http://doi.org/10.1007/s10393-016-1166-0
http://doi.org/10.1093/infdis/jiy015
http://doi.org/10.3390/v13020169
http://doi.org/10.1111/mec.15288
http://doi.org/10.1073/pnas.2000429117
http://doi.org/10.1007/s00703-020-00733-6


Viruses 2022, 14, 1100 20 of 20

60. Cash, B.A.; Rodó, X.; Kinter, J.L.; Yunus, M. Disentangling the Impact of ENSO and Indian Ocean Variability on the Regional
Climate of Bangladesh: Implications for Cholera Risk. J. Clim. 2010, 23, 2817–2831. [CrossRef]

61. Sharmin, S.; Glass, K.; Viennet, E.; Harley, D. Interaction of Mean Temperature and Daily Fluctuation Influences Dengue Incidence
in Dhaka, Bangladesh. PLOS Neglected Trop. Dis. 2015, 9, e0003901. [CrossRef] [PubMed]

62. Chowdhury, M.R.; Ndiaye, O. Climate change and variability impacts on the forests of Bangladesh—A diagnostic discussion
based on CMIP5 GCMs and ENSO. Int. J. Clim. 2017, 37, 4768–4782. [CrossRef]

63. Islam, A.R.M.T.; Salam, R.; Yeasmin, N.; Kamruzzaman, M.; Shahid, S.; Fattah, M.A.; Uddin, A.S.; Shahariar, M.H.; Mondol, A.H.;
Jhajharia, D.; et al. Spatiotemporal distribution of drought and its possible associations with ENSO indices in Bangladesh. Arab. J.
Geosci. 2021, 14, 2681. [CrossRef]

64. Plowright, R.K.; Peel, A.J.; Streicker, D.G.; Gilbert, A.T.; McCallum, H.; Wood, J.; Baker, M.; Restif, O. Transmission or Within-Host
Dynamics Driving Pulses of Zoonotic Viruses in Reservoir–Host Populations. PLOS Neglected Trop. Dis. 2016, 10, e0004796.
[CrossRef] [PubMed]

65. Páez, D.J.; Giles, J.; Mccallum, H.; Field, H.; Jordan, D.; Peel, A.J.; Plowright, R.K. Conditions affecting the timing and magnitude
of Hendra virus shedding across pteropodid bat populations in Australia. Epidemiol. Infect. 2017, 145, 3143–3153. [CrossRef]

66. Becker, D.; Eby, P.; Madden, W.; Peel, A.; Plowright, R. Ecological conditions experienced by bat reservoir hosts predict the
intensity of Hendra virus excretion over space and time. bioRxiv 2021. [CrossRef]

67. Plowright, R.K.; Field, H.E.; Smith, C.; Divljan, A.; Palmer, C.; Tabor, G.; Daszak, P.; Foley, J.E. Reproduction and nutritional
stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proc. R. Soc. B Boil. Sci. 2008, 275,
861–869. [CrossRef]

68. McMichael, L.; Edson, D.; Smith, C.; Mayer, D.; Smith, I.; Kopp, S.; Meers, J.; Field, H. Physiological stress and Hendra virus in
flying-foxes (Pteropus spp.), Australia. PLoS ONE 2017, 12, e0182171. [CrossRef]

69. Banerjee, A.; Baker, M.L.; Kulcsar, K.; Misra, V.; Plowright, R.; Mossman, K. Novel Insights into Immune Systems of Bats. Front.
Immunol. 2020, 11, 26. [CrossRef]

70. Edson, D.; Peel, A.J.; Huth, L.; Mayer, D.G.; Vidgen, M.E.; McMichael, L.; Broos, A.; Melville, D.; Kristoffersen, J.; de Jong, C.; et al.
Time of year, age class and body condition predict Hendra virus infection in Australian black flying foxes (Pteropus alecto).
Epidemiol. Infect. 2019, 147, e240. [CrossRef]

71. Liqiang, H. El Nino makes trouble for broad areas of China, may hurt rice farmers. China Daily. 2019. Available online:
http://www.chinadaily.com.cn/a/201903/01/WS5c7888eba3106c65c34ec1b7.html (accessed on 17 May 2022).

72. Tiwari, A.; Singh, S.; Soni, V.; Kumar, R. Environmental Impact of Recent Volcanic Eruption from Mt. Mayon Over 1 South-East
Asia. J. Geogr. Nat. Disast. 2021, 10, 547.

73. Batumbo Boloweti, D.; Giraudoux, P.; Deniel, C.; Garnier, E.; Mauny, F.; Kasereka, C.M.; Kizungu, R.; Muyembe, J.J.; Bompangue,
D.; Bornette, G. Volcanic activity controls cholera outbreaks in the East African Rift. PLoS Negl. Trop. Dis. 2020, 14, e0008406.
[CrossRef] [PubMed]

74. Miranda, A.V.; Wiyono, L.; Rocha, I.C.N.; Cedeño, T.D.D.; Lucero-Prisno, D.E.I. Strengthening Virology Research in the Association
of Southeast Asian Nations: Preparing for Future Pandemics. Am. J. Trop. Med. Hyg. 2021, 105, 1141–1143. [CrossRef] [PubMed]

75. Coker, R.J.; Hunter, B.M.; Rudge, J.W.; Liverani, M.; Hanvoravongchai, P. Emerging infectious diseases in southeast Asia: Regional
challenges to control. Lancet 2011, 377, 599–609. [CrossRef]

76. Keesing, F.; Ostfeld, R.S. Impacts of biodiversity and biodiversity loss on zoonotic diseases. Proc. Natl. Acad. Sci. USA 2021, 118,
e2023540118. [CrossRef]

77. Cai, W.; Ng, B.; Wang, G.; Santoso, A.; Wu, L.; Yang, K. Increased ENSO sea surface temperature variability under four IPCC
emission scenarios. Nat. Clim. Chang. 2022, 12, 228–231. [CrossRef]

78. Hu, K.; Huang, G.; Huang, P.; Kosaka, Y.; Xie, S.-P. Intensification of El Niño-induced atmospheric anomalies under greenhouse
warming. Nat. Geosci. 2021, 14, 377–382. [CrossRef]

http://doi.org/10.1175/2009JCLI2512.1
http://doi.org/10.1371/journal.pntd.0003901
http://www.ncbi.nlm.nih.gov/pubmed/26161895
http://doi.org/10.1002/joc.5120
http://doi.org/10.1007/s12517-021-08849-8
http://doi.org/10.1371/journal.pntd.0004796
http://www.ncbi.nlm.nih.gov/pubmed/27489944
http://doi.org/10.1017/S0950268817002138
http://doi.org/10.1101/2021.08.19.457011
http://doi.org/10.1098/rspb.2007.1260
http://doi.org/10.1371/journal.pone.0182171
http://doi.org/10.3389/fimmu.2020.00026
http://doi.org/10.1017/S0950268819001237
http://www.chinadaily.com.cn/a/201903/01/WS5c7888eba3106c65c34ec1b7.html
http://doi.org/10.1371/journal.pntd.0008406
http://www.ncbi.nlm.nih.gov/pubmed/32776919
http://doi.org/10.4269/ajtmh.21-0589
http://www.ncbi.nlm.nih.gov/pubmed/34506300
http://doi.org/10.1016/S0140-6736(10)62004-1
http://doi.org/10.1073/pnas.2023540118
http://doi.org/10.1038/s41558-022-01282-z
http://doi.org/10.1038/s41561-021-00730-3

	Introduction 
	Materials and Methods 
	Data 
	Statistical Analyses 
	Time-Series Analysis 
	Logistic Regression with Time Lag Analysis 
	Structural Equation Modelling 
	Event Coincidence Analysis 


	Results 
	Time-Series Analyses for HeV and NiV 
	Logistic Regression Analyses 
	Structural Equation Modelling 
	Event Coincidence Analysis 

	Discussion 
	References

