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Abstract: The sequencing of SARS-CoV-2 provides essential information on viral evolution, transmis-
sion, and epidemiology. In this paper, we performed the whole-genome sequencing of SARS-CoV-2
using nanopore and Illumina sequencing to describe the circulation of the virus lineages in Armenia.
The analysis of 145 full genomes identified six clades (19A, 20A, 20B, 20I, 21J, and 21K) and consid-
erable intra-clade PANGO lineage diversity. Phylodynamic and transmission analysis allowed to
attribute specific clades as well as infer their importation routes. Thus, the first two waves of positive
case increase were caused by the 20B clade, the third peak caused by the 20I (Alpha), while the last
two peaks were caused by the 21J (Delta) and 21K (Omicron) variants. The functional analyses of
mutations in sequences largely affected epitopes associated with protective HLA loci and did not
cause the loss of the signal in PCR tests targeting ORF1ab and N genes as confirmed by RT-PCR. We
also compared the performance of nanopore and Illumina short-read sequencing and showed the
utility of nanopore sequencing as an efficient and affordable alternative for large-scale molecular
epidemiology research. Thus, our paper describes new data on the genomic diversity of SARS-CoV-2
variants in Armenia in the global context of the virus molecular genomic surveillance.

Keywords: COVID-19; SARS-CoV-2; coronavirus; nanopore sequencing; Illumina sequencing;
whole-genome sequencing; Armenia

1. Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes the
novel coronavirus pneumonia COVID-19 [1], was first identified in China, in the city of
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Wuhan, in December 2019. The complete genome sequence of SARS-CoV-2 was published
in January 2020 [2–4] and led to the development of real-time reverse transcription poly-
merase chain reaction (qRT-PCR) assays for SARS-CoV-2 detection that have served as
a diagnostic standard during the ongoing COVID-19 pandemic [5]. Since then, whole-
genome sequencing has been used for the evolutionary analysis of the virus, monitoring
of circulating genetic lineages, and identifying signs of adaptation to hosts, which have
important implications for treatment and vaccine development [6–8]. In the last two years,
hundreds of studies were published describing country, region-specific and global insights
into the dynamics and sources of SARS-CoV-2 importations and transmissions [9–12].
These results were obtained from the analysis of viral sequences, which were continuously
sampled throughout the pandemic period.

In Armenia, the first confirmed case was reported on 1 March 2020. Since then, the
number of positive cases reached 374,878 (as of February 2022) with several peaks at differ-
ent time periods (Figure 1) with 8060 deaths and many re-infections [13]. In the absence of
sequencing facilities in the country, virtually nothing was known about the transmission
histories and epidemiological dynamics of the virus in Armenia. From March–August
2020, only three samples from Armenia obtained in July were sequenced in the Institute
of Virology Charité Universitätsmedizin Berlin, which were deposited in the GISAID
EpiCov [14,15] (accession ID: EPI_ISL_683449; EPI_ISL_683450; EPI_ISL_683451) in late
December 2020. Another set of samples from September–November 2020 was sequenced
by our colleagues at the Vaccine and Infectious Disease Division, Fred Hutchinson Cancer
Research Center (USA), which became available in May 2021 (GISAID accession IDs are
presented in Supplementary Table S1). This delay in analysis of molecular epidemiologic
information hampered the informed and timely decision making by health authorities. In
early 2021, our laboratory established the SARS-CoV-2 nanopore sequencing protocol and
was able to perform almost real-time genomic surveillance by the monthly sequencing of
viral samples during 2021 and 2022.
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In the present study, we combine all above-mentioned genomic data to report the
first molecular analysis of SARS-CoV-2 virus in Armenia in order to (1) understand the
emergence and the transmission of the virus, (2) identify the most prevalent lineages
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at different time points, and (3) investigate the potential functional consequences of the
mutations detected in the sequenced Armenian samples.

2. Materials and Methods
2.1. Samples

One hundred and ninety-one samples isolated from nasopharyngeal swabs were
obtained from the Nork infection clinical hospital and the National Center for Disease
Control and Prevention, Ministry of Health RA (NCDC), which served as primary testing
sites. These samples were randomly selected from batches of COVID-19 positive sam-
ples tested at NCDC (Armenia), immediately after the confirmation of positive status,
between June 2020–February 2022. Three additional samples previously sequenced at
Charité Universitätsmedizin Berlin, Institute of Virology (Germany) and deposited in the
GISAID EpiCov [14,15] were also included in this study (accessions: EPI_ISL_683451,
EPI_ISL_683450, EPI_ISL_683449). The total number of samples was 194.

2.2. Real-Time PCR Detection of SARS-CoV-2

Automated RNA isolation was performed with Maxwell RSC Instrument using
Maxwell RSC Viral Total Nucleic Acid Purification Kit (Promega Corporation Inc, Fitch-
burg, WI, USA). SARS-CoV-2 PCR testing was performed using Real-Time PCR Detection
Kit for COVID-19 Coronavirus CE-IVD kit (Biotech & Biomedicine (Shenyang) Group
Ltd., Shenyang, China) targeting ORF1ab and N genes. Samples were selected based on
viral RNA load as measured by Ct values between 18–35 (Supplementary Table S2) for
both targets.

2.3. Sequencing

Samples were sequenced with Oxford Nanopore and Illumina platforms (Supplemen-
tary Table S3). Nanopore sequencing of 146 samples was performed at the Institute of
Molecular Biology NAS RA. Illumina sequencing of 45 samples was performed at Vac-
cine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle,
WA, USA. Five nanopore samples were additionally resequenced on the Illumina Nextseq
platform to compare genome coverage and consensus level accuracy.

2.4. Nanopore Sequencing

Nanopore sequencing was performed according to “nCoV-2019 sequencing protocol
v3 (LoCost) V.3” [16] based on ARTIC SARS-CoV-2 sequencing protocol with ARTIC nCoV-
2019 V3 PCR panel [17,18].

2.4.1. cDNA Generation

RNA samples were directly used for the first-strand synthesis using the LunaScript RT
SuperMix Kit (New England Biolabs, Ipswich, MA, USA) with random hexamer and oligo-
dT primers. Briefly, 8 µL RNA were mixed with 2 µL LunaScript RT SuperMix (5X) and
were placed in a thermocycler and incubated for 2 min at 25 ◦C, followed by 10 min at 55 ◦C
and 1 min at 95 ◦C and cooling to 4 ◦C. cDNAs were immediately used in subsequent steps.

2.4.2. Amplicon Generation

Primer pairs from the ARTIC V3 primer scheme were used to amplify amplicons in
cDNA [19]. Two multiplex PCR reactions were performed with 2.5 µL cDNA, 12.5 µL Q5
Hot Start High-Fidelity 2X Master Mix (New England Biolabs, USA), and 4 µL ARTIC V3
pool 1 (10 µM) or 4 µL ARTIC V3 pool 2 (10 µM). PCR cycling conditions were: 98 ◦C for
30 s followed by 35 cycles of 98 ◦C for 15 s, 65 ◦C for 5 min, and hold at 4 ◦C. The amplified
products were purified with a 0.4x volume of AMPure XP beads (Beckman Coulter, Brea,
CA, USA) to exclude small nonspecific fragments.
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2.4.3. Barcoding and Library Preparation

The purified PCR amplicons were treated with NEBNext End repair/dA-tailing Mod-
ule (New England Biolabs, USA) and were barcoded with native barcodes and sequencing
adapters (EXP-NBD104 and EXP-NBD114 kits Oxford Nanopore Technologies, Oxford,
UK). Twelve or twenty-four samples were multiplexed in each sequencing run.

2.4.4. Nanopore Sequencing

After priming the flow cell, 15 ng of the final sequencing library diluted to a final
volume of 75 µL was loaded. Following the ligation sequencing kit (SQK-LSK109, Oxford
Nanopore Technologies, UK) protocol, MinION Mk1B was used to perform genome se-
quencing in an FLO-MINSP6 R 9.4.1 flow cell for 3–6 h. The mean genome coverage across
runs was 289 ± 189 (Supplementary Materials Figure S1).

2.4.5. Data Preprocessing, Demultiplexing, and Alignment

Base-calling and demultiplexing were performed using Guppy (v4.0.14). Raw FASTQ
files were filtered and reads with lengths 400–700 b were selected using the ARTIC pipeline
(release 1.1.0) [20]. Downstream analyses were performed using the nanopolish workflow
implemented in the ARTIC pipeline [21]. The pipeline includes an alignment to the hCoV-
19/Wuhan/WIV04 reference genome with minimap2 (2.17-r941) [22] followed by variant
calling and consensus-building. Positions in consensus genomes with coverage lower than
20 were masked with “N” bases.

2.5. Illumina Short-Read Sequencing

The short-read sequencing of 50 samples was performed using the Illumina Nextseq
platform following the protocol described in detail elsewhere [23]. In brief, sequencing
libraries were prepared using the Swift Biosciences Normalase Amplicon protocol and
SARS-CoV-2 amplicon panel, which contains 341 primer pairs spanning nucleotides 200 to
29,741 of the Wuhan reference genome (NC_045512v2) and produces amplicons ranging
in length from 116 to 255 base pairs. The multiplex amplicon libraries were produced
following the manufacturer’s recommendations, followed by 1.0× volumes of AMPure
XP beads cleaning. Then, barcoded sequencing adapters were added to the amplicons.
The resulting libraries were cleaned using 0.85× volumes of PEG NaCl and sequenced on
the Illumina Nextseq instrument using 2 × 150 reads. Genomes were assembled using a
custom pipeline described previously [23,24].

2.6. Phylogenetic and Variant Analysis

To perform preliminary QC of Armenian samples and select contextual samples, we
initially screened our sequences with Nextclade [25] and PANGOLIN [26]. As contextual
sample sequences GISAID nextregions selections were used (Global, Africa, Asia, Europe,
North America, South America, and Oceania collections downloaded on 22 January 2022).
In addition, we downloaded sequences for PANGO lineages B.1.1.163, B.1.1.419, B.1.1.528,
and BA.1.1 that were detected in Armenian sequences, but were absent in the downloaded
nextregions collections. In total, 17,721 contextual sequences were selected for combined
analysis with Armenian samples.

Phylogenetic analysis, Nextstrain clade, and PANGO lineage identification was per-
formed using the SARS-CoV-2 genomic epidemiology-specific pipeline implemented in
Nextstrain 3.0.6 [25]. After preliminary QC (genome length more than 27,000, number of
ambiguous reads < 3000), sequences were aligned to the reference genome (Wuhan/Hu-
1/2019) with MAFFT v7.490 [27,28]. For phylogenetic context, we performed contextual
subsampling based on genomic proximity [25] to select 10 sequences per country per year
per month as representative sequences from the background. The final dataset consisted of
145 Armenian sequences (97 nanopore and 48 Illumina) and 9449 contextual background
sequences. A maximum likelihood (ML) phylogenetic tree was constructed using IQ-
TREE [29] under the GTR nucleotide substitution model. We used TreeTime [30] trait
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reconstruction on the resulting time-labeled tree to infer Armenia-centered trans-country
transmissions with a “mugration model”. The temporal signal was evaluated by root-to-tip
regression with TempEst v.1.5.3 [31].

The Coalescent Bayesian Skyline model of Armenian samples was constructed with
BEAST v1.10.4 [32] with previously described parameters [9]. The model parameters
were estimated with 40,000,000 Markov Chain Monte Carlo (MCMC) iterations, with
4,000,000 burn-in states and sampling every 1000 states. The MCMC parameter quality
was assessed using Tracer v.1.7.1 [33] and were accepted if affective sampling size (ESS)
values were higher than 100. The maximum clade credibility (MCC) tree was annotated
using Tree Annotator v.1.8.4 [34].

2.7. Functional Annotation of SARS-CoV-2 Genomes

The functional annotation of SARS-CoV-2 genomes from Armenia included in the
present study was performed using the Coronavirus Genome Analysis Tool (CorGAT) [35],
where bioinformatic prediction of potential T-cell epitopes for SARS-CoV-2 were performed
according to Kiyotani et al. (2020) [36].

3. Results and Discussion
3.1. Phylodynamic and Phylogeographic Analysis of Sequences

The total of 194 sequences represents 0.04% of 399,727 reported cases in Armenia as of
11 February 2022 (Figure 1).

Of the 194 sequenced samples, 145 (75%) sequences met the quality criteria (genome
length of more than 27,000; number of ambiguous reads < 3000) and were included in
the analyses. These 145 sequences represented 6 Nextstrain clades and 23 PANGO lin-
eages (Figure 2A,B). The highest genomic diversity was noticed for the clades 21J (Delta)
(nine PANGO lineages) and 20B (eight PANGO lineages). The analysis of root-to-tip re-
gression with TempEst demonstrated a very strong temporal signal in our data (adjusted
R2 = 1, 2.9 × 1024 on 1 and 143 DF, p-value: <2.2 × 10−16, Figure 2C).

The analysis of clades in sequencing samples and lineage-through-time plots (Figure 2D)
indicated several rounds of clade substitutions within the time of sampling. June 2020–
January 2021 samples were mostly represented with sequences belonging to the clade 20B
with only two 19A sequences. Samples from March 2021 belonged exclusively to the clade
20I (Alpha), while May–July 2021 samples were in majority represented by 21J (Delta).
Finally, late 2021–January 2022 were represented mostly by 21K (Omicron). Further analysis
demonstrated inter-clade variability for the time of introduction, transmission routes, and
PANGO lineages (Figure 3).

The clade 19A (B.4) was represented by only two sequences. The estimated time for
their introduction was late July (21 June 2020, Date Confidence Interval: 9 June 2020–27
June 2020); however, this clade was not detected in later samples suggesting its replacement
in the Summer of 2020. The analysis of the transmission routes indicated Iran as the source
of introduction for these sequences around early March 2020, which corresponds well with
the date of the first positive case of COVID-19 in Armenia identified in a traveler from
Iran [37]. Thus, we can speculate that July was the period of substitution of the 19A clade
with 20B, which fits with the global domination of clades harvesting Spike D614G [38].

The clade 20B formed three big clusters associated with different introduction events
as well as a few single introductions that did not result in large intra-country transmissions.
Early introduction sources were Italy (2 March 2020, Date Confidence Interval25 February
2020–5 March 2020) and New Zealand (20 April 2020, Date Confidence Interval: 15 March
2020–22 May 2020). Interestingly, the latest introduction (12 October 2020, Date Confi-
dence Interval: 18 September 2020–9 November 2020) observed was almost exclusively
represented by the B.1.1.163 lineage imported from Russia that formed a big intra-country
cluster. The estimated time of importation coincided with the sharp increase in positive
cases in September–November 2020 (Figure 1).
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The clade 20B formed three big clusters associated with different introduction events
as well as a few single introductions that did not result in large intra-country transmissions.
Early introduction sources were Italy (2 March 2020, Date Confidence Interval25 February
2020–5 March 2020) and New Zealand (20 April 2020, Date Confidence Interval: 15 March
2020–22 May 2020). Interestingly, the latest introduction (12 October 2020, Date Confi-
dence Interval: 18 September 2020–9 November 2020) observed was almost exclusively
represented by the B.1.1.163 lineage imported from Russia that formed a big intra-country
cluster. The estimated time of importation coincided with the sharp increase in positive
cases in September–November 2020 (Figure 1).

The variant of concern 20I (Alpha) had two introductions in Armenia. According
to the temporal analysis, the lineage B.1.1.7 was introduced around 24 December 2020
(Date Confidence Interval: 26 September 2020–10 January 2021) and 24 November 2020
(Date Confidence Interval: 6 September 2020–15 January 2021). The Nextstrain pipeline
identified Jordan and Germany as the main transmission route for the 20I (Alpha) clade
sequences. The 20I (Alpha) was primarily responsible for the third peak of positive cases in
late February–March 2021 (Figure 1). The introduction of this variant in Armenia happened
with several months’ delay compared with the West European Countries and resulted in
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considerably fewer infections as well. One of the reasons can be the strict travel restrictions
and a negative 72 h PCR test requirement for inbound travel [39]. The other reason can be
the peak of infection caused by 20B (B.1.1.163) in late 2020.
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The estimated earliest introduction of the clade 20J (Delta) in Armenia was 28 Decem-
ber 2021 from India (B.1.617.2). The majority of the 20J (Delta) sequences, however, were
represented by the AY.122 lineage (39 of 56 sequences) forming a single cluster with an
estimated date 22 February 2021 (Date Confidence Interval: 8 December 2020–17 March
2021), introduced from Liechtenstein. More recent sequences for this clade have diverse
geography (Bahrain, Denmark, Greece, India, Jordan, Portugal, South Africa, Spain, Suri-
name, and Turkey), but mostly without producing many secondary cases according to the
phylogenetic tree.

Finally, the sequences belonging to the 21K (Omicron) clade demonstrated the highest
geographical diversity of introduction (Brazil, France, Maldives, Mexico, Netherlands, and
Sweden). The earliest inferred date for this clade introduction was estimated at 6 December
2021 (Date Confidence Interval: 11 October 2021–29 December 2021).

Both 20J (Delta) and 21K (Omicron) caused a sharp increase in positive cases compared
to previous waves. On the other hand, the deaths accompanying the 21 (Delta) wave
were considerably higher compared with the 21K (Omicron) (Supplementary Materials
Figure S2), which is in line with observations in other countries [40,41].

Thus, our phylodynamic and phylogeographic analysis of the SARS-CoV-2 Armenian
sequences allowed us to identify and characterize virus clades/lineages transmissions to
Armenia. The results indicate multiple inter-country importations and their persistence in
the country.
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3.2. Functional Annotation of Variants

We performed the functional annotation of analyzed sequences using Nextclade [25]
and CorGAT [35] tools (Supplementary Materials Tables S4 and S5). Besides known ef-
fects of clade/lineage signature mutations (for the most comprehensive list see https://
covariants.org/, accessed on 12 May 2022), we were interested in the functional conse-
quences of “private mutations” (reversions to reference, mutations ascribed to different
clades, and mutations that are for reversions or belonging to other clades) as defined by the
Nextclade app.

The reversions were identified in six 20I (Alpha) and one 21K (Omicron) samples,
which constituted 54% and 12% of clade sequences, respectively. Most private mutations
ascribed to other clades were detected in 20B (27 sequences) and 21J (Delta) (12 sequences);
however, only seven such mutations were found in more than one sequence. Finally, at
least one private unlabeled mutation was identified in all the 20B, 20I (Alpha), 21J, and
21K (Omicron) sequences. Overall, 138 mutations were detected in more than two samples.
The functional annotation of all mentioned mutation types is provided in Supplementary
Materials Table S5. No specific enrichment for HLA epitopes [42–44], evolutionary selection,
or secondary structure elements were observed in private mutations compared to all known
mutations (HLA-epitopes p Fisher exact = 1; Selection pressure p Fisher exact = 0.45; Secondary
structure p Fisher exact = 0.63); however, the overlap between these categories was observed
for some of the mutations (Figure 4).
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HLA loci association with COVID-19 incidence, risk, or severity has become one of
the research focus areas. Many associations have been reported in various countries and
populations [43,45]; for example, HLA-A*02:01 was predicted to have a high binding to the
virus epitopes and shown to be protective against COVID-19 severity, while HLA-A*01:01
was considered a risk factor for the disease [43]. Moreover, another recent study evaluated
the association of HLA loci with the side effects of mRNA vaccines [46]. Recently, the
study of HLA loci association with COVID-19 has also identified HLA-C*04:01 as a risk
factor for severe disease in Armenia [47]. Previous population-scale studies identified
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the common HLA alleles in the Armenian population (HLA-A*02:01, HLA-A*01:01, HLA-
A*24:02, HLA-A*03:01, HLA-B*51:01, HLA-B*35:01, and HLA-B*49:01) [48]. We evaluated
the representation of epitopes targeted by these loci in our sequences. We identified
epitopes for two protective HLA loci (HLA-A*02:01 and HLA-A*24:02) and three risk loci
(HLA-A*01:01, HLA-A*03:01, and HLA-B*51:01). Our results demonstrate that the majority
of sequences harbor mutations in epitopes with a high-binding affinity to protective HLA
loci, while only a few sequences showed the presence of the mutations associated with
low-binding HLA alleles (Table 1, Supplementary Material Table S5). No HLA-C*04:01
locus-related epitopes/mutations were observed; however, this allele was not present in
the CorGAT’s HLA annotation dataset. Thus, the question of whether mutations in viral
sequences may be related to the observed association of HLA-C*04:01 with disease severity
remains open.

Table 1. Absolute count of sequences harboring private mutations in HLA epitopes across clades.

Clade HLA-A*02:01, HLA-A*24:02
(Protective Alleles)

HLA-A*01:01, HLA-A*03:01,
HLA-B*51:01 (Risk Alleles)

19A 3 mutations 2 mutations
20B 228 mutations 128 mutations

20I (Alpha, V1) 68 mutations 24 mutations
21J (Delta) 453 mutations 303 mutations

21K (Omicron) 76 mutations 19 mutations

Polymerase chain reaction (PCR) is the current standard method for COVID-19 clinical
diagnosis from clinical samples. Therefore, we conducted a reassessment of published
diagnostic PCR assays, including those recommended by the World Health Organization
(WHO), through the evaluation of the possible effect of identified mutations on the efficacy
of recommended primers and probes used for PCR detection of SARS-CoV-2 with the
Nextclade app. In 143 sequences, we observed 39 mutations in the viral genome that did
not match RT-PCR primers/probes for SARS-CoV-2 detection (Supplementary Materials
Table S6). However, mutations located in template regions for US CDC N3 and China CDC
Orf1AB primers and probes did not influence the primer binding since we obtained the N
gene PCR signal in all studied samples (Supplementary Materials Table S2).

3.3. Comparison of Oxford Nanopore and Illumina Sequencing

In this study, 97 nanopore sequencing samples and 48 Illumina sequencing sam-
ples were included, which gave us an opportunity to evaluate the performance of both
approaches. First, we assessed the number of missed nucleotides in the Nextclade app
analysis, which can indicate gaps in genomes because of insufficient read coverage. Out
of the 97 nanopore samples, 86 had missing sites, while in Illumina samples, they were
detected only in 5 samples. The length distribution of missing sites was 146 ± 176 nt
and 70 ± 22 nt in nanopore and Illumina samples, respectively. The large SD in nanopore
samples is caused by a high number of single missing sites as well as supposed amplicon
drop-outs (Figure 5).

We also sequenced five samples by two methods, so we compared them to evaluate
the correspondence of clade/lineage assignment with nanopore and Illumina short-read
sequencing. We compared the Nextstrain clade and PANGO lineage assignment for the
consensus these sequences produced (Table 2, Supplementary Materials Table S7).



Viruses 2022, 14, 1074 10 of 14

Viruses 2022, 14, x FOR PEER REVIEW 10 of 15 
 

(WHO), through the evaluation of the possible effect of identified mutations on the effi-
cacy of recommended primers and probes used for PCR detection of SARS-CoV-2 with 
the Nextclade app. In 143 sequences, we observed 39 mutations in the viral genome that 
did not match RT-PCR primers/probes for SARS-CoV-2 detection (Supplementary Mate-
rials Table S6). However, mutations located in template regions for US CDC N3 and China 
CDC Orf1AB primers and probes did not influence the primer binding since we obtained 
the N gene PCR signal in all studied samples (Supplementary Materials Table S2). 

3.3. Comparison of Oxford Nanopore and Illumina Sequencing 
In this study, 97 nanopore sequencing samples and 48 Illumina sequencing samples 

were included, which gave us an opportunity to evaluate the performance of both ap-
proaches. First, we assessed the number of missed nucleotides in the Nextclade app anal-
ysis, which can indicate gaps in genomes because of insufficient read coverage. Out of the 
97 nanopore samples, 86 had missing sites, while in Illumina samples, they were detected 
only in 5 samples. The length distribution of missing sites was 146 ± 176 nt and 70 ± 22 nt 
in nanopore and Illumina samples, respectively. The large SD in nanopore samples is 
caused by a high number of single missing sites as well as supposed amplicon drop-outs 
(Figure 5). 

  

(A) (B) 

Figure 5. The bar graph represents the size distribution of missing sites for (A) nanopore and (B) 
Illumina samples. The X-axis represents the size of missing sites; Y-axis represents the absolute fre-
quency (number) of missing sites per size. 

We also sequenced five samples by two methods, so we compared them to evaluate 
the correspondence of clade/lineage assignment with nanopore and Illumina short-read 
sequencing. We compared the Nextstrain clade and PANGO lineage assignment for the 
consensus these sequences produced (Table 2, Supplementary Materials Table S7). 

Table 2. Comparison of the PANGO lineage and GISAID clade assignment for consensus sequences 
produced with Oxford Nanopore Technologies and Illumina. 

Sample 
Oxford  

Nanopore  Illumina  

 PANGO  
Lineage 

Nextstrain 
Clade 

PANGO  
Lineage 

Nextstrain 
Clade 

IMB1-1/2021 B.1.1.163 20B B.1.1.163 20B 

IMB1-2/2021 B.1.1.163 20B B.1.1.163 20B 

IMB1-5/2021 B.1.1.163 20B B.1 20A 

Figure 5. The bar graph represents the size distribution of missing sites for (A) nanopore and
(B) Illumina samples. The X-axis represents the size of missing sites; Y-axis represents the absolute
frequency (number) of missing sites per size.

Table 2. Comparison of the PANGO lineage and GISAID clade assignment for consensus sequences
produced with Oxford Nanopore Technologies and Illumina.

Sample Oxford Nanopore Illumina

PANGO Lineage Nextstrain
Clade

PANGO
Lineage

Nextstrain
Clade

IMB1-1/2021 B.1.1.163 20B B.1.1.163 20B
IMB1-2/2021 B.1.1.163 20B B.1.1.163 20B
IMB1-5/2021 B.1.1.163 20B B.1 20A
IMB2-1/2021 B.1.1 20B B.1.1.7 20I (Alpha, V1)
IMB2-2/2021 B.1.1.163 20B B.1.1.163 20B

In three cases out of five, the clade and lineage were in agreement between nanopore
and Illumina sequencing. IMB2-1/2021 isolate was initially assigned to B.1.1 with nanopore
sequencing, while Illumina consensus was identified as B.1.1.7. The analysis of the BAM
files for this strain indicated that the amino acid substitutions and deletions characteristic
of B.1.1.7 lineage also existed in the nanopore sequencing reads; however, they did not pass
the quality check during calling by nanopolish variant pipeline (Supplementary Materials
Figures S3 and S4). Moreover, the temporal analysis also indicated January as the estimated
time for this lineage introduction in Armenia (see Section 3.1). In another case, the Illumina
sequence for IMB1-5/2021 was assigned to B1, while nanopore sequencing assigned the
same sequence to B.1.1.163. Overall, our data suggest that Illumina sequencing can produce
better consensus sequences than nanopore; the possible reason could be differences in
coverage generated in the two approaches and also specific amplicon dropouts described
for the ARTIC primer scheme [16,49]. However, nanopore sequencing can serve as an
efficient and affordable alternative to Illumina (short-read) next-generation sequencing and
be used for the epidemiologic surveillance and molecular-genetic analyses of SARS-CoV-2.
This is particularly important in countries with underdeveloped NGS sequencing facilities,
such as Armenia.

4. Conclusions

Our study added new data to the global context of genomic epidemiology of SARS-
CoV-2 and provided a holistic overview of the emergence, transmission, and diversity of
the virus in Armenia. We identified multiple introductions of genomic lineages and their
relations with the dynamics of positive cases during 2020–2022. Interestingly, the majority
of importations inferred by phylogeographic analyses were through airway travels, while
ground transportation played very little or no role, consistent with closed ground borders
in Armenia and neighboring countries almost immediately after the first positive case in
Armenia [50]. The majority of early importations were from countries with a considerably



Viruses 2022, 14, 1074 11 of 14

large Armenian diaspora (such as Russia and Kazakhstan) as well as touristic destinations
(Italy) and much a wider geography for later VOC lineages.

The functional analysis of mutations (both lineage defining and private) identified a
considerable number of mutations that affected the binding of predicted viral epitopes to
protective HLA loci. Consistent with the previous reports, such mutations were present in
the majority of VOC lineages compared to older lineages [51].

Our results also show multiple mutations in regions covered by several primers/probes
compared with the reference sequence of the virus. This observation is of particular im-
portance, since mutations may lead to the alteration of the sensitivity of qRT-PCR tests.
Diagnostic tests mostly used in Armenia target ORF1ab and N genes, and our results
suggest that identified mutations will not influence their accuracy.

The results of the study again emphasize the need for constant sequencing-based
surveillance of SARS-CoV-2 strains for public health decision making and health care.
Illumina short-read whole-genome sequencing platforms enable accurate sequence deter-
mination and are currently the method of choice for SARS-CoV-2 sequencing [52]. However,
whole-genome sequencing essential for epidemiological monitoring and surveillance of
viral pathogens is still challenging in many countries with limited technical resources.
While the superiority of Illumina platforms over nanopore sequencing has been established
in several studies [17], the latter still can serve as an efficient and affordable alternative
to short-read next-generation sequencing and be used for epidemiologic surveillance and
molecular-genetic analyses of SARS-CoV-2. This is particularly important in countries with
underdeveloped NGS sequencing facilities, such as Armenia, and can play an important
role in shaping local, national, and regional COVID-19 response strategies.

It is also worth noting the limitations of this study. First, the number of genomes
sequenced and analyzed was small compared to the total number of positive cases in the
country. Moreover, the sample collection and sequencing started in Autumn 2020, which
limited our ability to accurately reconstruct events close to the first dates of the epidemic.
The geography of trajectories for lineage importations also should be treated with caution
since they were inferred from the phylogenetic analyses based on the limited number of
background sequences selected. Unfortunately, we did not have access to the travel and
contact history information, which definitely would otherwise improve the accuracy of
the results.

However, even with these limitations, we believe that this paper is an important
contribution in an attempt to fill the knowledge gap and demonstrate the importance
of the real-time genomic surveillance of SARS-CoV-2 for informed and timely public
health interventions.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/v14051074/s1, Figure S1: The average sequencing coverage for nanopore
sequencing runs. The order of the positions corresponds to the reference genome (MN908947.3);
Figure S2: Daily reported deaths from COVID-19 in Armenia, sampling dates, and clade distribution
of sequenced samples; Figure S3: B.1.1.7 characteristic mutations in raw nanopore reads of the
IMB2-1/2021 isolate; Figure S4: B.1.1.7 characteristic mutations in nanopore and Illumina consensus
sequences for the IMB2-1/2021 isolate; Table S1: Accession IDs for SARS-CoV-2 sequenced genomes
deposited in the GISAID EpiCoV database; Table S2: The viral RNA load expressed in Ct values
performed by qRT-PCR targeting the ORF1ab and N genes in the conserved region of the SARS-CoV-2
genome; Table S3: Sample counts and sequencing scheme; Table S4: Nextclade annotation of the
145 analyzed sequences; Table S5: CorGAT annotation of the 145 analyzed sequences; Table S6: Point
mutations in primers and probes for the detection of SARS-CoV-2 of global research institutions;
Table S7: Nextclade annotation of nanopore and Illumina paired sequences; Table S8: We gratefully
acknowledge the authors from the originating laboratories for obtaining the specimens and the
submitting laboratories for data generation and sharing via the GISAID Initiative.
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