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Abstract: Screening efforts and genomic surveillance are essential tools to evaluate the course of the
COVID-19 pandemic and assist the public healthcare system in dealing with an increasing number of
infections. For the analysis of COVID-19 cases scenarios in Curitiba, Paraná, Brazil, we performed a
diagnosis of positive cases, coupled with genotyping, for symptomatic and asymptomatic members
of the Federal University of Paraná. We achieved over 1000 samples using RT-qPCR for diagnosis.
The posterior genotyping allowed us to observe differences in the spread of strains in Curitiba, Brazil.
The Delta variant was not associated with an infection wave, whereas the rapid Omicron variant
spread became dominant in less than one month. We also evaluated the general vaccination coverage
in the state, observing a striking reduction in lethality correlated to the vaccinated fraction of the
population; although lower lethality rates were not much affected by the Omicron variant wave, the
same effect was not translated in the number of infections. In summary, our results provide a general
overview of the pandemic’s course in Paraná State and how there was reduction in lethality after a
combination of multiple infection waves and a large-scale vaccination program.

Keywords: coronavirus; environment; public health; diagnosis; diagnostic techniques and procedures;
genotyping; SARS-CoV-2; omicron; vaccination

1. Introduction

Despite the considerable efforts in vaccination to control the COVID-19 pandemic
worldwide, the emergence of highly infectious variants, such as Alpha, Beta, Gamma, Delta,
and recently, Omicron variants of concern (VOCs) [1] is a matter of public health concern.
In Brazil, the Gamma variant (B.1.1.28/P.1 lineage) emerged in Manaus in late January 2021,
surpassing Zeta (B.1.1.28/P.2 lineage), a predominant variant of interest (VOI) at that time,
in less than three months [2].
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The Delta variant (B.1.617.2 lineage) was initially detected in India in October 2020 [1],
and responsible for severe burden on its healthcare system, especially in regard to medical
equipment and supplies, entailing in a shortage of hospital beds and oxygen supply for
critically ill patients [3]. This variant spread worldwide, even to countries with high
vaccination rates [4]. In Brazil, the first confirmed case occurred on 26 April 2021 [5].

The Omicron variant (B.1.1.529 lineage) is currently the main object of worldwide
concern. It was identified for the first time on 14 November 2021, in South Africa; due to
numerous mutations, this variant has shown to have increased transmissibility and the
potential to partially suppress infection or vaccine-induced immunities [6]. The particular
constellation of Omicron mutations led to an increased doubling time compared with
previous variants, especially considering the combination with immune evasion [7].

To perform genomic surveillance, we analyzed 1299 positive samples from 29 June
2020 to 31 January 2022, collected in the COVID-19 detection service of LIGH (Laboratory
of Immunogenetics and Histocompatibility), at Federal University of Parana (UFPR) in
Curitiba, Brazil. 1118 samples were successfully genotyped. Vaccination profiles for
Paraná state were obtained from Brazilian DATASUS, on 8 February 2022. The UFPR’s
Complexo Hospital de Clínicas Research Ethics Committee approved the study (CAAE:
31687620.2.0000.0096), and all participants signed an informed consent form. All data used
in the plots are available in Supplementary Table S1.

2. Materials and Methods

Samples processed came mainly from two distinct sources, impacting the material
received: (1) nasopharyngeal swab in viral transport medium from CHC-UFPR, mainly
from healthcare workers, as previous described [8] or (2) crude saliva samples collected
in LIGH-UFPR continuous symptomatic testing or single-day asymptomatic testing, as
previous described [2]. For nasopharyngeal swab samples, 100 µL of carrier VTM were
used to perform the extraction. For saliva, samples were processed as previously de-
scribed [2]. Briefly, after initial homogeneization, samples settled for 30 min or centrifuged
for 2 min (2000× g). As in nasopharyngeal swabs, 200 µL from each saliva sample were
pooled in groups of 5 when the donor was asymptomatic or processed individually when
the donor was reported symptomatic. We performed RNA extraction by using an auto-
mated magnetic EXTRACTA–RNA and DNA Viral kit (Loccus Biotecnologia, Sao Paulo,
Brazil). We performed amplification in 3 ways: on a QuantStudio5 instrument (Ther-
moFisher Scientific, https://www.thermofisher.com, accessed on 16 March 2022) using
AllPlex nCov-2019 reverse transcription PCR Master Mix Kit (SeeGene, Seoul, South Korea,
performing 45 cycles), Molecular SARS-CoV-2 EDx (Bio-Manguinhos/FioCruz, Rio de
Janeiro, Brazil, performing 40 cycles), or KIT BIOMOL OneStep/COVID-19 (IBMP, Curitiba,
Brazil, performing 40 cycles). All molecular kits were used accordingly to the manufacturer
instructions. Multiple kits were used due to the issues with supply chain and the imperative
need to keep routine testing.

As performed in a previous study [2], positive samples were evaluated using probe-
based genotyping systems to detect VOCs. At first, Vogels et al.’s [8] multiplex approach
was applied to detect Spike ∆69–70 and ORF1a ∆3675–3677 deletions as an outcome for
distinguishing Alpha, Beta, Gamma, Delta, Omicron, or other wild-type variants [9]. Clas-
sified samples were re-analyzed with two allelic discrimination TaqMan assays (Thermo
Fisher Scientific Inc., Waltham, MA, USA): N501Y (ANPRYZA), and P681R (CVEPRY4). All
assays were performed using GoTaq® Probe 1-Step RT-qPCR System (Promega, Madison,
WI, USA) on a QuantStudio5™ instrument (Thermo Fisher Scientific Inc., Waltham, MA,
USA). The N501/681R+ profile is consistent with the Delta variant, whereas the Y501/non-
detection 681 profile is consistent with the Omicron variant [10]. We confirmed the presence
of Delta (plus T95I and G142D, AY.1/AY.4 strains) and Omicron variants through partial
genome-sequencing of the S gene from 23 samples, selected to validate the probes assay,
using the BigDye Terminator v.3.1 Cycle Sequencing Ready Reaction kit in an AB1 3500xL
automated sequencer (Thermo Fisher Scientific Inc., Waltham, MA, USA).

https://www.thermofisher.com
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Epidemiological data from Paraná state were obtained from Secretaria Estadual da
Saude (https://www.saude.pr.gov.br/Pagina/Coronavirus-COVID-19), accessed on 7
February 2022. Epidemiological data from Brazil were obtained from Ministerio da
Saúde (https://COVID.saude.gov.br/), accessed on 31 March 2022. Vaccination data
were obtained from OpenDATASUS (https://opendatasus.saude.gov.br/dataset/COVID-
19-vacinacao), accessed on 31 March 2022.

3. Results and Discussion

The first detection of the Delta variant among our collected samples occurred on
13 May 2021 (week 19, 2021), with 17.4% incidence during this month. The reduction in
the Gamma variant in the following months resulted in the total predominance of Delta
by September (Week 35, 2021, Figure 1a). Although this replacement was expected, as it
was observed in other countries in Asia, North America, and Europe [11], the surge of
the Delta variant in Brazil was not accompanied by infection and lethality waves [12]. In
Paraná State, the predominance of Delta cases did not lead to an increase in infections
per week unlike Gamma, which was the most prevalent variant in previous peaks, seen
in weeks 10 and 21 (Figure 1a). This could be partially explained either by the advance of
vaccination, with more than 18% of Paraná’s total population completely vaccinated at that
point, or by the close wave of Gamma infections, which was still ongoing when the first
Delta cases were confirmed in the state (Figure 1b).

Following other countries, the surge of Omicron in Brazil happened incredibly fast,
quickly displacing Delta. This variant represented a significant increase in the number
of infections, but maintained a proportionally low increase in the number of deaths [13].
Cases attributed to the Omicron variant started to circulate in week 51 (2021), with the
unprecedented mark of 142,737 cases (1.3% of the state’s total population) in a single week.
However, COVID-19’s lethality had already decreased since, as of early 2022, more than
70% of the population had the complete vaccination for SARS-CoV-2. The low intrinsic
pathogenicity of the Omicron variant [13] and the high seroprevalence of the population
(caused by either previous infections and/or vaccination) led to a two times higher in-
cidence of cases in the state (Figure 1a), but with the lowest lethality rate of the entire
pandemic (Figure 1b).

To further confirm the evidence of the correlation between the complete vaccination
cycle of the population and the reduction in disease lethality, we correlated cumulative
vaccination and disease lethality, measured on a weekly basis (Figure 2a). A negative
correlation (Pearson = −0.7699) with a significative p-value (<0.0001) denotes the reduc-
tion in disease impact in a vaccinated population. The same scenario is observed when
we stratify the data by each vaccine manufacturer (Figure 2b), with the worst signal
(Pearson = −0.5819) for Janssen-Cilag, due to low vaccine usage in Paraná State. Multiple
other studies have already observed those beneficial effects of vaccination at a population
level, reinforcing the importance of a population-wide vaccination program to mitigate the
effects of a newly emerging infectious disease [14–16].

Since distinct states and countries show distinct profiles of viral spread and disease
lethality [17], which need to be even modeled in isolated state-wise scenarios [18], we tried
to correlate Paraná state data to overall Brazilian one to access if the course of the local
epidemic could be correlated to the nation-wide course (Figure 2c). We found a correlation
between local weekly reported cases (Pearson = 0.8415), deaths (Pearson = 0.8778), and
lethality (Pearson = 0.8042) to the overall country ones. This reinforces that our local sce-
nario, despite being related with a single state and that epidemy transcurred differently in
each Brazilian state, is positive correlated with the overall Brazil epidemiological scenario.

We also evaluated the Ct values, representing the viral load, for the main observed
variants (Figure 3). The Gamma variant viral load was lower than the Wild (p < 0.0001),
Delta was lower than Gamma (p < 0.0001), and at last, Omicron was lower than Delta
(p = 0.0188) (Figure 3a, left panel). This scenario resembled when restricted to patients
with multiple collections (Figure 3a, right panel); however, there was no statistical support.

https://www.saude.pr.gov.br/Pagina/Coronavirus-COVID-19
https://COVID.saude.gov.br/
https://opendatasus.saude.gov.br/dataset/COVID-19-vacinacao
https://opendatasus.saude.gov.br/dataset/COVID-19-vacinacao
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Keeping the case-by-case strategy (Figure 3b), some reinfections showed an increase in the
viral load. However, the overall scenario points to a reduction in the viral load during the
diagnostic RT-PCR test, particularly for the Omicron variant, which is being observed by
other authors as well [12,19].
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Figure 1. SARS-CoV-2 variants, number of cases, lethality, and vaccination in Paraná State, Southern
Brazil. (a) New COVID-19 cases (red line, left axis) are grouped by epidemiological week. Colored
bars (right axis) indicate the frequency of Wild, Alpha, Gamma, Delta, and Omicron variants in
Curitiba, Paraná. (b) The cumulative complete vaccination (left axis) in Paraná State, Brazil, in
millions of habitants, is stratified by vaccine manufacturer: Sinovac (inactivated virus, two doses),
AstraZeneca (Adenovirus, two doses), Janssen-Cilag (Adenovirus, two doses, despite manufacturer
single-dose regimen suggestion), and Pfizer (mRNA, two doses). COVID-19 lethality (right axis) is
defined as deaths or registered cases in each epidemiological week.

Most cases attributed to the Omicron variant appear to be mild [20], with symptoms
expected to be milder in vaccinated and those previously infected than in unvaccinated
individuals [14]. This scenario has not increased the disease’s lethality, as observed in
the previous Gamma outbreaks in Paraná, Brazil [2], enabling the reopening of schools,
universities, and general crowd-related situations. However, even a milder infection can
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lead to an uncontrolled number of infections, which, in turn, will cause the overload of
healthcare systems.
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Figure 2. Correlation between vaccination rates and SARS-CoV-2 lethality in Paraná State and
comparison with general country infection rates. (a) Correlation between cumulative two-doses
complete vaccination cycle reported weekly using any vaccine in Paraná state (x-axis) and COVID-19
disease lethality (y-axis). (b) Same as (a), but stratified by each vaccine manufacturer. (c) Correlation
between Paraná state epidemiological scenario (x-axis) and Brazil one (y-axis) for weekly confirmed
COVID-19 cases (left), COVID-19 confirmed deaths (middle), and COVID-19 lethality (right). Blue
line represents a linear regression; values derive from Pearson correlation and its p-value.
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Figure 3. Cycle-threshold values for N gene target SARS-CoV 2 detection. (a) Ct values of diagnosis
for each evaluated variant during the pandemic in all samples (left) or patients with multiple
collections and reinfections. (b) Dots and lines plot represent Ct values for each patient tracked for
multiple infections, gray lines represent negative results from the same patient, red lines represent
Ct decrease (an increase in viral load), and green lines represent Ct increase (decrease in viral load).
p-values derived from ANOVA, followed by Tukey’s test. Each dot represents a sample, the box
represents the interquartile range, and the lines are the kernel-smoothed distribution.

Based on numerous efforts of molecular tracing and sequence analysis, SARS-CoV-2 is
shown to evolve in such a way as to determine subsequent waves of infection [17]. Rapid
screening for target PCR–based diagnostic assays is essential for immediate public health
strategies since new variants may still emerge. It was through target qPCR that the fast
takeover of Delta and Omicron variants was detected, after predominance of Gamma in
Curitiba-PR, southern Brazil. In conclusion, our data reinforce the rapid spread of VoCs in
this region, highlighting the value and importance of agile and robust genomic surveillance
systems, and sharing information with public health partners as such information is vital
for the implementation of prevention strategies—namely, the use of masks, vaccination
programs, COVID-19 testing, isolation, and others—that help prevent high mortality rates
and the collapse of the healthcare system.
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