
Supplemental Material and Methods 

Bioinformatic Analysis of EPr2 

Paired end sequences (108, 202 reads total) were evaluated for quality with FastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and trimmed with Trimmomatic 

[33]. A total of 95,613 trimmed reads passed and were corrected with RACER [34]. Kraken2 

classification of the resulting reads was performed using the default bacterial database [35] to 

identify a bacterial host sequence from which contaminating reads would be derived and 

removed. EPr2 has a previously sequenced host strain, P. rettgeri MRSN 845308, which was 

selected and indexed instead. The reads were aligned against the manually chosen host strain 

with Hisat2 [36] with options to separately save the aligned (119 reads) and unaligned reads 

(95,494 reads). The unaligned reads were chosen as the input for all following tasks. These host-

filtered reads were passed again to Kraken2 and run using the viral database supplemented 

with the set of reference genomes provided by the International Committee on Taxonomy of 

Viruses (ICTV) [37]. These filtered/cleaned/trimmed reads were passed to Unicycler [27] and 

SPAdes [38] in order to create the initial assembly. 

 The assembly resulted in one contig and coverage was assessed. The assembled contig 

was passed to phastaf (https://github.com/tseemann/phastaf) for an initial taxonomy query of 

the assembly. A further taxonomic query was performed by aligning the catalog of all ICTV 

reference genomes against the assemblies with Fasta36 [39]. An initial set of putative CDS 

sequences was produced with Prodigal [29], counted by strand, and the majority strand was 

chosen as the Watson strand. The phage terminus was determined with PhageTerm [28] using 

the Unicycler assembly and filtered reads; when possible the resulting genome was reoriented 



to put the DTR at the beginning. If this did not succeed, Fasta36 was used with a database of 

phage terminase genes taken from the Manual Annotation Studio (MAS) program [40] to 

reorient the assembly. 

The first set of annotations was determined using Prokka [41] followed by additional 

CDS searches using a phage-trained Prodigal instance, an untrained (and/or trained against the 

same phage) run of Glimmer3 [42], and the set of predictions generated by Phanotate [43]. The 

Phanotate CDS predictions were chosen as the primary set and supplemented by the Prodigal 

and Glimmer results; thus when the start/stop coordinates matched those from Prodigal, the 

Shine-Dalgarno, etc. annotations were extracted and added. These CDS predictions were 

merged with the initial Prokka data and the resulting GenBank and/or fasta files were used as 

input for a series of downstream searches and analyses. The k-mer content of each assembly 

was queried via Jellyfish [44] with k spanning a putatively useful range of values (9, 11, 13, 15, 

17). The Prokka-derived tRNA detections were supplemented with an explicit tmRNA search 

via ARAGORN [45] followed by a permissive search with tRNAscan-SE [46] which may 

optionally be added to the final assembly. The CDS nucleotide sequences were passed to 

Trinotate [47] with a template file directing it to search additionally against a blast database of 

all ICTV reference assemblies and terminase genes. Resistance genes were sought via ABRicate 

(https://github.com/tseemann/abricate) with the full set of associated databases 

(AMRFinderPlus [48], CARD [49], ResFinder [50], ARG-ANNOT [51], VFDB [52], 

PlasmidFinder [53], EcOH [54], and MEGARes [55]; this set was supplemented with mVirDB 

[56] (using a copy provided by the internet archive and filtered to separate the nucleotide and 

protein sequences: 



https://web.archive.org/web/20161123071504/http://mvirdb.llnl.gov/annotation/bin/downloadTa

rFiles.pl?file=/www/annotation/db/virulence/blastMvirDB.tar.gz) and DBETH [57]. The amino 

acid sequences were passed to InterProScan [58] with all methods enabled. The above tasks 

were performed and the resulting annotations and putative features were merged together via a 

modified version of portions of Prokka via CYOA (http://github.com/abelew/cyoa). 

Finally, the resulting assemblies were passed to CGView [59] for visualization. The 

assemblies were passed to a 201 nucleotide rolling window scan using RNAfold [60], all 

restriction sites were collected via BioPerl’s Bio::Restriction::Analysis, and metadata collected 

via hpgltools (https://github.com/elsayed-lab/hpgltools). 

A phage whole genome phylogeny was generated from an ANI-based distance matrix 

calculated with the MASH program [30] as described previously [61]. Briefly, a sketch file was 

created from the described Providencia phage genome isolated and sequenced in this study plus 

39 obtained from GenBank (22 Providencia phages, 5 related phages related to known Providencia 

phages [19] and 12 with BLASTn matches to vB_PReP_EPr2), with 5000 12mers generated per 

genome (i.e., mash sketch -s 5000 -K 12). The sketch file was then compared to all phage genome 

sequences to generate the ANI distance matrix with the MASH distance command using default 

settings. The GGRaSP [31] R-package was used to calculate the UPGMA phylogeny from the 

ANI distance matrix, after redundant phage genomes (genomes ANI > 99.985) were removed 

using the GGRaSP R package with a user defined cutoff of 0.015 (i.e., GGRaSP -

threshold=0.015)). The resulting dendrogram was translated into newick format within GGRaSP 

using the APE R package [62], loaded into the iTOL tree viewer [63], and annotated with 

taxonomic information. 
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