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Abstract: Coronavirus disease 2019 (COVID-19) has resulted in approximately 5 million deaths
around the world with unprecedented consequences in people’s daily routines and in the global
economy. Despite vast increases in time and money spent on COVID-19-related research, there is still
limited information about the factors at the country level that affected COVID-19 transmission and
fatality in EU. The paper focuses on the identification of these risk factors using a machine learning
(ML) predictive pipeline and an associated explainability analysis. To achieve this, a hybrid dataset
was created employing publicly available sources comprising heterogeneous parameters from the
majority of EU countries, e.g., mobility measures, policy responses, vaccinations, and demograph-
ics/generic country-level parameters. Data pre-processing and data exploration techniques were
initially applied to normalize the available data and decrease the feature dimensionality of the data
problem considered. Then, a linear ε-Support Vector Machine (ε-SVM) model was employed to
implement the regression task of predicting the number of deaths for each one of the three first pan-
demic waves (with mean square error of 0.027 for wave 1 and less than 0.02 for waves 2 and 3). Post
hoc explainability analysis was finally applied to uncover the rationale behind the decision-making
mechanisms of the ML pipeline and thus enhance our understanding with respect to the contribution
of the selected country-level parameters to the prediction of COVID-19 deaths in EU.

Keywords: COVID-19; machine learning; data mining; explainability

1. Introduction

COVID-19 is caused by SARS-CoV-2, which belongs to the beta-coronaviruses and is
characterized by cough, shortness of breath, and fever, symptoms similar to the ones associ-
ated with the seasonal flu [1]. Disease severity is associated with underlying comorbidities
and increasing age [2]. The worldwide spread of COVID-19 has caused unprecedented
effects on people’s daily routines and the prosperity of the economy [3,4]. The most impor-
tant consequences of this pandemic are the burden on human health, either with permanent
or temporary health problems, but mainly the huge number of associated deaths despite the
interventions by the world community [5–7]. Hence, from the beginning of the COVID-19
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pandemic until today, there is a need to understand the mechanism and factors that govern
this disease. Specifically, as of 24 January 2022, a total of 340,543,962 confirmed cases with
5,570,163 confirmed deaths have been reported around the world resulting from COVID-19
(access on 24 January 2022, https://covid19.who.int/).

An increasing understanding of COVID-19 spread patterns and disease severity may
lead to the development and efficient implementation of new treatments, vaccines, and
measures that reduce the risk of adverse outcomes. In this difficult task, it is necessary to
combine big data, today’s extreme computing power capacity, and the advanced currently
available artificial intelligence (AI) tools [8–11]. The literature review so far has shown an
increasing integration of the above in order to understand and cope with the COVID-19 pan-
demic. Advanced AI tools (data mining techniques) have already provided knowledge and
valid hidden patterns to cope with the difficult task of COVID-19 understanding [12–15].
Naseem et al. demonstrated the key role of AI tools in healthcare in low-middle-income
countries (LMIC) [12]. Specifically, they showed the power of the use of AI in the field
of the diagnosis, management, and treatment of COVID-19 patients. Moreover, Debnath
et al. presented a study to highlight the utility of AI prediction tools on a multitude of
clinical settings [13]. Kolozsvári et al. proposed an approach to predict the epidemic
curve of COVID-19 using AI [15]. They used data from Johns Hopkins University and
the World Health Organization from the first and second waves in combination with an
ensemble-based system, which is based on the interconnection of several neural networks,
but they did not provide identified features that shape the model output. Muhammad
et al. proposed data mining ML models in order to predict the stability and recovery of
the newly infected patients with the novel coronavirus (COVID-19) [16]. They developed
models for the prediction of the infected patients’ recovery by using an epidemiological
dataset of COVID-19 patients of South Korea. Furthermore, a prediction model for the
incidence of COVID-19 in Iran was proposed in [17]. They offered a data mining approach
in order to help health managers and policymakers to control an epidemic outbreak and to
plan the health care resources.

In another study, an ML algorithm was proposed to increase COVID-19 inpatient
diagnostic capacity [18]. They retrospectively used epidemiological and clinical data (e.g.,
demographics, complete blood counts, and inflammatory markers) and tested seven well-
known ML models that achieved excellent diagnostic metrics compared to PCR tests.
Moreover, they presented the individual importance of the employed features. In addition,
Prakash et al. performed an extensive analysis on a COVID-19 dataset and employed
various ML models to examine age effects on COVID-19-related outcomes [19]. They
presented the contribution of the features for each age subgroup. Malki et al. investigated
the association between weather data and the COVID-19 pandemic using ML approaches
for the prediction of the mortality rate [20]. Specifically, the ML models were employed
to estimate the impact of weather variables in the COVID-19 pandemic. In contrast to
the previous studies, Bastani et al. proposed a real-time system, which is called “Eva”,
for targeted COVID-19 screening [21,22]. They used reinforcement learning and real-time
data in order to identify asymptotically infected with COVID-19 travelers and to provide
real-time information for decision making. The paper was cited as one of the best examples
of data use in the context of the epidemic.

To the best of our knowledge and based on the aforementioned studies, there is
still limited information about the factors at the country level that affected COVID-19
transmission and fatality in EU. To examine this, a hybrid dataset was created integrating
heterogenous, publicly available data from different sources, such as mobility changes,
policy responses, vaccinations, and generic parameters, e.g., demographics. Then, a ML
pipeline was designed, implemented, and tested, with the ultimate objective to estimate the
number of COVID-19 deaths using the aforementioned inputs for the first three pandemic
waves. Explainability analysis was finally employed on the trained models to uncover
the rationale behind the decision-making mechanisms of the ML models and enhance our
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understanding of the impact of each country-level parameter on the prediction output
(total number of new deaths per 1,000,000 people for each wave).

2. Materials and Methods
2.1. Dataset
2.1.1. Data Sources

In this study, we employed data from the databases “Our World in Data” (https:
//ourworldindata.org/coronavirus, access on 8 October 2021) [23,24] and “Google COVID-
19 Community Mobility Reports” (https://www.google.com/covid19/mobility/, access
on 8 October 2021). Our dataset includes all the historical data of the COVID-19 pandemic
up to 3 October 2021. These data include the first three waves of the pandemic for 33 coun-
tries of the European Continent. The duration of each wave was determined according
to the average number of cases per 7 days. The data are divided into nine categories
(Table 1) and have the aim to provide information about confirmed cases, hospitalizations,
deaths, vaccinations, mobility, and testing as well as other generic variables at combating
COVID-19.

Table 1. Description of the feature categories in the employed dataset.

Category Description

Confirmed cases Demonstrates the new or total confirmed cases of SARS-CoV-2 (F33 in Table 2)

Confirmed deaths Describes the COVID-19-related deaths (F34 and F40)

Hospital and intensive care units (ICU) Describes variables which consists of data about the patients in hospital and the
patients in intensive care units (F36 and F37)

Policy responses Government Response Stringency Index, which is composite measure based on
9 response indicators (0 to 100, 100 = strictest response) (F7 and F8)

Reproduction number Real-time estimate of the effective reproduction number (R) of COVID-19 (F35)

Tests and positivity
Consists of variables which demonstrate information about the total number of tests
per 1000, new tests per 1000, and the tests that are positive given as a rolling 7-day

average (F38–39)

Vaccinations Information about the vaccination doses and the booster doses that have been
administered (F9–17)

Mobility Includes mobility trends for places such as markets, drug stores, public areas,
transport hubs, retail, recreation, places of residence, and workplaces (F1–6)

Generic Includes variables that describe demographic data and data that occur from the
quality of life (F18–32)

Government Response Stringency Index is a composite score, which is based on nine response indicators, including
workplace closures, school closures, and travel bans.

2.1.2. Feature Extraction

Forty country-level parameters coming from all the aforementioned feature categories
were extracted for each one of the three first pandemic waves. First of all, the three first
pandemic waves were defined using the number of new daily cases (smoothed) as the
main criterion. An indicative example of the waves’ determination is given in Figure 1 for
Belgium, in which the waves 1–4 are depicted with blue, red, magenta, and green colors,
respectively. The three first waves were considered in our paper since wave 4 was still
ongoing in the majority of the EU countries at the time of the analysis.

Table 2 cites the main characteristics of the extracted features. Specifically, six mobility
measures, two policy responses (stringency index and response time), nine metrics related
to the number of vaccinations, and fifteen generic country-level parameters were included
in the analysis. The mean value over the duration of the current wave was calculated for
the mobility parameters, and the same calculation was applied to the stringency index. The

https://ourworldindata.org/coronavirus
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response time was defined as the number of days needed to reduce the mobility measures
by 30% with respect to pre-pandemic levels. For parameters representing total numbers,
for example, total number of fully vaccinated people or total number of cases/deaths,
the last valid value of the wave was extracted, whereas for parameters representing daily
numbers (e.g., new cases per day or new vaccinations per day), the mean value over the
duration of the wave was calculated. For the cases of wave 2 and 3, a subset of features
was also considered from the previous waves (wave 1 and 2, respectively) including policy
responses (features F7–8), vaccination status (F14–16), and the number of cases, deaths,
hospitalizations, and positivity of the previous wave (F33–40). These extra parameters
were included assuming that the previous status of the pandemic spread was expected to
play a significant role in predicting the current spread.

Table 2. Description of the features extracted per wave per country.

# Category Description Current
Wave

Previous
Wave

F1

Mobility

Grocery and pharmacy percent change from baseline

Mean

4

F2 Parks percent change from baseline 4

F3 Residential percent change from baseline 4

F4 Retail and recreation percent change from baseline 4

F5 Transit stations percent change from baseline 4

F6 Workplaces percent change from baseline 4

F7 Policy responses Stringency index 4 4

F8 Response time See (1) 4 4

F9

Vaccinations

Total vaccinations (cumulative)
Last valid

4

F10 People vaccinated (cumulative) 4

F11 People fully vaccinated (cumulative) 4

F12 New vaccinations
Mean

4

F13 New vaccinations smoothed 4

F14 Total vaccinations per hundred (cumulative)
Last valid

4 4

F15 People vaccinated per hundred (cumulative) 4 4

F16 People fully vaccinated per hundred (cumulative) 4 4

F17 New vaccinations (smoothed) per million Mean 4

F18

Demographics

Population

Mean

4

F19 Population density 4

F20 Median age 4

F21 Aged 65 older 4

F22 Aged 70 older 4

F23 GDP per capita 4

F24 Extreme poverty 4

F25 Cardiovasc death rate 4

F26 Diabetes prevalence 4

F27 Female smokers 4

F28 Male smokers 4

F29 Handwashing facilities 4

F30 Hospital beds per thousand 4

F31 Life expectancy 4

F32 Human development index 4

F33

Cases, deaths,
hospitalizations,

and positivity

Total cases per million
Last valid

4

F34 Total deaths per million 4

F35 Reproduction number Mean 4

F36 ICU patients per million (cumulative)
Last valid

4

F37 Hospitalized patients per million (cumulative) 4

F38 Total tests per thousand (cumulative) 4

F39 Positive rate given as a rolling 7-day average Mean 4

F40 Total deaths per million in the wave (cumulative) Last valid 4
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Figure 1. COVID-19 waves for Belgium.

2.2. Proposed Methodolgy

The proposed AI methodology consists of five processing steps: (i) data pre-processing
to normalize the extracted features and handle missing values, (ii) feature exploration to
reduce the dimensionality of the initial feature space and identify a subset of important
risk factors, (iii) learning phase utilizing a linear regression model, (iv) validation of the
regression results using 10 fold cross validation (10KFCV), and (v) explainability analysis
to quantify the impact of the selected risk factors on the produced decisions. A detailed
presentation of the processing steps is given in the following subsections.

2.2.1. Data Pre-Processing

Mode imputation was employed to handle categorical and continuous missing val-
ues [25]. In our study, data were normalized to (0, 1) to build a common basis for the feature
exploration and learning algorithms that follow [26].

2.2.2. Feature Exploration

Feature dimensionality reduction is a crucial task in our problem given the small
number of samples (number of EU countries) and the relatively high number of features
considered (40). To handle this challenge, a random feature exploration exercise was
performed in which 5000 different feature subsets of varying dimensionality were tried out
per wave. The proposed methodology was applied on each one of the 5000 feature subsets,
and the best one (that minimizes the 10KFCV mean square error) was finally selected. This
feature exploration was performed for each one of the three waves.

2.2.3. Regression

Following the feature selection task, a linear regression model was applied on the
selected features. The main objective of the deployed regression model is to predict the
number of deaths per wave given the selected input parameters from the current wave
and optionally from the previous one (in case they were selected for waves 2 and 3).
Linear epsilon-insensitive SVM (ε-SVM) [27,28] (also known as L1 loss) was employed to
implement the regression task in which the goal is to find a function f(x):

f(x) = x′ w + b, x ∈ Rn (1)



Viruses 2022, 14, 625 6 of 15

that deviates from y by a value no greater than ε for each training point x while being as flat
as possible, where x is a multivariate set of N observations with observed response values
y. To maximize flatness, f(x) needs also to minimize the norm value (w′ w), thus increasing
the generalization of the model. Specifically, the objective of ε-SVM is to minimize the
error rate and at the same time to fit the error within a certain margin, which is called
ε-tube. A symmetrical loss function is used during the training, equally penalizing both
high and low misestimates. Thus, a flexible tube of minimal radius is formulated around
f(x) (the so-called margin) as seen in Figure 2. Data points outside the margin are penalized,
whereas data points within the margin are the ones that do not receive any penalty. Such a
loss function leads to a sparser decision rule representation, which comes with a number of
advantages. Compared to conventional linear regression techniques, SVMs are effective in
spaces of high dimensionality, especially when the number of features is comparable or even
higher than the number of samples. SVM regression was employed in our study because
it can work on small datasets of high dimensionality, as is in our test case, while keeping
high accuracies with strong global search ability and optimization speed. Linear ε-SVM
regression models were only considered here due to the small number of training samples.

Figure 2. Model graph for support vector regression.

2.3. Validation and Explainability

Ten-fold cross validation was employed to validate the performance of the proposed
ML methodology. One of the main objectives of the present work is to examine how the
different country-level risk factors contribute to the final prediction of deaths reported
during each one of the three first pandemic waves. The linear ε-SVM regression model
employed here forces the prediction to be a linear combination of features, and the effect
of a feature j is actually quantified by the j-component of the weight (wj). Therefore, the
interpretation of the features in the linear regression model [29] were automated by using
the following reasoning: Increasing the numerical feature xj by one unit increases the
estimated outcome y by wj units when all the other features remain fixed. In the case of
categorical features, changing xj from another category to another increases the estimated
outcome y by wj units when all the other features remain fixed.



Viruses 2022, 14, 625 7 of 15

3. Results

In this section, the overall predictive performance of the proposed ML pipeline is
demonstrated for each one of the three pandemic waves. Specifically, each wave was treated
separately as an individual data problem with its own input parameters (as they were
defined in Section 2.1) and the total number of deaths per wave as the main output variable.
Then, reference was made in the most important risk factors, as they were selected by the
feature exploration technique (presented in Section 2.2.2), and finally, explainability analysis
was employed to quantify the impact of these input parameters to the prediction of deaths,
enhancing our understanding of the reasoning behind the decision-making mechanism
and therefore revealing the importance of the considered country-level parameters in the
COVID-19 spread throughout Europe.

Table 3 cites the mean square error (MSE) achieved by the proposed ML pipeline
for each one of the three pandemic waves. Comparable results are observed for waves
2 and 3 (MSE < 0.02), whereas a relatively higher MSE (~0.027) was reported for the case of
wave 1. This difference in performance between wave 1 and waves 2–3 can be attributed to
the fact that the data problems of waves 2 and 3 also include features from the previous
wave (1 and 2, respectively), increasing the feature dimensionality of the data problems.
The inclusion of new descriptive parameters enhances the predictive capacity of the ML
model; however, it also poses a challenge, the so-called “curse of dimensionality”. The
feature dimensionality problem was handled in our study with the use of ε-SVM, which is
a well-known approach for its ability to handle high-dimensional spaces while keeping its
generalization and high accuracy.

Table 3. Predictive performance achieved by the proposed ML pipeline for each of the three waves.

Metric Wave 1 Wave 2 Wave 3

Mean square error 1 0.02707 0.01829 0.01913
1 MSE was calculated on the normalized data to set a fair basis of comparison between the waves.

3.1. Wave 1

Figure 3 shows the most important contributing factors for wave 1 in descending order.
As explained in Section 2.3, the impact of each parameter was quantified by its weight
(|wj|). In total, 10 parameters were proven to be important for the estimation of deaths
in the first COVID-19 wave, with the total duration of the wave (in days) as the major
contributor. Significance testing was also performed to assess whether a change in an input
variable would change (or not) the predicted output of the model. p-Values were calculated
on the basis of the t-statistic that was defined as the sample coefficient (wj) divided by the
standard error. All the factors depicted in Figure 3 were proven to be statistically significant
at p < 0.05.

Figure 4 depicts the number of COVID-19 deaths in wave 1 with respect to the pre-
dicted number of deaths. The dashed grey line corresponds to the perfect scenario where
the predicted number equals the actual number of deaths. Overall, the predictive perfor-
mance of the ML pipeline was adequately high for the great majority of the countries with
the extension of Belgium, which seems to be an outlier in the first phase of the COVID-19
pandemic. The most important factors in the first wave were the wave duration, comor-
bidities (i.e., diabetes prevalence), response time, smoking habits, and the population size
as well as the mobility change and the capacity of the health care facilities.

3.2. Wave 2

Figure 5 presents the most important risk factors that contributes to the prediction of
deaths during the second wave. Fourteen parameters were finally selected, twelve extracted
from wave 2 and another two from wave 1. The percentage mobility change in retail and
recreating with respect to baseline was proven to be the most important factor. The most
important factors in the second wave were the mobility change (populations’ response
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to public health measures), the effective reproduction number of wave 1, life expectancy,
testing capacity, median age, smoking habits, cardiovascular death rate, proportion of
people older than 70, and diabetes. Statistical analysis revealed that the variables response
time, extreme poverty, and female smokers were not statistically significant, with reported
p-values 0.341, 0.391, and 0.451, respectively. All the rest risk of the factors had significant
contribution to the predicted output, with p-values lower than 0.015.

Figure 6 visualizes the predictive performance of the ML approach (with predicted
versus actual number of deaths) for wave 2. The great majority of the predictions are within
an accepted deviation range, demonstrating the predictive capacity of the model.

Figure 3. Impact of the selected risk factors for wave 1.

Figure 4. Actual versus predicted number of deaths in wave 1.



Viruses 2022, 14, 625 9 of 15

Figure 5. Impact of the selected risk factors for wave 2.

Figure 6. Actual versus predicted number of deaths in wave 2.

3.3. Wave 3

The most important contributing risk factors of wave 3 and their impact on the
prediction of deaths are depicted in Figure 7. Fifteen risk factors were included in the
model, with the number of fully vaccinated people (%) being the most important one.
Another three risk factors relevant to the vaccination level of the EU countries were also
selected (people fully vaccinated, total vaccinations per hundred, and people vaccinate per
hundred), indicating the importance of vaccinations in general in the prediction of deaths.
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Figure 7. Impact of the selected risk factors for wave 3.

The most important factors in the third wave were vaccination coverage, human de-
velopment index, wave duration, response time, number of hospitalized patients, response
speed for wave 2, stringency index, mobility change, and effective reproduction number of
wave 2. All variables were proven to be statistically significant at p < 0.05 expect median
age and male smokers, which reported p-values of 0.111 and 0.417, respectively.

As seen in Figure 8, the performance of the predictive models for the majority of
EU countries lies within an acceptance deviation margin (±20%). For three countries
(Czechia, Slovakia, and Hungary), the actual number of deaths were relatively higher than
the predicted number, whereas Finland had much lower deaths compared to the predicted
number (~600) in wave 3.

Figure 8. Actual versus predicted number of deaths in wave 3.
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4. Discussion

In this study, an ML pipeline was designed to estimate the number of deaths due to
COVID-19 for each of the first three pandemic waves. However, the ultimate objective of the
study is not the prediction of deaths but the identification of country-level risk factors that
drove the COVID-19 pandemic course and outcomes in the EU countries. To achieve this, a
hybrid dataset was created employing publicly available sources comprising heterogeneous
parameters across the majority of European countries, e.g., mobility measures, policy
responses, vaccinations, and demographics/generic country-level parameters. Data pre-
processing and data exploration techniques were initially applied to normalize the available
data and decrease the feature dimensionality of the data problem considered. Then, a linear
ε-SVM model was employed to implement the regression task. The choice of linear ε-SVM
was made due to the small sample size and based on the generalization capacity of SVMs
along with their ability to cope with high-dimensional spaces. This process was supported
by an experimental evaluation per wave in which the results showed that the proposed ML
pipeline achieved satisfactory results as reported in Table 2 (MSE of 0.027 for wave 1 and
MSE less than 0.02 in waves 2 and 3). The post hoc analysis complemented the prediction
findings by uncovering the rationale behind the decision-making mechanisms of the ML
pipeline, thus enhancing our understanding with respect to the contribution of the selected
country-level parameter to the prediction of deaths due to COVID-19 in the EU.

Ten country-level parameters contributed significantly to the estimation of deaths in
the first COVID-19 wave. Apart from total wave duration as the major contributor, diabetes
prevalence and the country’s response time were also selected as the second and third most
important factors.

Mobility measures, such as percentage change in people’s mobility in transit stations
and workplaces, also had an impact in the COVID-19-related mortality, whereas the strin-
gency index was also an important contributor [30]. Demographics, such as population,
GPD per capita, number of male smokers, and capacity of hospital beds per thousand,
were also found to be significant factors. The first wave had unique characteristics due
to the unknown nature of SARS-CoV-2 infection, peoples’ unawareness of the risks, the
effectiveness of protective measures, the low capacity for testing, as well as the lack of ex-
perience in the clinical management of a new disease. Regarding Europe at the initial stage
of the pandemic, the virus was spreading undetectably in the geographic areas of Italy and
several other countries, thus suggesting that after entering the exponential phase, the ability
to control the number of severe diseases and COVID-19-related deaths was limited. Due to
these characteristics and the fact that our knowledge for the control and management of
COVID-19 was limited, some of the critical factors for COVID-19 mortality were related
to the intensity of the wave (i.e., the response time, wave duration), compliance to public
health measures (change in mobility), and stringency of measures [31,32]. In countries of
Western Europe, where public health measures were applied later with regard to the time
of exponential phase imitation, the COVID-19-related mortality was much higher than in
Eastern and Central Europe. Notably, some additional characteristics, such smoking and
diabetes, which are known risk factors for severe COVID-19, were also associated with
mortality. The joint effect of the aforementioned input parameters led to an overall good
predictive performance in the majority of European countries. Belgium was an exception
as seen in Figure 4, with the actual number of COVID-19 deaths being much higher than
the expected one. This is in accordance with the epidemiological figures, where COVID-19
mortality in Belgium during that period was among the highest in Europe.

The second wave started in autumn or early winter, and changes in mobility were
indicated as the most significant risk factors during the second wave, especially in retail
and recreation. Changes in mobility in transit stations were also found to have an impact.
A number of demographics were also selected, such as life expectancy, median age of the
population, cardiovascular death rate, number of people aged 70 or older, extreme poverty,
and the number of female smokers. The second wave started as a result of human activities
(i.e., changes in mobility) after a long period of very low viral circulation in the summer and
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early autumn 2020, which was due to a global lockdown after the first pandemic wave and
climatological factors that do not favor virus spread during this period of the year. Age was
one of the strongest prognostic factors for severe disease as picked up by the model (i.e.,
median age and number of people aged 70 or older) as well as cardiovascular disease [33].
Life expectancy is a measure of the quality of life and health care that is expected to reflect
the capacity of health care system to respond to the increased hospitalization needs of
the pandemic [34]. Two risk factors from the previous wave (wave 1) were also selected,
specifically the effective reproduction number (R) and the total number of tests; the first
parameter reflects the rate of the epidemic growth and the second the capacity of testing and
thus of the ability to make timely diagnoses of cases and to quarantine their contacts. EU
countries’ testing capacity combined with contact tracing have been identified as important
health responses [35,36]; however, their efficacy deteriorated as the number of infections
increased. Response time did not play as important a role as in the first wave.

Notably, four parameters associated with the vaccination progress status of the coun-
tries were selected in wave 3, with the number of the fully vaccinated people per hundred as
the most important [30]. Having four vaccination-related metrics out of the fifteen selected
features indicates the effect of the vaccination program on the number of COVID-19 deaths
in EU during the third wave [37,38]. Stringency index and the response time were also
found to contribute significantly to the prediction task. Similarly to the previous wave, the
wave duration, mobility changes, and demographics were also proved to be related to the
number of the deaths [34]. These factors reflect the intensity of the wave, the compliance
to public measures, and risk factors for sever disease. Three factors from the previous
wave (i.e., response speed, reproduction number, number of hospitalizations) did also
contribute to the ML decision-making mechanism, suggesting that the intensity of the
previous wave and therefore the acquired immunity from natural infection as well as the
fear of COVID-19-related deaths as a result of the second wave may play a role in the
control of a subsequent wave. Slovakia and Czechia had a different pandemic pattern, with
the two waves not separating. For all these three countries, additional unknown factors
were associated with COVID-19-related deaths.

Regarding risk factors from previous waves and their effect on the prediction of
mortality, effective reproduction number and number of tests at wave 1 were selected
for the prediction of mortality in wave 2 since these parameters were associated with the
intensity of the first wave. Geographic areas experienced large numbers of cases at the
early phase of the pandemic were less affected by the second wave, probably due to a more
immediate response. Similarly, the number of hospitalized patients, response time, and
effective reproduction number at wave 2, which also provide a proxy of the intensity of
the pandemic wave were selected for the prediction of mortality in wave 3 probably for
the same reason as in previous waves. From our experience, the severity of a pandemic
wave in a specific region was inversely correlated with the number of cases in the previous
wave, suggesting that geographic areas with large number of cases were less affected in
future waves.

Our study has some limitations. Firstly, a limitation of the study comes from the nature
of linear regression models, which assumes the predicted output as a linear combination
of weighted features. Each of the weights specifies the gradient of the linear hyperplane
in one specific direction, isolating the interpretation of the associated input parameter
from the rest. However, the joint contribution of the features is actually ignored given that
the interpretation of a single feature always comes with the precondition that all other
features remain unchanged. On the hand, the large size of the sample can be considered as
a strength of the study.

Overall, the current study contributed to the identification of country-level risk factors
that drove the COVID-19 pandemic in the EU countries via the use of an advanced ML
methodology. The strength of the proposed approach lies on (i) the strong global search
ability and optimization speed of the employed ε-SVM regression model, (ii) its known
generalization capacity, (iii) its ability to accurately predict mortality on a small data sample,
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and (iv) the model’s transparency, which led us to better understand its inner workings and
thus the impact of the input variables to mortality. The main findings of the study can be
summarized as follows: Wave duration, mobility changes, and demographics were proven
to be highly correlated with the number of deaths throughout the whole pandemic course
so far (for all three waves considered). Diabetes prevalence and the countries’ response time
were major contributors during the first wave, whereas changes in mobility and especially
in retail and recreation were leading factors highly associated with mortality on the second
wave. Finally, vaccination status of the countries played a significant role in wave 3, with
the number of fully vaccinated people per hundred as the most significant risk factor.

The application of more advanced explainability tools should be considered in future
work. Graphical modeling combined with linear models will be employed to identify
the direct and indirect effect of features to the prediction outcomes, providing a more
intuitive, graphical way of interpreting the effect of country-level parameters on the spread
of COVID-19 in Europe.
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