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Abstract: T cells infected with human T-cell leukemia virus type 1 (HTLV-1) acquire various abnor-
malities during a long latent period and transform into highly malignant adult T-cell leukemia-
lymphoma (ATL) cells. This can be described as “clonal evolution”, in which a single clone evolves 
into ATL cells after overcoming various selective pressures in the body of the infected individuals. 
Many studies have shown that the genome and epigenome contain a variety of abnormalities, which 
are reflected in gene expression patterns and define the characteristics of the disease. The latest re-
search findings suggest that epigenomic disorders are thought to begin forming early in infection 
and evolve into ATL through further changes and accentuation as they progress. Genomic abnor-
malities profoundly affect clonal dominance and tumor cell characteristics in later events. ATL har-
bors both genomic and epigenomic abnormalities, and an accurate understanding of these can be 
expected to provide therapeutic opportunities. 
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1. Introduction 
Genetic abnormality is the main feature of cancer and greatly alters cell fate. The 

proliferative cycle is essential in the early stages of cancer development since DNA repli-
cation errors and abnormal repair functions associated with cell division are the main re-
quirements for development. Through the analogical process of “natural selection” advo-
cated by Charles R. Darwin [1], cells that acquire genetic abnormalities become dominant 
under selective pressure as a more adapted population and eventually progress to a 
pathological state [2,3]. 

On the other hand, epigenetic abnormalities result from a series of processes regu-
lated by multiple complexes and often do not require excessive cell division as a condition 
for development [4]. Almost all cancers have been shown to have characteristic epigenetic 
alterations such that a complex tumorigenic mechanism with “genomic change as a 
driver” and “epigenetic dysregulation as an essential background” have been postulated 
[5,6]. These processes can be characterized as a blueprint and its use. The critical point is 
that both processes are heritable characteristics and can be passed on to the next genera-
tion at the cellular level, which is the essence of forming a population of cells with the 
same characteristics. 

Human T-cell leukemia virus type 1 (HTLV-1) mainly infects CD4+ T cells and dis-
rupts host signaling pathways and gene expression patterns with viral gene products such 
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as Tax and HBZ [7,8]. As a result, many immortalized infected clones are established in 
the early stage of infection. During the subsequent long latent period, infected cells that 
have accumulated abnormalities in the host genome and epigenome selectively prolifer-
ate, and 3–5% of infected individuals develop adult T-cell leukemia-lymphoma (ATL), 
and probably less than 1% develop inflammatory diseases such as HTLV-1-associated 
myelopathy (HAM), HTLV-1 uveitis, infective dermatitis and chronic pulmonary disease 
[9,10]. 

ATL is a neoplastic disease with a very poor prognosis in which one of the numerous 
infected cells evolves clonally over 30 to 50 years. Recent comprehensive genome, epige-
nome, and gene expression analyses have provided macroscopic views of aggressive type 
ATL [11]. However, the process of clonal evolution leading to pathogenesis is complex. 
Therefore, a better understanding of the pathogenic mechanism may be achieved by trac-
ing back to the cells infected with HTLV-1 and further increasing the resolution of the 
analysis to the cellular level. 

A series of intensive studies shows that HTLV-1 causes the immortalization of in-
fected cells by viral gene products after infection, resulting in abnormal proliferation. In-
dividual studies of oncogenic viruses are essential in pathophysiology and drug discov-
ery. Furthermore, the study of viral tumorigenesis is an excellent model for understanding 
the nature of cancer initiation, diversity, clonal selection, and evolution. These viral infec-
tions can be regarded as the first hit of a multistep carcinogenic process. Tracing the pre-
cancerous cell population formed by the infection along the timeline may help unravel the 
multistep process. 

In this review article, we pick up some of the latest studies on the mechanism of 
HTLV-1 induced tumorigenesis from the viewpoint of host epigenomic abnormalities, es-
pecially modifications that significantly influence gene expression patterns, and clonal 
evolution with genomic abnormalities, and discuss the future aspects. 

2. Early Formation of Epigenomic Abnormalities in Infected Cell Populations 
The essential nature of epigenetics has been detailed in excellent reviews [4–6,12]. 

The epigenome of a somatic cell can be flexibly altered by various external factors such as 
environment, aging, or internal factors coming from the genetic level. 

One of the most remarkable properties of the epigenome in contrast to the genome is 
its flexibility. This means that it is susceptible to change, and conversely, it is theoretically 
possible to restore the epigenome to its original state [13]. This point is of the highest im-
portance from the standpoint of biology and medical science. The establishment of iPS 
cells that have been achieved by reprogramming somatic cells is a clear example of this 
theory [14]. 

Another property of the epigenome is its heritability. This is somewhat surprisingly 
similar to the nature of DNA. Although the inheritance of the epigenome across genera-
tions of individuals is controversial, the inheritance of the epigenome from cell to cell is 
evident; epigenetic changes, such as DNA methylation and histone modifications, once 
written or erased, can be passed on to the next generation of cells to form populations 
with the same characteristics [12,13]. This seems to have a close affinity with the endlessly 
proliferating nature of cancer (Figure 1A). 

Several studies have suggested the existence of HTLV-1-triggered epigenetic abnor-
malities. Their findings show how (1) transcriptome analysis of infected cells purified with 
specific surface markers and monoclonal tumor cells showed a common expression pat-
tern across cases [15]; (2) miR-31 expression is commonly silenced in all ATL cases, but 
most cases are not accompanied by gene mutations in the coding region or copy number 
reduction [16]. miR-31 is also silenced in polyclonal infected cell populations in infected 
individuals; (3) expression of genes involved in histone modification and chromatin reg-
ulation differs significantly between normal and infected cells [17]; and (4) Tax encoded 
by HTLV-1 interacts with multiple host epigenomic factors [17–20]. 
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Figure 1. Early formation of epigenetic abnormalities. (A) Various abnormalities in epigenetic mod-
ifications accumulate during the transformation process from normal cells to tumor cells. The epi-
genetic changes, such as DNA methylation and histone modifications, can be inherited by the next 
generation of cells to form populations with the same characteristics. This has a high affinity with 
the endlessly proliferating nature of cancer. (B) T cells infected with HTLV-1 gradually develop into 
high-grade ATL cells with abnormal accumulation of H3K27me3 and DNA methylation. Such 
epigenomic abnormalities are common characteristics of infected and highly proliferating ATL cells. 
(C) Epigenetic changes are highly plastic. It is essential to clarify the direction and mechanism of 
epigenetic abnormalities in infected and tumor cells. Then, by precisely targeting them as therapeu-
tic candidates, the concept of restoring the undesired epigenomic characteristics to their original 
state can be established. 

A genome-wide ChIP assay revealed epigenetic changes in infected and ATL cells 
and demonstrated large-scale changes in trimethylation of the 27th lysine residue of his-
tone H3 molecules (H3K27me3) [17]. In ATL cells, H3K27me3 accumulates and represses 
the expression of many genes, including tumor suppressor genes, transcriptional regula-
tory genes, epigenetic-related genes, and microRNA loci. This epigenetic downregulation 
occurs most dramatically in the acute form of ATL. However, infected cells in smoldering 
and chronic ATL and HTLV-1 carriers also show gene silencing by H3K27me3 at many 
loci [17]. 

An important finding needs to be pointed out here. The enzyme that catalyzes 
H3K27me3, an enhancer of zeste homolog 2 (EZH2), physically interacts with HTLV-1 
Tax. This interaction is thought to disrupt the scope of target genes originally regulated 
by EZH2, resulting in a genome-wide change in the pattern of H3K27me3. By inactivating 
the function of EZH2 with an inhibitor during the process of immortalization by Tax, it is 
possible to stop the growth of infected cells by Tax [17]. This is an example that links the 
importance of changes in H3K27me3 at the molecular level to the process of infected cell 
proliferation (Figure 1B). 

In addition to EZH2, the interaction of Tax with other histone-modifying enzymes 
such as SUV39H1 and HDAC1 has been reported [18,19]. Similarly, an interaction be-
tween HBZ protein, which is encoded by HTLV-1 antisense strand, and SWI/SNF chro-
matin remodeling family has also been reported [21,22]. These interactions have been 
shown to have a role in regulating the provirus. However, it is not difficult to speculate 
that the critical significance of epigenomic changes in regulating the host’s vast genome 
is also crucial in controlling the fate of infected cells. 
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In addition, the insertion of the HTLV-1 genome has been implicated as a possible 
effect on the host epigenome. CTCF-binding sequences on the provirus suggest a new 
relationship between the provirus and host epigenome [23]. Some studies have shown 
that HTLV-1 disrupts the host chromatin structure by forming a loop between the pro-
virus and the host genome, and the loop depends on the critical chromatin architectural 
protein CTCF [23–26]. Although it remains unclear how these changes contribute to the 
characteristics of infected cells, clonal structure, and pathogenesis of ATL, the impact of 
such insertional mutagenesis on the host epigenome is an essential insight into the path-
ogenicity of HTLV-1. 

3. Targeting Epigenomic Abnormalities to Combat Infected Cells 
A polycomb family is a group of factors that regulate chromatin structure using 

H3K27 methylation. Polycomb repressive complex 2 (PRC2), which contains either H3K27 
methyltransferases EZH1 or EZH2, serves as the basic unit for inducing H3K27me3 [27]. 
The binding patterns of EZH1 and EZH2 on all chromatin in ATL cells indicate that both 
enzymes cooperatively cause the accumulation of H3K27me3 [28]. 

Interestingly, when referring to the expression patterns of various cell types, the ex-
pression of EZH1 and EZH2 shows an inverse correlation. For example, undifferentiated 
hematopoietic stem cells have high H3K27me3 that is induced by high EZH2 expression 
to maintain their multipotency. On the other hand, expression of EZH1 is high, and that 
of EZH2 is low in mature lymphocytes. This indicates that either EZH1 or EZH2 functions 
primarily in the formation and maintenance of the necessary H3K27me3 pattern. When 
EZH2 is overexpressed in mature T cells with high EZH1 expression, the coexistence and 
function of EZH1-PRC2 and EZH2-PRC2 are phenomenally consistent with the overall 
increase in H3K27me3 in tumor cells [28]. This finding theoretically indicates that inhibi-
tion of EZH2 alone is insufficient. Compared to conventional single inhibitors of EZH2, a 
new class of inhibitors that can simultaneously inhibit EZH1 and EZH2 has been shown 
in model cell lines and in vivo models to more efficiently elicit anti-ATL cell effects by 
eliminating accumulated H3K27me3 and ably restoring target gene expression [28]. 

Notably, preclinical studies have shown the concept that targeting both EZH1 and 
EZH2 can normalize the accumulation of H3K27me3 not only in high-grade tumor cells 
but also in cells in a precancerous state infected with HTLV-1 present in the peripheral 
blood of infected individuals [28] (Figure 1C). Recently, abnormalities in methylated 
DNA, which similarly suppresses gene expression, have been comprehensively investi-
gated [11,29]. Similar to the H3K27me3 abnormality, DNA methylation has also been 
shown to be abnormal in infected cells of carriers that have not yet developed the disease. 
New therapeutic strategies targeting such early stage epigenomic abnormalities are ex-
pected to be one of the major challenges for early therapeutic intervention for diseases 
with poor prognosis. 

4. Overview of Genetic Characteristics in ATL 
How does a characteristic infected cell population, formed by viral genes and a series 

of epigenetic changes, subsequently evolve into ATL? This is revealed by the comprehen-
sive genetic analyses of the ultimately evolved ATL cells. 

Genomic studies of ATL have a long history, and early results of chromosome anal-
ysis showed chromosomal abnormalities in 96% of cases [30]. Subsequent comprehensive 
analysis using the comparative genomic hybridization (CGH) method has revealed the 
high frequency of genomic abnormalities in acute and lymphoma types of ATL and their 
correlation with prognosis [31]. 

A comprehensive study by Kataoka et al. has provided an overview of genetic muta-
tions and copy number variations (CNV) in ATL cells [11]. The most significant charac-
teristic is a high integration of genetic abnormalities in the T-cell receptor (TCR)/NF-κB 
signaling pathway. More than 90% of the cases had at least one genetic abnormality in this 
pathway, with a large number of gain-of-function mutations, including PLCG1 (36%), 
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PRKCB (33%), CARD11 (24%), VAV1 (18%), IRF4 (14%), and FYN (4%) mutations. Other 
mutations include signaling factors such as STAT3 (21%) and NOTCH1 (15%), transcrip-
tion factors such as IKZF2 (35%), TP53 (18%), GATA3 (15%), and IRF4 (14%), epigenetic 
factors such as TET2 (8%) and EP300 (6%), chemokine receptors such as CCR4 (29%) and 
CCR7 (11%), and structural variants in the CD274 (encoding PD-L1) (27%), which is im-
portant for immune evasion, were also identified [32]. 

Although somewhat different in frequency and pattern, Shah et al. reported similar 
data [33]. The frequency of abnormalities in epigenetic-related genes is higher in North 
American cases. Thus, the genomic abnormalities of ATL are diverse, and the mode of 
clonal growth of infected cells is expected to be extremely complex in each case (Figure 
2A). More recently, large-scale whole-genome sequencing (WGS) has provided a com-
plete picture of the genomic features of ATL, including not only single nucleotide variants 
and short Indels but also mutations in noncoding regions and structural abnormalities 
[34]. These new views were statistically revealed by large-scale analysis that genomic ab-
errations are essential in the process of evolution to the eventual monoclonal ATL. 

 
Figure 2. Genetic characteristics in ATL. (A) A number of genomic abnormalities are detected in 
ATL cells. These traces imprinted on the DNA indicate abnormalities necessary for evolution into 
highly malignant clones. (B) Some critical genetic mutations are detected in diverse populations of 
infected cells before disease onset by deep sequencing. Specific clones are selected to evolve into 
ATL cells. 

5. Estimating the Clonal Evolution of Infected Cell Populations 
The most obvious feature of the genome of ATL is that it is characterized by many 

abnormalities in the TCR pathway. However, the genomic abnormalities in each case are 
highly diverse, and it is at the same time clear that there is no single mechanism for the 
development of ATL. After HTLV-1 infection, a polyclonal population of infected cells is 
formed by viral gene products and epigenomic disorders. Over the next several decades, 
a single infected clone is thought to gain dominance and proliferate through various ge-
nomic aberrations. So then, what mechanisms are involved in clonal selection during this 
long latent period? A possible approach is to consider genomic mutations as patterns and 
address them quantitatively by setting up axes such as time scale, mutant clone size, and 
disease history. 

One important implication is that many of the genetic abnormalities can be detected 
before the disease onset. Rowan et al. used deep sequencing to go back in time and detect 
most of the genetic abnormalities during the carrier phase and showed that they clonally 
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expanded as the disease progressed [35]. Marçais et al. reported the evolution of ATL cells 
with various genetic mutations in progression from indolent type to aggressive type and 
before and after chemotherapy [36]. Such early detection of genetic abnormalities and 
traces of clonal evolution have been confirmed in our Japanese cohort [37]. These obser-
vations are consistent with the theory of natural selection of species, and lead to the con-
clusion that cancer evolves through clonal selection and propagation (Figure 2B). 

This disease has three features that provide analytical advantages in tracing and un-
derstanding this evolutionary process. The first is that the “first hit” in clonal evolution is 
defined as “HTLV-1 infection”. In general, cancer cells of origin are formed by various 
internal factors (hereditary tumors, SNPs, etc.) and external factors (diet, alcohol, smok-
ing, stress, etc.). However, it is not easy to detect them early in clinical specimens and 
study their characteristics and mechanisms of cancer development. On the other hand, 
ATL always has a background of direct effects of HTLV-1 infection, and its interrelation-
ship with subsequent clonal evolution can be studied more deeply. 

Second, by analyzing the viral genome inserted into the host genome (provirus), it is 
possible to distinguish individual polyclonally infected cells. It has been shown that each 
infected cell clone has a randomly inserted virus somewhere in the host genome of ap-
proximately 6 billion base pairs, and by using this insertion site information as an ID, each 
clone can be distinguished and traced with extreme accuracy. Furthermore, the size of 
each clone can be easily estimated by quantifying the chimeric reads between the end of 
the provirus and the host genome, or the paired-end reads spanning the two, and other 
analysis techniques have also been established [38–40]. In addition, data on internal se-
quences, deletions, and mutations in the viral genome and proviral ends can be obtained 
to analyze the phylogenetic tree of the virus and its relationship to host immunity [41]. 

Third, a highly accurate analytical method using specific surface antigens of HTLV-
1-infected cells has been established; surface antigens such as CD4+, CD25+, CCR4+ [42], 
and CADM1+ [43], have been identified, and the expression of CD7 [44] and CD26 [45] 
decreases with progression to ATL. The authors developed a flow cytometric method 
(HAS-Flow method) [15], which enables objective evaluation and isolation of infected cells 
without a morphological diagnosis, noting that infected cells are enriched in the 
CD4+/CADM1+ population in peripheral blood of infected patients and that CD7 expres-
sion decreases significantly with progression to ATL. By using this method, not only mon-
oclonal ATL cases with proliferating tumor cells but also smoldering/chronic ATL before 
acute transformation and infected cells in pre-symptomatic HTLV-1 infected carriers can 
be sensitively detected and fractionated. 

6. Diversity of Infected Cells and Clonal Competition 
Diversity is the essence of cancer. In the case of solid tumors, methods to estimate 

diversity and evolution are often used, mainly by sequencing analysis of a large number 
of pathological regions. On the other hand, in the case of circulating hematological tu-
mors, it is difficult to read out the exact clonal composition based only on genomic infor-
mation from a single time point in peripheral blood. We recently analyzed a time series of 
clinical specimens from the same infected individuals over a period of about ten years. 
We succeeded in depicting the process of competition among individual infected clones, 
followed by the acquisition of genomic abnormalities by some infected clones and the 
increase in clone size [37]. High-depth genomic and clonality analyses revealed that the 
peripheral blood of infected individuals contains an extremely heterogeneous population 
consisting of numerous different infected cell clones distinguished by proviral integration 
sites, as well as subclones with different genetic mutation patterns. 

Accurately capturing the properties of each clone from a heterogeneous population 
is difficult using conventional bulk methods. Single-cell RNA-seq (scRNA-seq) is a meth-
odology that can overcome these technical challenges. Rather than estimating clonal struc-
ture by extrapolating data from bulk samples, it physically distinguishes cells and se-
quences each cell individually. We have constructed a new pipeline to identify infected 
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cell populations by extracting viral genes (HBZs) that are constantly expressed in infected 
cells from sequencing reads and mapping them to clustering. In addition, an analysis 
method that can identify clones with genetic mutations by extracting mutant RNA reads 
was also incorporated into the pipeline. Using this method, it is possible to distinguish 
each mutated subclone by clustering each genetic mutation [37]. A new insight detected 
by using this platform was a competition between different ATL subclones (Figure 3A). 

 
Figure 3. Clonal evolution mechanism by genome and epigenome. (A) In a heterogeneous popula-
tion consisting of cells with various abnormalities, the clone with the greater dominance is selected 
through a clonal competition. (B) Infected clones evolve and adapt to their environment by acquir-
ing genetic mutations in a stepwise manner during clonal selection. ATL is a monoclonal malig-
nancy in which a single infected cell has evolved through a multistep process. However, the tumor 
cell population is not homogeneous at the genome, epigenome, and other properties, but is com-
posed of diverse subclones. (C) This schematic model provides an example of the evolutionary pro-
cess to acute-type ATL. In this case, the emergence of a high-grade clone that acquired the PRKCB 
mutation led to the development of acute type disease. The effect of genetic abnormality is expressed 
as a gene expression pattern in each subclone. The accumulation of H3K27me3 acquired before the 
subclonal formation and the associated expression abnormalities are detected as common charac-
teristics in the subclones. (D) Genomic and epigenomic heterogeneity is reflected in differences in 
the characteristics of infected and tumor cells, their grade of malignancy, and their responsiveness 
to therapy. 

The tumor cells in the peripheral blood of ATL patients were not homogeneous but 
were a heterogeneous population consisting of multiple infected clones with different 
characteristics. The characteristics (i.e., gene expression patterns) of each infected clone 
were consistent with the patterns of genetic characteristics, suggesting that genomic ab-
normalities define the fundamental clonal structure. Analysis of these cases at different 
times showed that the clone prevalence ratio was altered, with one clone increasing rela-
tive to the other. This can be described as a process of competition and selection between 
multiple infected clones. 

Gene expression patterns suggested that the clones that had actually increased rela-
tive abundance were more proliferative than those that were initially dominant. The use 
of different signaling pathways was also revealed. These data represent a moment of 
clonal selection in the infected cell population and the fact that the characteristics of each 
clone correlate well with the pattern of genetic abnormalities. 
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7. Genetic Abnormalities in Multistep Tumorigenesis 
Another important finding is the gradual acquisition of genetic abnormalities. A mul-

tistep evolutionary process with genetic abnormalities was detected by following the 
same patient along the time axis [35–37] (Figure 3B). Integrative analysis with scRNA-seq 
method revealed that the new genetic mutations led to the progression of very aggressive 
features compared to the existing clone [37]. It should also be noted that in this case, there 
was a rapid increase in abnormal lymphocytes that corresponded with this clonal evolu-
tion. These observations warrant the importance of genetic mutations in the evolution of 
ATL cells. The integration of genomic and transcriptomic data also reveals that genetic 
mutations significantly impact the properties of ATL cells. 

The critical insight here is that the clones before acute transformation have already 
acquired some genetic abnormalities and have increased clone size compared to other in-
fected cell populations. This premalignant clone showed a distinctly abnormal gene ex-
pression pattern compared to normal cells. This indicates that, although this infected clone 
has become dominant in the population, it has not progressed to the final stage and ap-
pears to be in the process of natural selection. This situation is probably common in carri-
ers with increasing numbers of infected cells and patients with indolent types of ATL. The 
difference between clones that progress to the final stage and those that stop before the 
final stage cannot be accurately predicted at present. If we can identify the characteristics 
of malignant clones based on patterns of gene abnormalities, gene expression, and epige-
nomic abnormalities, it will be beneficial for prognosis prediction and therapeutic drug 
development. 

8. Clonal Evolution Mechanism by Genome and Epigenome 
How are polyclonal cell populations evolving using genomic and epigenomic abnor-

malities? An important suggestion is that the epigenome is a common feature across cases. 
In the single-cell analysis, epigenomic abnormalities were commonly detected in compar-
ative analysis of competing cell populations and cells before and after progression [37]. 
Gene suppression by H3K27me3 is detected in monoclonal cells derived from ATL pa-
tients, polyclonal cells derived from HTLV-1 carriers, and Tax-expressing cells [17,28]. In 
addition to repressive epigenomes, many genes are overexpressed independent of the pat-
tern of genetic abnormalities in the infected polyclonal cell population, including CCR4 
and CADM1. It has also been reported that some of these are induced by HBZ [7,8,46] and 
superenhancer formation [47]. The evidence suggests that HTLV-1 is involved in the ini-
tial formation and maintenance of the aberrant epigenome. Targeting the common epige-
nomic dysregulation would provide broad and durable therapeutic benefits. In addition, 
suppressing the early polyclonal population might reduce the opportunities for subse-
quent evolution into more malignant clones. 

The genomic abnormalities detected in ATL cases are very complex. Although they 
share common features such as the TCR signaling pathway, they are more complex than 
other typical leukemias and some solid tumors and appear to involve clonal individuality 
rather than common properties. It is not clear what combination of genetic abnormalities 
is responsible for the underlying hallmarks of tumor cells, such as abnormal proliferation 
and evasion from the apoptotic form of regulated cell death (RCD). The fact that the pat-
tern of genetic abnormalities varies among cases may indicate redundancy among genetic 
abnormalities. Considering the direct effects of viral genes and the commonality among 
clones, epigenomic disorders are thought to begin forming early after infection and evolve 
into ATL through further changes and accentuation as they progress (Figure 3C). To the 
extent that they can be detected, genomic abnormalities profoundly affect clonal selection 
at the time of clonal dominance in events later than epigenomic abnormalities. In addition, 
chromosomal instability and the resulting CNVs, coupled with point mutations, can crit-
ically affect clonal dominance. Tumor cell populations formed by multiple aberrations in 
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the genome and epigenome are not homogenous and produce differences in characteris-
tics, malignancy, and responsiveness to therapy (Figure 3D). This idea is consistent with 
the clonal evolution of other cancers [2,3]. Diversity within the infected cells will be an 
important topic of future studies. 

It should be noted that the genomic variations referred to here are only within the 
range that can be considered with the current sensitivity of the analysis. It cannot be de-
termined from which point of time they are introduced. Genomic instability caused by 
HTLV-1 has been pointed out, and there may be genomic variations that do not lead to 
clonal expansion beyond a distinguishable level. Many passenger mutations and sub-
clonal structures caused by neutral evolution have been detected in ATL cases. The func-
tion of mutations in noncoding regions is also largely unknown. 

It is also necessary to consider the role of selective pressure. Environmental factors 
such as oxidative stress, nutrient conditions, and therapeutic agents may contribute to the 
evolution of polyclonal populations resulting from HTLV-1 infection. In addition, evi-
dence of immunological selective pressure is certainly documented at the genomic level, 
as exemplified by structural variation in PD-L1 [32]. Because Tax is highly immunogenic, 
cells expressing Tax are selectively eliminated by CTLs. CTL is probably one of the most 
influential host determinants of host immunity that regulates infected cells [48,49]. 

The evolutionary path of T cells infected with HTLV-1 should have been inscribed in 
the ATL cells that appear as the disease. Characterizing the heterogeneous ATL cell pop-
ulation may help us identify opportunities for durable therapeutic intervention. A multi-
faceted understanding of the path from infection to ATL and HAM from the elements of 
virology, genomics, epigenomics, and host factors would lead to a significant advance in 
managing HTLV-1 infectious diseases. 
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