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Abstract: Mathematical modelling of infection processes in cells is of fundamental interest. It helps
to understand the SARS-CoV-2 dynamics in detail and can be useful to define the vulnerability steps
targeted by antiviral treatments. We previously developed a deterministic mathematical model of
the SARS-CoV-2 life cycle in a single cell. Despite answering many questions, it certainly cannot
accurately account for the stochastic nature of an infection process caused by natural fluctuation
in reaction kinetics and the small abundance of participating components in a single cell. In the
present work, this deterministic model is transformed into a stochastic one based on a Markov Chain
Monte Carlo (MCMC) method. This model is employed to compute statistical characteristics of the
SARS-CoV-2 life cycle including the probability for a non-degenerate infection process. Varying
parameters of the model enables us to unveil the inhibitory effects of IFN and the effects of the ACE2
binding affinity. The simulation results show that the type I IFN response has a very strong effect on
inhibition of the total viral progeny whereas the effect of a 10-fold variation of the binding rate to
ACE2 turns out to be negligible for the probability of infection and viral production.

Keywords: SARS-Cov-2; type I interferon (IFN); the ACE2 receptor; virus dynamics; mathematical
model; stochastic processes; Markov Chain Monte Carlo method; sensitivity analysis

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent
of the coronavirus disease 2019 (COVID-19). The course and outcome of COVID-19 depend
on multiple processes underlying the response of the host to the viral infection [1–3]. The
resulting complexity calls for the application of mathematical modelling tools to describe,
analyse, and predict the disease trajectories in relation to virus–host interaction parameters.
This extension of the analytical tools needed to understand the pathogenesis of COVID-19
is highlighted by recent efforts to build up a computational resource linking available
knowledge on the mechanisms of COVID-19 [4].

In patients infected with SARS-CoV-2, the race between the viral replication and the
immune response determines the course of COVID-19 [3,5]. The immune determinants
are key to explaining different disease progressions and outcomes [6] that are extensively
analysed [2]. Heterogeneity in the spectrum of the infection dynamics could be potentially

Viruses 2022, 14, 403. https://doi.org/10.3390/v14020403 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v14020403
https://doi.org/10.3390/v14020403
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0001-6685-2351
https://orcid.org/0000-0002-7315-193X
https://orcid.org/0000-0003-0620-5317
https://orcid.org/0000-0002-5049-0656
https://doi.org/10.3390/v14020403
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v14020403?type=check_update&version=2


Viruses 2022, 14, 403 2 of 19

derived from viral variation [7]. Since the beginning of the SARS-CoV-2 pandemic, a
number of new SARS-CoV-2 variants have emerged, such as the Alpha (B.1.1.7), Beta
(B.1.351), Gamma (P.1), Delta (B.1.617.2), and more recently Omicron (B.1.1.529) [8–11].
However, it is not clear how the observed specific mutations increase the transmissibility
and virulence of the virus [12].

To gain a mechanistic understanding of the relationship between a higher pathogenic-
ity of SARS-CoV-2 variants and specific functions of the mutants, it is required to examine
various sources of variability in viral infection/production bearing in mind that minor
variations in replication rates could have a profound effect on viral loads [13]. The vari-
ations could be split into two categories. The first one is for those resulting from natural
heterogeneity in virus production due to random effects and fluctuations in life cycle reac-
tions. The second group is related to mutation-induced deterministic shifts in the kinetic
parameters of SARS-CoV-2 replication, e.g., the receptor binding affinity, the susceptibility
to type I interferon (IFN), and others.

The binding affinities between the Receptor Binding Domain (RBD) of the spike protein
of SARS-CoV-2 variants and the ACE2 receptor have been recently characterised using a
multidisciplinary approach combining all-atom steered molecular dynamics simulations
and microscale thermophoresis [14]. It has been established that the Delta variant, upon
the T478K mutation, requires the highest force for the RBD-ACE2 complex to be completely
dissociated. Overall, the affinities of SARS-CoV-2 variants to ACE2 are higher than that of
the wild-type (WT) with an increase factor ranging from 20–30% to 2.3-times. This links to
the ability of the viral variants to infect a broader spectrum of target cells and results in a
much higher infectivity, as shown in [15].

Upon infection with SARS-CoV-2, the type I IFN system is activated in the host cell [16].
IFN controls SARS-CoV-2 infection by inducing the expression of IFN-stimulated genes
(ISGs) that restrict distinct steps of viral replication [17]. The detection of viral dsRNA is
mediated by cytosolic innate sensors (RIG-I, MDA-5) and endosomal toll-like receptors
TLRs (3,7,8) [18]. The type I IFN-mediated inhibition of SARS-CoV-2 growth in infected
cells targets the translation initiation complex (PKR activation) and mRNA degradation
(OAS activation) and induces an RNA editing enzyme (adenosine deaminase) [17].

We previously developed a deterministic mathematical model that describes the life
cycle of SARS-CoV-2 in the form of ordinary differential equations (ODE) [19]. The model
considers major replication stages including the binding of the virus to the ACE2 receptor,
the translation of nonstructural proteins associated with the formation of a translation
initiation complex, and RNA degradation. Hence, the model provides an appropriate
tool that can be transformed into a stochastic form for examining the variability in the
SARS-CoV-2 life cycle for the wild-type virus and its mutants. The latter are characterised
by different affinities of their RBD affinity to the ACE receptor and their susceptibility to
IFN. In this study, we develop a stochastic model of intracellular SARS-CoV-2 replication.

The stochasticity of the virus replication cycle can be accounted for by including
Brownian motions into the deterministic model and by describing it via stochastic differ-
ential equations (SDE) [20–22]. However, the applicability of this approach is restricted
by a daunting task of consistent estimation of the diffusion coefficients and the mode of
noise-driven perturbations (additive or multiplicative) for all reaction stages in the model.

Another framework to model a stochastic infection dynamics is to employ a discrete
or continuous Markov Chain (MC), which is implemented as a Dynamic Monte-Carlo
method. Initially, it has been developed for chemical kinetics [23,24]. In this approach, the
Markov chain and its parameters can be derived directly from the deterministic model. This
provides an essential advantage over SDE-based modelling as the evaluation of parameters
of the model is the most challenging problem. In our recent work [25], the MC-based
stochastic modelling approach was successfully implemented to convert the mechanistic
ODE model of HIV-1 life cycle into a stochastic Markov Chain Monte Carlo (MCMC)
model [26]. The stochastic model enables us to quantify and explain the emergence of
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heterogeneities in the virus life cycle including the multiplicity of infection (MOI) and the
variability in net viral progeny.

In this paper, we transform the deterministic model of the SARS-CoV-2 life cycle [19]
into a stochastic model of the MCMC-type. We apply the stochastic model to examine the
following statistical characteristics of a single-cell SARS-CoV-2 infection:

• The cell-to-cell variability in SARS-CoV-2 progeny production;
• The multiplicity of single cell infection;
• The probability of infection;
• The local sensitivity of the virus production to specific life-cycle steps;
• The impact of type I IFN; and
• The effect of the RBD-ACE2 binding affinity.

In Section 2, we formulate the stochastic model of the SARS-CoV-2 life cycle and
describe its algorithmic implementation. Section 3 focuses on computational examination
of the model behaviour for addressing various biologically relevant questions as listed
above. The discussion of the results is presented in Section 4.

2. Methods

In this section, we introduce the deterministic ODE model of the SARS-CoV-2 life cycle
developed in our previous work [19]. A formal notation is used for the time-dependent
variables that are more suitable for the description and implementation of the stochastic
MCMC model. The parameters and functional forms of the calibrated reaction kinetics are
transformed into the propensity functions of the respective elementary reactions following
the Gillespie approach [23]. The numerical implementation of the MCMC model is based
on a hybrid stochastic-deterministic algorithm [25]. Finally, we introduce the approach to
local sensitivity analysis of the stochastic model based on the computation of histogram
differences for the ensembles of individually perturbed parameters.

2.1. Deterministic Equations of SARS-CoV-2 Single Cell Infection

The major steps of the intracellular life cycle of SARS-CoV-2 are schematically pre-
sented in Figure 1. In addition, we indicate the targets for type I IFN-mediated inhibition
of virus replication.

According to this scheme, the infection process can be divided into several phases:
(a) entry, (b) genome transcription and replication, (c) translation of structural and accessory
proteins, and (d) assembly and release of virions. We consider all of these phases and
present the corresponding equations following [19].

Entry. This phase is split into four stages:

(i) Binding of the receptor-binding domain (RBD) of the viral spike (S) protein to ACE2
receptor (Equation (1));

(ii) Priming of the virus S protein at the host cell surface by the transmembrane protease
serine 2 (TMPRSS2), which leads to cleavage of the S proteins at the S1/S2 and S2 sites
(Equation (2));

(iii) Fusion at the cellular or endosomal membrane (Equation (3)); and
(iv) Release and uncoating of viral genomic RNA (Equation (4)).

The population dynamics of the abundance of the respective molecular species is
described by the following ordinary differential equations:

ẋ1 = −kbindx1 + kdissx2 − dVx1 (1)

ẋ2 = kbindx1 − kdissx2 − kfusex2 − dVx2 (2)

ẋ3 = kfusex2 − kuncoatx3 − dendosomex3 (3)

ẋ4 = kuncoatx3 − dgRNAx4 (4)

where the dot over xi denotes the time derivative of xi;
x1 = [Vfree] is the number of free virions outside the cell membrane;
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x2 = [Vbound] is the number of virions bound to ACE2 and activated by TMPRSS2;
x3 = [Vendosome] is the number of virions in endosomes; and
x4 = [gRNA(+)] is the number of ss-positive sense genomic RNA.

Figure 1. Biochemical scheme of the SARS-CoV-2 replication cycle. Targets of type I IFN-mediated
inhibition of virus replication are marked.

Genome transcription and replication. This phase is split into three stages:

(v) The translation of the released genomic RNA into viral polyproteins (pp1a, pp1ab)
which generate a number of non-structural proteins (nsp1-16), including nsp-12, which
encodes the RNA-dependent RNA polymerase (RdRp) (Equation (5));

(vi) The RdRp-dependent transcription of a negative sense subgenomic and genomic
RNAs (Equation (6)); and

(vii) The RdRp-dependent transcription of a positive sense subgenomic and genomic RNAs
(Equation (7)).

The population dynamics of the abundance of the respective molecular species is
described by the following ordinary differential equations:

ẋ5 = ktransl fORF1x4 − dNSPx5 (5)

ẋ6 = ktr(−)θRdRpx4 − dgRNA(−)x6 (6)

ẋ7 = ktr(+)
θRdRpx6 − kcomplexθcomplexx7 − dgRNAx7 (7)

where
x5 = [NSP] is the number of non-structural proteins;
x6 = [gRNA(−)] is the number of negative sense genomic and subgenomic RNAs; and
x7 = [gRNA] is the number of positive sense genomic and subgenomic RNAs.

Translation of structural and accessory proteins. This phase is split into two major
stages:

(viii) The translation of the structural nucleocapsid protein N from subgenomic RNAs by
cytosolic ribosomes (Equation (8));
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(ix) The translation of the structural proteins S, envelope E, and membrane M proteins
characterised in the model by their total abundance [SP], which takes place in the
endoplasmic reticulum (ER) (Equation (9)).

The population dynamics of the abundance of the respective molecular species is
described by the following ordinary differential equations:

ẋ8 = ktransl fNx7 − kcomplexnNθcomplexx7 − dNx8 (8)

ẋ9 = ktransl fSPx7 − kassembnSPθassembx10 − dSPx9 (9)

where
x8 = [N] is the number of N proteins per virion and
x9 = [SP] is the total abundance of the structural proteins S, envelope E, and membrane
M proteins.

Assembly and release of virions. This final phase is split into three major stages:

(x) The binding of N proteins and gRNA, resulting in nucleocapsid formation (viral RNA
genome coated with N protein) (Equation (10));

(xi) The assembly of virions via encapsulating N-RNA complexes at the ER–Golgi com-
partment (Equation (11)); and

(xii) The release of the assembled new virions by the infected cell via exocytosis, budding,
or cell death (Equation (12)).

The population dynamics of the abundance of the respective molecular species is
described by the following ordinary differential equations:

ẋ10 = kcomplexθcomplexx7 − kassembθassembx10 − dN-gRNAx10 (10)

ẋ11 = kassembθassembx10 − kreleasex11 − dassembx11 (11)

ẋ12 = kreleasex11 − dVx12 (12)

where
x10 = [N-gRNA] is the number of ribonucleoprotein molecules;
x11 = [Vassembled] is the number of assembled virions; and
x12 = [Vreleased] is the number of released virions.

The following functions are present in Equations (6)–(11), which parameterise the
saturation effects in the process kinetics of RNA transcription, nucleocapsid formation, and
virion assembly, respectively:

θRdRp =
x5

x5 + KNSP
, θcomplex =

x8

x8 + KN
, θassemb =

x9

x9 + KVrel nSP
. (13)

Thus, the SARS-CoV-2 replication dynamics is described by 12 ODEs (1)–(12), which
we denote for convenience formally by variables x1, . . . , x12. The system of equations is
nonlinear because of nonlinear Michaelis–Menten-type functions (13).

2.2. Quantification of SARS-CoV-2 Replication Parameters

The calibration of the model, i.e., the estimation of parameters in the equations to
reproduce the scale and kinetics of the SARS-CoV-2 life cycle was performed in our previous
study [19].

The model parameters were calibrated using various data sources characterising
(i) the biochemical properties of transcription and translation inherent to coronaviruses
(CoV), (ii) the genomic organisation of SARS-CoV-2, (iii) the intracellular protein and RNA
turnover, (iv) the in vitro growth data for recombinant (icSARS-CoV-Urbani, icSARS-CoV-
GFP, and icSARS-CoVnLuc) and clinical strains of SARS-CoV2 (SARS-CoV-2 isolate WA1
and SARS-CoV-2 Australia/VIC01/2020).
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The key sources of quantitative information on the respective processes
include [26–40]). Note that all parameters of the model are characterised by some
uncertainty (biologically plausible) ranges.

The basal set of the parameter estimates is presented in Table 1.

Table 1. Reference parameter estimates of the deterministic model of SARS-CoV-2 replication.

kbind = 12 h−1 dV = 0.12 h−1 KNSP = 100
kdiss = 0.61 h−1 dendosome = 0.06 h−1 KN = 5× 106

kfuse = 0.5 h−1 dgRNA = 0.2 h1 KVrel = 1000
kuncoat = 0.5 h−1 dNSP = 0.069 h−1 fORF1 = 1/21,000
ktr(−) = 3 h−1 dgRNA(−) = 0.1 h−1 fN = 1/1200
ktr(+)

= 1000 h−1 dN = 0.023 h−1 fSP = 1/10,000
kcomplex = 0.4 h−1 dSP = 0.044 h−1

ktransl = 4.536× 104 h−1 dN-gRNA = 0.2 h−1 nN = 456
kassemb = 1 h−1 dassemb = 0.06 h−1 nSP = 2000
krelease = 8 h−1

2.3. The Stochastic Model

A deterministic system described by ODEs can be translated into a stochastic descrip-
tion in the form of a Markov chain (MC): stochastic Dynamic Monte Carlo (DMC) approach.
The stochastic framework considers the exact number of molecular species rather than
a continuous approximation of their abundance. For low numbers of species with the
interactions modeled following the chemical kinetics framework, an efficient algorithm
for moving from a deterministic to probabilistic description of the trajectories has been
proposed by Gillespie [23,24,41]. It has been shown that the solution of the MC describing
the stochastic dynamics converges in probability to the solution of a related ODE system
with proper scaling [42–45]. This limiting transition is called the fluid dynamics limit [42]
or the mean field limit [46]. The theorem on a weak convergence of the MC process to the
deterministic solution for specific models of viral infection dynamics has been proven in our
earlier studies [45,47]. The list of elementary reactions, the corresponding transitions, and
the propensities of the respective processes constituting the Markov chain stochastic model
corresponding to the underlying ODEs (1)–(12) are presented in Table 2. The propensity
function am(x) is defined so that, for given current state x(t), the product am(x)dt defines
the probability that the mth reaction occurs in the infinitesimal time interval [t, t + dt] [24].

Table 2. The Markov chain: the list of individual reactions, the corresponding state transitions, and
the propensities of reactions.

m Reaction (Transition) Propensity, am Equations

1 x1 → x1 − 1, x2 → x2 + 1 kbindx1 (1), (2)
2 x1 → x1 + 1, x2 → x2 − 1 kdissx2 (1), (2)
3 x1 → x1 − 1 dVx1 (1)
4 x2 → x2 − 1, x3 → x3 + 1 kfusex2 (2), (3)
5 x2 → x2 − 1 dVx2 (2)
6 x3 → x3 − 1, x4 → x4 + 1 kuncoatx3 (3), (4)
7 x3 → x3 − 1 dendosomex3 (3)
8 x4 → x4 − 1 dgRNAx4 (4)
9 x5 → x5 + 1 ktransl fORF1x4 (5)

10 x5 → x5 − 1 dNSPx5 (5)
11 x6 → x6 + 1 ktr(−)θRdRpx4 (6)
12 x6 → x6 − 1 dgRNA(−) x6 (6)
13 x7 → x7 + 1 ktr(+)

θRdRpx6 (7)
14 x7 → x7 − 1, x10 → x10 + 1 kcomplexθcomplexx7 (7), (10)
15 x8 → x8 − 1 nNkcomplexθcomplexx7 (8)
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Table 2. Cont.

m Reaction (Transition) Propensity, am Equations

16 x7 → x7 − 1 dgRNAx7 (7)
17 x8 → x8 + 1 ktransl fNx7 (8)
18 x8 → x8 − 1 dNx8 (8)
19 x9 → x9 + 1 ktransl fSPx7 (8)
20 x9 → x9 − 1 nSPkassembθassembx10 (9)
21 x9 → x9 − 1 dSPx9 (9)
22 x10 → x10 − 1, x11 → x11 + 1 kassembθassembx10 (10), (11)
23 x10 → x10 − 1 dNx10 (10)
24 x11 → x11 − 1, x12 → x12 + 1 kreleasex11 (11), (12)
25 x11 → x11 − 1 dassembx11 (11)
26 x12 → x12 − 1 dVx12 (12)

2.4. Stochastic Modelling Algorithm

To implement a MC numerically, a number of methods have been proposed, with the
most popular being the Gillespie’s direct method [23,48,49]. In this method, the model
state space vector x = [xi, . . . , xN ] is specified by initial values for every component. Here,
N = 12 is the number of reaction components taking part in the replication process. In our
case, the vector is initialised by setting all its components to zero except the first component,
which is set to the initial number of free virions: x1 = [Vfree](0).

Then, the following steps are performed.

• At every interval between the reactions, two uniformly distributed random numbers
r1, r2 on (0, 1) are generated. The first number gives the next timestep δt = −(ln r1)/A,
where A = ∑M

m=1 am; M is the number of reactions in the Markov chain; and am is the
propensity of the mth reaction: amdt is the probability that the mth reaction occurs
in time-interval dt. The second random number determines the next reaction index
p: the smallest integer satisfying Ap ≥ Ar2, where Ap = ∑

p
m=1 am. As we have to

search among M = 26 reactions, a binary search is employed to accelerate finding the
reaction index p (see [49]). At the end of the step, the pth transition is performed, i.e.,
the state vector x is updated in accordance with Table 2.

• After updating the state vector, the propensities should be updated as well. Here, to
accelerate the computation, the propensities are updated only for those reactions in
which am depends on the updated components in the given step. For this purpose, a
special array is prepared in which propensities to be updated are indicated for given
component xn and another similar array for every reaction m.

• The process is terminated as soon as the current time exceeds the maximal time tfinal
set in advance. To decrease the amount of stored information, the values of the state
vector are stored at a uniform time-grid with the preset timestep ∆t.

The algorithm is implemented in C++. To accelerate the computations, the arrays
of pointers to functions are actively used to directly call functions of propensities that
should be calculated for a given reaction without spending time on other reactions. The
computations were run on Intel Xeon E3-1220 v5 CPU 3 GHz × 4. One realisation of the
model with [Vfree](0) = 10 requires about 10 seconds of CPU time for tfinal = 48 h. For every
value of the initial number of free virions [Vfree](0), 105 realisations are computed to obtain
the statistically significant characteristics described in the next section. For [Vfree](0) = 5
and 10, as much as 106 realisations are computed to obtain smoother histograms.

2.5. Local Stochastic Sensitivity Analysis

To perform a sensitivity analysis on the stochastic model, we followed the previously
described approach for a local sensitivity analysis [25,50]. We obtained ensembles of
the model outputs of interest (e.g., the model variable at a certain time, or some other
functional of the model solution) with the baseline and perturbed model parameters.
For each parameter pi perturbed by a small fixed percentage s of its baseline value, the
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sensitivity index can be defined by the histogram difference (sum of the absolute differences
between the corresponding histogram bins):

Si = D(x0, xp̂i), p̂i = pi + ∆pi = pi(1 + s) (14)

where D(x0, xp̂i) is the histogram difference between the ensemble of model outputs x0
obtained with baseline model parameters and the ensemble xp̂i obtained with parameter pi
increased by a small value ∆pi. Employing this definition, the parameters can be ranked by
their impact on the model output. The sensitivity indices can be compared to the so-called
self-distance D(x0, x′0), i.e., the histogram difference between the ensembles obtained twice
with the same baseline values of model parameters. The self-distance describes how well
the histogram approximates the corresponding probability distribution function for a given
number of stochastic model realisations in the ensemble. The sensitivity indices less than
or close to the self-distance can be regarded as not having a strong effect [50]. Alternatively,
the sensitivity indices can be defined as the histogram differences divided by the parameter
variations ∆pi and scaled on their baseline variables to make possible their ranking [25].
In this paper, we use definition (14) with one million realisations in each ensemble and
s = 0.01.

3. Results
3.1. Deterministic Versus Stochastic Dynamics of SARS-CoV-2 Replication

The numerical solution of the deterministic ODE model of SARS-CoV-2 replication
for the given number of virions infecting a single cell [Vfree](0) = 10, with the model
parameter listed in Table 1 is shown in Figure 2 (black curve). The stochastic realisations of
the MCMC model for [Vfree](0) = 10 are plotted by coloured lines (twenty arbitrarily taken
realisations). The stochastic trajectories significantly deviate from the deterministic solution
in both (i.e., up and down) directions. The lines with a more intensive red correspond
to stochastic realisations with the highest peak of released virions [Vrelease]. This enables
tracing back the trajectories with higher (red and orange) and lower (green and blue)
amplitudes of released SARS-CoV-2 through all components. By doing so, one can see
that, beginning with the component [NSP], the red lines are strictly above the orange lines,
which are in turn above the green and blue lines. Thus, fluctuations resulting in the number
of released virions are determined at earlier stages of the virus life cycle process, i.e., in
reactions involving [gRNA(+)] and even [Vendosome] and [Vbound].

The trajectories for the components with high abundances such as [gRNA], [N], [SP],
and [N-gRNA] look smoother because the stochastic effects of the reactions on their fluctu-
ations are relatively small compared with the sizes of the respective molecular populations.
In contrast, the trajectories for the number of [Vassemb](t) display rather large and frequent
fluctuations. This can be explained by the relatively large value of the parameter krelease
(see Table 1), which results in a high probability of the assembled virions to be released
from the infected cell, i.e., the newly formed virions stay in the intermediate assembled
form for a short time.

3.2. Variability in Net Virus Production

The computed stochastic realisations of the SARS-CoV-2 model were analysed to
compute the statistical characteristics of the ensemble: the mean values, the medians, and
quantiles. Two representative examples of the histograms of released virions at t = 24 h
post-infection generated for two different initial doses on infection [Vfree](0) = 5 (left) and
[Vfree](0) = 10 are shown in Figure 3. The time t = 24 h is selected because it is close to
the peak time of production of SARS-CoV-2 virions. The histogram values are normalised
with respect to the number of realisations and the range of the released number of virions
considered in the histograms. Such normalisation enables the histogram to approximate
the probability density function (PDF) describing the distribution.

The histograms have a noticeable peak at zero values for the number of released
virions. This peak corresponds to extinct (degenerate) realisations in which no free virions
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are released. The complementary part of the histograms correspond to realisations charac-
terised by a fully developed replication process resulting in the production of a significant
number of free virions. This part of the histogram is rather smooth with an exponential
tail. For [Vfree](0) = 5, this part is monotonically decaying and can be approximated
by the exponential distribution. However, for [Vfree](0) = 10, it is non-monotone and
shows a clear maximum. The corresponding part of the histogram can be approximated
by the Gamma distribution f (x) ∝ xα−1e−βx (note that the exponential distribution is its
particular case) [51]. The results of the least-squares fitting of the Gamma distribution to
the histograms (excluding the near-zero peak) are shown in Figure 3 as red curves.

3.3. Variability of the Individual Reaction Products

The developed stochastic MCMC model allows us to systematically characterise the
statistical properties of variability in the replication kinetics of SARS-CoV-2 emerging from
the fluctuations in the underlying biochemical reactions and low numbers of reactants. To
this end, an ensemble of 105 realisations of the stochastic MCMC model is generated and
analysed for the mean values, the medians, and uncertainty intervals in terms of various
quantiles. The results are summarised in Figures 4 and 5, corresponding to infection with 5
and 10 initial virions, respectively.

Figure 2. Examples of stochastic realisations for [Vfree](0) = 10. The black curves indicate the
solution of the deterministic model.
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Figure 3. Normalised histograms for the released virions number for [Vfree](0) = 5 (left) and
[Vfree](0) = 10 (right). The red line shows the approximation of the histogram by the Gamma
distribution fitted to the histogram by the least squares method.

Figure 4. Evolution of the confidence intervals for all 12 species participating in the SARS-CoV-2
replication for [Vfree](0) = 5. The green, red, and black lines indicate the mean, median, and the
deterministic solution, respectively.

In these figures, the median values (50% quantile) are shown by the red lines, the
green dashed lines indicate the mean values of the realisations, and the black lines indicate
the solution to the deterministic model. The median curve can be treated as a trajectory of
a so-called typical realisation [52]. As the histograms for components are mainly unimodal
(opposite to the multimodal histograms of the stochastic HIV replication dynamics [25]), a
comprehensive characterisation of the time uncertainty in the evolution of the SARS-CoV-2
components can be restricted to the quantiles of the sample distributions, which specify the
related confidence intervals. In Figures 4 and 5, the 25–75% confidence intervals (which
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include 50% of all realisations) are marked by yellow patches. The 15–85% confidence inter-
vals are shown by the light-blue patches. They partly overlap with the 25–75% confidence
intervals. The widest 5–95% confidence intervals (which include 90% of all realisations) are
shown by the light-pink patches. The coloured patches in Figures 4 and 5 provide quantita-
tive details of the evolution of the histograms for all components during the development
of the infection process.

Figure 5. Evolution of the confidence intervals for all 12 components participating in the SARS-CoV-2
replication for [Vfree](0) = 10. The green, red, and black lines indicate the mean, median, and the
deterministic solution, respectively.

Figures 4 and 5 clearly show that the curves for the mean value trajectories exactly
coincide with the deterministic curves for first five species of the SARS-CoV-2 replication
steps considered in the model. This is because the first five ODEs (1)–(5) describing the
kinetics of the respective species are linear. The first nonlinear equation is Equation (6)
containing the nonlinear function θRdRp. Starting with x6 = [gRNA(−)], there is a clear
discrepancy between the sample mean values of the stochastic realisations and the deter-
ministic curves. The most noticeable discrepancy is seen for [SP] and [N-gRNA]. Analysing
the plots for components [N-gRNA], [Vassemb], and [Vrelease] in Figures 2, 4 and 5, one can
conclude that some stochastic realisations have large deviations, significantly exceeding the
deterministic and averaged trajectories. Their distributions are far from the Gaussian one.

The figures show that the deterministic solution is rather close to the sample median
for [Vrelease]. It is known that the median curves are useful for characterising stochastic
processes as they represent the most probable trajectory. Note that, for [Vfree](0) = 5, the
sample median curve is identical to zero for the component [Vassemb]. This confirms our
previous observation about a short availability time of the assembled virions inside an
infected cell. The sample mean values for the number of released virions [Vrelease] are
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higher than the median values and the output deterministic solution, and the difference is
larger for a smaller number of infection virions.

3.4. Probability of Productive Infection

Depending on the viral load and availability of permissive cells, the number of in-
fecting viruses per cell (known as multiplicity of infection, MOI), denoted in our work
as [Vfree](0), can vary substantially (see the discussion in [19]). We examine the effect of
various MOI on the scale of virus replication and the probability of a non-degenerate infec-
tion. To this end, the numerical simulations have been performed for the initial number of
virions [Vfree](0) = 1, 2, . . . , 10 over a representative time interval with tfinal = 48 h (hours).
This value of tfinal exceeds the peak time tpeak ∼ 24 h at which the number of released
virions attains its maximal value. Hence, the decreasing phase of the release process after
the peak time is reproduced during the simulations as well.

As it is mentioned above, realisations with zero number of newly produced virions,
i.e., [Vrelease](t) ≡ 0, are called degenerate or extinct. The developed stochastic model
enables the computation of the probability of such extinct cases depending on the MOI. The
corresponding results are shown in Figure 6. New virions are produced in more than 50%
of realisations beginning with [Vrelease](0) = 3. This indicates the high infectious potential
of SARS-CoV-2.
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Figure 6. (Left) Dependence of confidence intervals, sample mean (green) and median (red) estimates,
and the deterministic solution (black) on the initial number of free virions per cell [Vfree](0) at t = 24 h.
(Right) Probability for productive infection of the target cell in relation to the initial number of free
virions per cell (MOI).

3.5. Efficiency of Life Cycle

The total number of new virions secreted by an infected cell during time T from the
beginning of infection (thus, disregarding their degradation) is given by the formula

[Vnew](T) =
∫ T

0
krelease[Vassemb](t)dt (15)

obtained by integration of ODE (12) in which dV = 0 is set.
To examine the efficiency of a single life cycle of SARS-CoV-2, the kinetics of released

virions were computed for the MOI, [Vfree](0), ranging from 1 to 10. The respective
functions are shown in Figure 7 (left) by dashed lines. As one can see, all of the functions
tend toward a finite limit, which gives the total viral progeny produced by the infected cell:

[Vtotal] = lim
T→∞

[Vnew](T) =
∫ +∞

0
krelease[Vassemb](t)dt. (16)

The analysis shows that [Vnew](T) for T = 48 h approximately equals 99% of the total
viral progeny [Vtotal]. This means that computation within the time interval of 48 hours
gives an appropriately accurate estimate for the total viral progeny: [Vnew](48) ≈ [Vtotal].
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The life cycle efficiency can be characterised by the ratio of the total viral progeny to
the MOI:

Life cycle efficiency =
[Vtotal]

[Vfree](0)
≈ [Vnew](48)

[Vfree](0)
. (17)

The dependence of the life cycle efficiency on MOI predicted by the deterministic
model is presented in Figure 7 (right) by the blue line with circles. In the stochastic model,
the life cycle efficiency varies from realisation to realisation; therefore, several statistical
characteristics of this value are plotted in Figure 7 (right): the mean value—by the green
line, the median—by the blue line, the 25–75%, and 5–95% confidence intervals—by the
coloured patches.

One can see that the median values are close to the life cycle efficiency computed by
the deterministic model, whereas the mean values are higher for all numbers of initial free
virions. Note that the total viral progeny secreted by an ensemble of infected cells in tissue
should be calculated by summing new virions produced by every cell. Then, just the mean
value of the total viral progeny will fall on one cell. Therefore, the mean value of the life
cycle efficiency looks to be a proper characteristic of the virion multiplication property of
an infected cell.

The calculations show that the mean life cycle efficiency predicted by the stochastic
model is noticeably higher than that obtained by the deterministic model, especially for
lower MOI. For example, for five initial virions, the stochastic model gives a two times
higher value for the life cycle efficiency than the same value obtained in the framework
of the deterministic model. This difference indicates that the deterministic model can
underestimate the contagiousness of SARS-CoV-2 and confirms the relevance of stochastic
modelling of the virus life cycle.
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Figure 7. (Left) Kinetics of the total number of new virions secreted by an infected cell (dotted
lines) for different MOIs (explained by the colour code) and the kinetics of virions release (solid
lines) computed by the deterministic model [19]. (Right) The life cycle efficiency computed by the
deterministic model (the red curve with circles). The mean, median, and the confidence intervals of
the life cycle efficiency computed by the stochastic model (explained in the legend).

3.6. Sensitivity Analysis of the Model Parameters

To rank the parameters by their influence on the number of released virions, we
apply the local sensitivity analysis (see Section 2.5). The sensitivity indices are based on
the ensembles of variable x12 = [Vreleased] at time t = 24 h for baseline values of model
parameters and for parameters perturbed individually by 1%. The computed sensitivity
indices as well as the self-distance for baseline set of parameters (106 realisations, 500 bins)
are shown in Figure 8. The sensitivity indices for the model output [Vnew](24) reveal a
similar pattern (data not shown).
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Figure 8. Local sensitivity indices for the number of released virions at 24 h computed with the
stochastic model. The significant indices with greater values than the self-distance for the sets with
baseline model parameters are marked by red.

The parameters with the largest influence on the model output (marked with the red
colour bars in Figure 8) are similar to those obtained using the sensitivity analysis of the
deterministic model [19]. They include the following (ranked by their impact):

• Degradation of the positive-sense vRNA in cytoplasm (dgRNA);
• Threshold number of non-structural proteins enhancing vRNA transcription (KNSP);
• Translation rate of non-structural proteins (ktransl fORF1);
• Degradation rate of extracellular virions (dV); and
• Assembly rate of structural proteins (kassemblnSP).

Importantly, the parameters selected by sensitivity analysis correspond to the processes
targeted by the type I interferon response. The effects of varying these parameters are
studied in the next section.

3.7. Inhibitory Effect of Type I IFN

Type I Interferon responses are known to potently impair SARS-CoV-2 replication [13].
However, it has been reported that the induction of the type I IFN response and interferon-
stimulated genes is moderate [16]. To characterise the sensitivity of the viral life cycle to
the type I IFN response, we employed the stochastic model.

The IFN-mediated inhibition of SARS-CoV-2 growth in an infected cell targets the
translation initiation complex (by protein kinase R (PKR) activation), and mRNA degrada-
tion (via 2′-5′-oligoadenylate synthetase (OAS) activation) and induces an RNA editing
enzyme (adenosine deaminase) [17]. The corresponding effects in the parameterised math-
ematical model can be associated with variations in the following parameters:

(a) The rate constant of translation of released genomic RNA into viral polyproteins pp1a
and pp1ab (ktransl fORF1);

(b) The degradation rate constant of RNA (dgRNA, dgRNA(−) ); and

(c) = (a) + (b): simultaneous variation in both parameters.

The parameters were increased by a factor of four with respect to the references values
(see Table 1) to quantify the effect on the probability of a non-degenerate infection and
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the efficient reproduction number for a broad range of MOI, i.e., [Vfree](0) = 1, ..., 15. The
results are summarised in Figure 9.
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Figure 9. Type I IFN-mediated effects on the probability of non-degenerate infection (left) and the
efficient reproduction number for MOI ranging from 1 to 15 (right). The ascending/descending
arrows in the legend show the four-fold increase/decrease in the indicated parameters.

The probability of non-degenerate infection is shown in Figure 9 (left). Observe that
the enhance IFN response significantly reduces the probability of the infection process
developing. The effect is more pronounced for lower MOIs.

In Figure 9 (right), both the mean and median of the life cycle efficiency are plotted for
the baseline and cases (a), (b) and (c) to characterise their partial and combined effects on
viral progeny. One can see that the enhanced IFN response reduces new virus production
by a factor exceeding 100.

3.8. Effect of Binding Affinity

The attachment of the spike protein of SARS-CoV-2 to the angiotensin-converting
enzyme 2 receptor located on human cells is the first step of virus entry into host cells. It
initiates the cascade of life cycle biochemical reactions [9,16]. It has been shown recently
that the evolution of SARS-CoV-2 results in an emergence of viral variants of concern with
the enhanced transmissibility and virulence [8]. Some mutations directly affect the affinity
of the virus spike protein to the ACE2 receptor [12,15].

We use the developed model to examine the effect of binding affinity variation on the
efficiency of the SARS-CoV-2 life cycle. To this end, the model parameter representing the
rate constant of virion binding to the ACE2 receptor kbind is varied from its basal value by
10 times to cover the range of observed increase or decrease in the binding affinities [14,53].
To quantify the binding rate effects on the probability of non-degenerate infections of host
cells and the efficient reproduction number for a broad range of MOI ([Vfree](0) = 1, . . . , 15),
the parameter kbind is increased (respectively, reduced) by a factor of 10 with respect to the
reference value (see Table 1). The obtained results are summarised in Figure 10. Both the
mean and median sample estimates are plotted to characterise their partial and combined
effects on viral progeny.

One can see that the variation in the probability of infection and the net progeny of the
life cycle is rather subtle. This feature might reflect the fact that an enhanced transmissibility
of a certain SARS-CoV-2 mutants should be rather attributed to the ability of the variants to
infect cells with the lower level of ACE2 receptors, which is consistent with the viewpoint
in [15].
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Figure 10. Effect of binding of SARS-CoV-2 to ACE2 on the probability of non-degenerate infection
(left) and the efficient reproduction number (right) for MOI ranging from 1 to 15. The ascend-
ing/descending arrows in the legend show the 10-fold increase/decrease in the indicated parameters.

4. Discussion

We developed a stochastic model of SARS-CoV-2 replication in human cells. The
model is formulated following the Dynamic Monte Carlo Markov Chain approach and
utilises the calibrated parameters of our previously developed deterministic model [19].
Some predictions of the deterministic model might vary substantially for small numbers of
molecular species participating in the virus life cycle, which is typical for a single cell infec-
tion. Numerical implementation of this model based on the Gillespie-type algorithm [23]
enabled the calculation of all necessary statistical characteristics of the infection process
variability. The probability for a non-degenerate infection process and the life cycle effi-
ciency have been calculated for various MOI (i.e., the initial number of infecting viruses)
and model parameters.

The simulation results suggest that the type I IFN response has a very strong effect
on inhibition of the total viral progeny. This feature is consistent with the role of the type
I IFN response to SARS-CoV-2 infection susceptibility [13]. Hence, our study supports
the application of type I IFN as an early therapy [54]. Surprisingly, the effect of a 10-fold
variation of the binding rate of SARS-CoV-2 to ACE2 turned out to be negligible for the
probability of infection and viral production. This indicates that, in the analysis of the
infectivity of the virus, it is necessary to go beyond a single cell infection and to consider
the infection spreading in a population of host cells starting from low MOIs. It has been
proposed recently that the greater infection efficiency of the SARS-CoV-2 Delta variant
with its higher affinity for ACE-2 might be mainly due to the ability to infect cells with low
numbers of ACE2 [14,15].

Recent data suggest that the Omicron variant is less effective at reducing the host cell
interferon response [55]. Therefore, the intracellular IFN should have a stronger inhibitory
effect on the virus replication for the Omicron mutant compared with the Delta variant,
through targeting the translation initiation complex and mRNA degradation. Indeed, the
sensitivity analysis of the stochastic model predicts a very strong suppressive impact of the
type I IFN response on the probability of productive infection and the net viral progeny.
These features should be relevant for understanding less severe disease courses observed
in patients infected with the Omicron variant.

Our study provides a detailed model (overall, 12 life cycle intermediates) of the
stochastic dynamics of SARS-CoV-2 replication in productively infected cells. This model
can be regarded as a module for computational knowledge repository for studying the
virus–host interaction mechanisms [4]. The virus replication stages considered in the study
are inhibited by a type I IFN response of cells. However, we do not describe the induction
and kinetics of the intracellular IFN response [18] and the factors used by SARS-CoV-2 (e.g.,
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ORF3b, ORF6, and N proteins) to counteract the cellular innate immune response [16,56].
These will be the subject of future extensions of the model.

Understanding the variability in viral dynamics in infected host cells and its response
to endogenous or exogenous perturbations of various nature is helpful for the development
of effective antiviral treatments. Mathematical modelling of SARS-CoV-2 viral dynamics
enables understanding the kinetic mechanisms and identifying potential therapeutic targets
that can be useful for the development of efficient materials to suppress SARS-CoV-2
infection.
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