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Abstract: WHO has declared COVID-19 as a worldwide, public health emergency. The elderly,
pregnant women, and people with associated co-morbidities, including pulmonary disease, heart
failure, diabetes, and cancer are the most predisposed population groups to infection. Cell-free
DNA is a very commonly applied marker, which is elevated in various pathological conditions.
However, it has a much higher sensitivity than standard biochemical markers. cfDNA appears to be
an effective marker of COVID-19 complications, and also serves as a marker of certain underlying
health conditions and risk factors of severe illness during COVID-19 infection. We aimed to present
the possible mechanisms and sources of cfDNA released during moderate and severe infections.
Moreover, we attempt to verify how efficiently cfDNA increase could be applied in COVID-19 risk
assessment and how it corresponds with epidemiological data.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the greatest
worldwide pandemic of the 21st century. The consequences of coronavirus disease 2019
(COVID-19) have been significant for the economy, social life, and public health worldwide.
Most patients do not demonstrate symptoms, or are mildly symptomatic, but some people
infected with SARS-CoV-2 experience extensive inflammation and severe homeostasis
imbalance. A severe infection first begins in the respiratory system; however, this might be
followed by septic shock and multiple organ failure [1].

Cell-free DNA (cfDNA) has been studied extensively for last few decades; since
then, almost every aspect of the structure of cfDNA has been studied. Analysis of DNA
integrity allows to determine the process responsible for the release of cfDNA. Necrosis
or NETosis disintegrate a membrane and release random long fragments (<10,000 bp),
whereas apoptosis is preceded by the shrinkage of the cell, fragmentation into membrane-
bound apoptotic bodies, and the release of 180–200 bp fragments of DNA (Figure 1) [2].
The most common method used for the quantification of cfDNA isolated from body fluids
is quantitative real-time PCR (qPCR), based on TaqMan gene expression assay. Of note,
cfDNA extraction is also possible from unpurified plasma [3], and using direct qPCR, which
seems to be a sufficiently sensitive procedure for the quantification of cfDNA concentrations,
might find broad applicability. The detection precision is rising and this is followed by new,
more sensitive methods, such as ddPCR [3].

Currently, during COVID-19 infection, patient assessment is based on standard di-
agnostic markers, such as CRP, creatine, procalcitonin, or cytokines. However, cfDNA
seems to be tremendously more sensitive compared to them [4]; moreover, fast kinetics
within minutes allows much better monitoring comparing to CRP (with half-life of 19 h) [5].
As mentioned above, circulating cfDNA can increase via numerous mechanisms and in
response to a variety of pathophysiological factors. This suggests its limited specificity as
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a biomarker of complications of COVID-19 infection. However, CRP also has a relatively
low specificity, but is commonly used to evaluate the severity of inflammatory responses to
various factors, including bacterial, viral, fungal infection, sepsis, septic shock, or trauma.
Serum CRP is also elevated in patients with cancer. Similarly, procalcitonin, which is useful
marker of bacteremia, and sepsis could be elevated in pediatric patients with immuno-
logical disorders [6]. In addition, other non-infectious causes of systemic inflammation
(e.g., trauma, surgery, burn injury, chronic kidney disease) have been reported to increase
circulating procalcitonin [7,8]. Therefore, cfDNA could serve as an additional biomarker of
serious complications that threaten the lives of patients infected with COVID-19.

Figure 1. ACE2 as the entry receptor for SARS-CoV-2 and possible sources of cfDNA during
COVID-19 infection.

Substantial evidence indicates that angiotensin-converting enzyme 2 (ACE2) is the key
factor in COVID-19 infection (Figure 1). Physiologically, ACE2 cleaves the angiotensin I
hormone into vasoconstricting angiotensin II. However, ACE2 also serves as an entry point
into cells for some coronaviruses, including SARS-CoV-2 [9]. ACE2 is an enzyme attached
to the cell membranes of cells located in the lungs (lung type II alveolar cells), arteries and
veins (endothelial cells), intestines (enterocytes of the small intestine), and arterial smooth
muscle cells, and in most organs (e.g., heart and kidney) [10].

The binding of SARS-CoV-2 to host cell ACE2 may dysregulate erythropoiesis through
the downstream angiotensin II pathway. Moreover, it was found that angiotensin II reg-
ulates normal erythropoiesis and promotes early erythroid proliferation through unclear
downstream mechanisms [11–13]. Lui et al. (2002) suggested that cfDNA originates from
hematopoietic cells [14]. Therefore, a significant increase in cfDNA derived from red blood
progenitor cells may be caused by injury to red cell precursors through direct or indirect
processes [15,16].

cfDNA plays an essential role in immune system homeostasis. Cells are treated with
native plasma expressed genes, whose products maintain immune system homeostasis. The
cells treated with plasma after DNAse directly elevate production of mRNA for interleukin
8. These also upregulated complement compounds at the proteomic level [17]. The
molecular mechanism of cfDNA is similar to that of other damage associated molecular
patterns (DAMPs), which can stimulate proinflammatory activity though the TLR9 receptor.
The principal cytosolic DNA pathway seems to be stimulator of interferon genes (STING),
which activates TANK binding kinase 1 (TBK1) and IFN [18]. In addition, proinflammatory
cfDNA, either in the presence or absence of histones, has been shown to modulate several
procoagulant pathways by stimulating thrombosis or inhibiting fibrinolytic activity [19,20].

Recently, various types of cfDNA-based therapies have been tested; for instance,
recombinant human DNase (rhDNase) has been used in sepsis, but also in COVID-19 [21].
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Furthermore, nucleic acid-binding nanoparticles (NABN) and polymers (NABPs) have
been successfully applied in sepsis or influenza infection [22,23]. Of note, all experiments
were characterized with positive therapy effects.

NETosis is a unique form of immune cell death that is characterized by a release of
decondensed chromatin into the extracellular space to catch a pathogen. cfDNA and other
DAMP molecules, such as citrullinated histones H3 and myeloperoxidase, are major struc-
tural elements of NETs. Numerous reports have suggested a fundamental role of NETosis
in COVID-19 infection [24–27]. Hardly any cell-free DNA molecules can be detected in
the blood of healthy individuals. However, in the case of severe tissue or organ damage,
the blood might be full of released DNA long before the spread of infection. Nevertheless,
under normal physiological conditions, even if dying cells release their remnants, they
are efficiently removed. Structural compartments are cleared mainly by the liver, whereas
cfDNA is rapidly degraded by endonucleases. Thus, under physiological conditions,
cellular remnants or cfDNA are normally not inflammatory due to their fast degradation.

Due to persistent excretion or inefficient clearance, circulating cfDNA exhibit a nega-
tive effect on body hemostasis. In this manuscript, we raise the question of if it might be an
important element of COVID-19 pathogenesis. Currently, numerous reports present the ap-
plication of cell-free DNA as a marker in many age-related and pathological conditions, such
as cancer, diabetes, sepsis, aseptic inflammation, as well as in transplantations [28]. Mea-
surements of cell-free DNA in serum or plasma are minimally invasive and highly precise
diagnostic methods, providing real-time observation for a wide spectrum of pathologies,
including COVID-19. cfDNA detection as a diagnostic method can be applied relatively
easily, even in unpurified blood [3].

The aim of the present review is to verify how efficiently cfDNA increase could be
applied to COVID-19 risk assessment, and how it corresponds with epidemiological data.
Furthermore, we tried to explain the reasons for the increase in cfDNA during the course
of COVID-19 infection, starting from moderate infection, and ending with advanced sepsis
and multi-organ failure.

2. cfDNA and Risk of COVID-19
2.1. Age, Obesity and Diabetes

There is a long list of conditions that might increase the risk for severe illness from
COVID-19. According to the World Health Organization (WHO), COVID-19 mortality
is strongly related to patient age and obesity. The mortality risk rises significantly with
age, especially after the age of sixty. At the ages of 0–20 or 20–30, the mortality rate is
0.2%, whereas over 80 years of age, it can be as high as 13–14%. Moreover, patients with
obesity and diabetes are also at risk of severe COVID-19. Lighter et al. demonstrated that
patients with COVID-19 and a BMI between 30 and 34.9 were two times more likely to
be admitted to a critical care unit than patients without obesity [29]. Three meta-analyses
confirmed that obesity could increase the risk of infection and poor outcome in patients
with COVID-19 [30–32]. However, obesity status for cancer patients was not associated
with mortality [33]. Al Sabath et al. (2020) suggested that patients with both obesity
and diabetes must be categorized as a high-risk group [34]. This was confirmed by two
independent meta-analyses [35,36].

There is more and more evidence that cell-free DNA could serve as a marker of human
aging or obesity [37–40]. Increased levels of body fat may increase levels of proinflam-
matory cytokines, resulting in a state of chronic inflammation or oxidative stress, leading
to the processes of apoptosis and necrosis. MPO-DNA complexes, one of the markers
of NETosis, was found to be at a high level in a group of patients with obesity who un-
derwent sleeve gastrectomy compared to healthy controls. Interestingly, patients with
reduced MPO-DNA complexes after surgery presented a reduced body weight and BMI
and an improved glycemic status. On the other hand, a sub-group with persisting high
levels of MPO-DNA complexes after surgical treatment had a history of stroke and throm-
boembolism, and, therefore, may represent a high CV risk population. This may suggest
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that only weight loss may not modify neutrophil activation [41]. Moreover, evidence
indicates an association of NET formation in the pathophysiology and complication of
diabetes [42–44]. In addition, it is well known that, after forty years of age, the risk of
multiple disorders, including cardiovascular disease, hypertension, or diabetes, increases.
Moreover, age-associated accumulation of metabolites or cell debris might be linked with
chronic systemic inflammation.

2.2. Vitamin D Deficiency

Hypovitaminosis D, as well as diabetes, cardiovascular events, and associated co-
morbidities, are the main causes of severe clinical complications in COVID-19 patients.
However, the effect of Vitamin D on the severity and outcome of COVID-19 has not yet
been fully recognized. Many recent reports indicate a prevention or treatment effect of
vitamin D on the course of COVID-19 [45–47]. Vitamin D deficiency has been described as
a risk factor in the development of inflammatory processes, such as acute lung injury, acute
respiratory distress syndrome (ARDS), and infectious diseases, such as respiratory tract
infections. Bearing in mind the fact that vitamin D plays an important function in immunity,
its supplementation might enhance the immune system of COVID-19 patients and reduce
the severity of the disease in vitamin D-deficient individuals through modulation of the
innate and adaptive immune systems [48].

Interestingly, vitamin D treatment significantly reduces the level of cell-free DNA,
proinflammatory factors, and NETosis level [49,50]. The combined blood vitamin D status
and cell-free DNA level might provide useful information regarding the clinical course,
the extent of lung involvement, and outcome of patients with COVID-19 [51]. However, a
recent meta-analysis shows contradictory reports. Borsche et al. recommend raising serum
25(OH)D levels [52]; on the other hand, Chen et al. claimed that low vitamin D levels
do not aggravate COVID-19 risk or death, and that vitamin D supplementation does not
improve outcomes in hospitalized patients with COVID-19 [53].

2.3. Cancer

According to WHO reports, some cancer patients might be at increased risk of serious
illness from COVID-19 infection. This is associated with the general weakening of the
body and immune system caused by the disease and therapy. On the other hand, cancer
patients benefit from taking certain medications. Reports suggested that dexamethasone
and tocilizumab may be beneficial in patients who receive either oxygen or mechanical
ventilation due to COVID-19. Tocilizumab is an anti-IL-6 receptor antibody that inhibits the
binding of IL-6 to IL-6 receptors, blocking IL-6 signaling and reducing inflammation, which
limits the development of a hypercytokinemia, also called a “cytokine storm”. This is a
physiological reaction characterized by a sudden release of cytokines in large quantities,
which might cause multisystem organ failure and even death (more in Section 3.1) [54,55].
A higher incidence of COVID-19 with more severe symptoms has been noted in patients
with lung cancer [56–58]. Angiotensin-converting enzyme 2 (ACE2), being the only ex-
perimentally established SARS-CoV-2 receptor, could assist the virus in entering cells and
its expression level is considered to indicate predisposition to COVID-19. Elevated ACE2
expression was found in both lung tumors in non-small cell lung cancer (NSCLC), including
lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (LUSC), compared to
normal tissues. This could explain why SARS-CoV-2 infection more frequently affects the
respiratory system than other body parts [59–61]. However, elevated ACE2 expression was
statistically related to a shortened overall survival rate in LUAD and a significantly longer
disease-free survival in LUSC, which implies a very complex connection between ACE2
and lung cancer, and the role of ACE2 expression [61].

There are currently hundreds of reports that confirm an altered level of cell-free
DNA in different types of cancer [62]. The release of cfDNA into body fluids is a result
of cancer development by malignant tissues, and also by surrounding tissues suffering
from starvation, hypoxia, or other factors associated with cell death. In fact, the use
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of cfDNA is potentially a minimally-invasive alternative option to biopsy for diagnosis
and could also be a tool for prognosis and predictive evaluations. Moreover, cfDNA
helps to distinguish between malignant and benign neoplasia, as well as controls, tumor
type, grade, lymph node status, primary tumor, and metastases of many organs, glands,
and tissues, including breast [63–65], prostate [66], colon [67], liver [68], ovary [69,70],
endometrium [71], thyroid [72], and lung [73].

2.4. Autoimmune Disease

In the literature, subjects with autoimmune diseases have been found to be at higher
risk of death from infections, and at higher risk of nonfatal infections compared to the
general population [74]. An increased risk of hospitalization or serious infections have
been reported in subjects with rheumatoid arthritis (RA) and systemic lupus erythematosus
(SLE) [74].

Notably, it is not well known how coronavirus affects people with autoimmune
diseases, or those who take drugs that influence the immune system. However, in general,
drugs that treat autoimmune diseases, such as biologics and corticosteroids, may contribute
to a higher risk of severe viral infection [75]. As with cancer patients, RA patients taking
tocilizumab also benefit during COVID-19 infection [55].

It is worth pointing out that both SLE and RA are characterized by a significantly
increased level of cell-free DNA [76,77]. In SLE, cfDNA was increased by four times,
whereas in RA it was increased by three times [78]. The association of cfDNA levels with
serological parameters in both diseases, e.g., anti-dsDNA in SLE and RA, suggests that
cfDNA reflects common processes involved in both diseases, including inflammation and
cell death [76].

2.5. Recipients for Organ Transplantation

COVID-19 appears to put patients with cardiovascular diseases, as well as those
on immunosuppressive medication due to organ transplantation, at risk. A noninvasive
strategy, involving the use of measurements of donor-derived cell-free DNA (dd-cfDNA),
is employed in order to prevent acute rejection in heart and kidney transplant recipients.
Plasma dd-cfDNA has shown a high negative predictive value for acute rejection, but
it might also be equally effective in identification of other forms of cardiac injury, such
as vasculopathy. In the context of COVID-19, noninvasive monitoring of rejection is
advantageous as it allows to minimize a patient’s contact with the healthcare system. An
increase in dd-cfDNA in a heart transplant patient suggests subclinical allograft damage
caused by viral infection. Patients receiving immunosuppressive therapy may persistently
appear to be virus-positive. Thus, it is difficult to make recommendations regarding the
length of a patient’s self-quarantine and the timing required to make personal appointments
with a cardiologist to undergo tests [79].

In kidney transplantation procedures, the dd-cfDNA test for screening for rejection, as
well as clinical information, can enable to determine whether it is necessary for a transplant
recipient to visit a medical facility [80].

2.6. Respiratory System Diseases

The most common lung disease, other than cancer, is chronic obstructive pulmonary
disease (COPD), which increases the risk of severe illness associated with COVID-19 [81].
Main outcomes show that the prevalence of COPD in COVID-19 patients was low, but that
the risk of severity (63%) and mortality (60%) were high [82].

Smoking is most likely associated with progression and unfavorable outcomes of
COVID-19 [83]. Current smokers demonstrate increased gene expression of ACE2 than
former smokers and non-smokers [84,85]. There is further evidence that ACE2 expression
is closely related to nicotine exposure [86,87]. Hence, it can be concluded that smoking
affects ACE2 expression and consequently is a risk factor for COVID-19. Moreover, some
studies suggest that, upon admission to a hospital, circulating cfDNA level may serve as
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an effective tool for early diagnosis of smoke inhalation injury [88]. Patients demonstrated
elevated cfDNA levels and the levels correlated with hospitalization time. Cell-free DNA
appears to be a potentially valuable marker for severity and follow-up in patients with
smoke inhalation injuries. Cell-free DNA also correlated with CO intoxication levels and
daily cfDNA measurements reflected the recovery of hospitalized patients.

All outcomes related to admission, testing, screening, ventilation, recovery, and death
need to be evaluated in relation to smoking status and adjusted to comorbid conditions,
such as COPD. Leung et al. [89] demonstrated, in three separate cohorts with gene ex-
pression profiles from bronchial epithelial cells, that ACE-2 expression was significantly
elevated in COPD patients compared to control subjects. This evidence implies that COPD
patients display the machinery required for SARS-CoV-2 cellular entry. Plasma cfDNA
might offer a novel technique to identify COPD patients at increased risk of poor outcomes.
In COPD, cell-free DNA increases by more than four times, thus plasma cfDNA might offer
a novel technique to identify COPD patients at increased risk of poor outcomes [90].

3. cfDNA and COVID-19 Complications

The latest reports show that cfDNA levels positively correlated with the severity of
COVID-19 disease and confirm that the cfDNA profile noted upon admission allowed to
identify patients who later required intensive care or died during hospitalization (Figure 2).
The increase shown in this figure is an effect of the cumulative release of cfDNA from
different sources, depending on the actual location of the infection (lungs, blood immune
cells). The suggested scale of cfDNA growth is presented in Figure 3. Andargie et al.
demonstrated that the kidney, heart, lung, hematopoietic cells, vascular endothelium,
hepatocytes and adipocytes are the main sources of cfDNA in COVID-19 [91].

Figure 2. COVID-19 management based on cell-free DNA analysis [92,93]. Schematic representation
of how to deal with a patient, based on the level of cfDNA, reflecting the current condition and the
stage of disease in the COVID-19 patient. Filled spots represent the potential cfDNA releasing organ
(details shown in Figure 3).
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3.1. Blood and Immune System

There is more and more evidence showing that accelerated progression of the COVID-19
disease is linked to excessive inflammation, called a “cytokine storm”, which causes major
systemic perturbations. This condition manifests as high fever, swelling, extreme tiredness,
and nausea. In some cases, the immune reaction can even result in death. A cytokine storm is
an early phase of sepsis, described by excessive inflammation [94]. Apart from proinflamma-
tory cytokines, COVID-19 seems to exhibit a dysregulated immune response, characterized by
sustained reduction of the peripheral lymphocyte counts, known as lymphopenia. Moreover,
the degree of lymphopenia has been shown to correlate with the severity of COVID-19 [61].
Therefore, viral sepsis is a clinical manifestation of severe or critically ill COVID-19 patients.
Understanding the mechanism of viral sepsis in COVID-19 will provide these patients with
better clinical care [95].

cfDNA is a well-established stress marker in many pathologies, including sepsis. The
inflammatory and oxidative stress caused by sepsis may increase cell apoptosis/necrosis,
and, as a consequence, increase many markers, as well as cell-free DNA levels. Patients
with sepsis have twenty-two times higher levels of cfDNA compared to non-septic patients.
Moreover, it was found that the level of cell-free DNA allows to categorize sepsis patients
admitted to emergency rooms into survivors and non-survivors [96,97].

Numerous reports suggest a fundamental role of NETosis in COVID-19 infection [24–27].
Virus-induced NETs can circulate in the blood in an uncontrolled way, leading to an ex-
treme systemic response by the body, followed by the production of immune complexes and
chemokines, finally increasing inflammation [26].

cfDNA, apart from citrullinated histones H3 and myeloperoxidase, is a major structural
element of NETs. Huckriede et al. observed increased H3 and cfDNA levels in critically ill
COVID-19 patients. They indicated the severity of a cellular injury. Moreover, the increase
in neutrophil counts shows a significant role of neutrophil response and the process of
NETosis in the disease [98,99].

The pathological effect of cfDNA (besides being proinflammatory) involves its ability
to trigger blood coagulation, as well as to inhibit clot lysis, which may lead to COVID-19
pathogenesis. This is done primarily through provoking macrovascular and microvascu-
lar thrombosis [100–103]. Damage to endothelial cells may contribute to occurrence of
COVID-19 coagulopathy and the prothrombic state [104].

In COVID-19 infection, pulmonary thrombosis appears to be a common consequence
of pneumonia and some clinicians recommend implementing anticoagulation therapy
(rather than prophylactic dosing) as routine management of patients with COVID-19,
believing it will be beneficial in preventing microvascular thrombosis [105].

cfDNA and other DAMPs molecules may have harmful effects on a host. An elevated
level of cfDNA appears to have a prognostic value in predicting the poor outcome in patho-
logical conditions, characterized by excessive activation of coagulation and inflammation.
Pharmacological strategies that inhibit NETosis or those which neutralize toxic effects of
cfDNA are a focus of attention for clinicians. It is possible that a combination of therapies
that reduce coagulation and inflammation will appear to be most beneficial [103].

3.2. Multiorgan Failure

The presence of coronavirus has been confirmed in the heart, liver, and blood of many
patients [106,107]. It is still unknown if COVID-19 directly targets these organs or if they
are damaged by extensive inflammation. A significant severe viral renal infection in some
patients could explain the increased risk of acute kidney injury in patients with COVID-19.
Cardiovascular complications occur frequently and are associated with poor prognosis.
Notably, of 100 COVID-19 patients who recovered from the disease, 78% had confirmed
cardiac problems and 60% had ongoing myocardial inflammation [108]. In addition, SARS-
CoV-2 was self-diagnosed in over 60% of patients [109]. cfDNA was higher in diabetic
patients with vascular complications in comparison to controls [110]. In addition, cfDNA
may also be used to assess allograft rejection and injury [111]. The mean concentration
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of cfDNA in patients with acute myocardial injury was 5-fold higher during the onset of
disease compared with healthy volunteers [112]. In ischemic heart disease, cfDNA increases
up to 50-fold compared with healthy controls [113,114].

General guidance published by the WHO does not provide information regarding
COVID-19 risks in patients with previously diagnosed thyroid issues. Moreover, there
is no information on whether patients with COVID-19 (symptomatic or asymptomatic),
who have not previously had thyroid problems, develop an endocrine thyroid dysfunction
after COVID-19 infection. Recent evidence shows that patients affected by COVID-19 and
demonstrating more severe symptoms have lower serum levels of fT3 and TSH compared
with controls. This may reflect direct damage to the thyroid or even pituitary gland by the
virus [115,116]. Moreover, there is a great deal of evidence of changes in cfDNA in patients
with a thyroid dysfunction, including thyroiditis, both benign and malignant [72,117].

Hepatic involvement in COVID-19 could be related to the direct cytopathic effect of
the virus, an uncontrolled immune reaction, sepsis, or drug-induced liver injury. In the
current pandemic, hepatic dysfunction has been observed in 14–53% of COVID-19 patients,
particularly in those with a severe course of disease. Cases of acute liver injury have been
reported and contribute to a higher mortality [118]. Thus, cfDNA seems to be an efficient
marker that can be applied, not only to hepatic problems, but also to all gastrointestinal
disorders [119].

Many classical biochemical markers clearly reflect organ damage. However, none of
them can be efficiently applied to a number of organs simultaneously.

As shown in Figure 3, cell-free DNA increase has been observed in almost all possible
COVID-19 complications. The increase ranges from 2-fold under psychosocial stress
conditions [120], 4-fold in chronic kidney disease [121] or lung disease, and up to 5–6-fold
in cardiovascular disease (even more in sepsis) [122–124].

Figure 3. Scheme showing the most common complications of COVID-19 in the context of cell-free
DNA fold changes [4,24,106,107,120–125].

4. Conclusions

cfDNA secretion in the course of COVID-19 infection might be associated with many
factors. Firstly, activated immune cells release significant amounts of circulating molecules,
including cfDNA. Secondly, infection with SARS-CoV-2 has been also shown to cause lung
complications, such as pneumonia or acute respiratory distress syndrome, in consequence
leading to an abnormally low level of oxygen in the blood. This leads to accumulation
of characteristic cfDNA indicators, such as free radicals, changes in pH, lactic acid, and
electrolytes. These processes, in consequence, cause cellular damage and death, leading to a
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release of cellular compartments, including nucleic acids. Lastly, wide distribution of ACE2
receptors allows a virus to experience multiorgan spread and extensive disease distribution.
However, a direct relationship between COVID-19 and cfDNA cannot be proven. However,
cfDNA appears to be an effective marker of COVID-19 complications, and also serves as
a marker of certain underlying health conditions and risk factors of severe illness during
COVID-19 infection.

Effective monitoring of factors associated with COVID-19 mortality can help to recog-
nize patients who are at higher risk of a poor prognosis. Good markers can provide an early
warning to initiate and facilitate appropriate interventions [125,126]. To sum up, cell-free
DNA is a marker with a wide spectrum of applications, successfully applied for many
different diseases. Moreover, it is also characterized by a much higher sensitivity than
standard biochemical markers [4,127]. To this end, cfDNA tests can be greatly improved by
adding a combination with several standard diagnostic biochemical biomarkers to them.
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