
����������
�������

Citation: Grabowski, F.; Kochańczyk,
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Abstract: Omicron, the novel highly mutated SARS-CoV-2 Variant of Concern (VOC, Pango lineage
B.1.1.529) was first collected in early November 2021 in South Africa. By the end of November 2021,
it had spread and approached fixation in South Africa, and had been detected on all continents. We
analyzed the exponential growth of Omicron over four-week periods in the two most populated
of South Africa’s provinces, Gauteng and KwaZulu-Natal, arriving at the doubling time estimates
of, respectively, 3.3 days (95% CI: 3.2–3.4 days) and 2.7 days (95% CI: 2.3–3.3 days). Similar or
even shorter doubling times were observed in other locations: Australia (3.0 days), New York State
(2.5 days), UK (2.4 days), and Denmark (2.0 days). Log–linear regression suggests that the spread
began in Gauteng around 11 October 2021; however, due to presumable stochasticity in the initial
spread, this estimate can be inaccurate. Phylogenetics-based analysis indicates that the Omicron
strain started to diverge between 6 October and 29 October 2021. We estimated that the weekly
growth of the ratio of Omicron to Delta is in the range of 7.2–10.2, considerably higher than the
growth of the ratio of Delta to Alpha (estimated to be in in the range of 2.5–4.2), and Alpha to
pre-existing strains (estimated to be in the range of 1.8–2.7). High relative growth does not necessarily
imply higher Omicron infectivity. A two-strain SEIR model suggests that the growth advantage of
Omicron may stem from immune evasion, which permits this VOC to infect both recovered and fully
vaccinated individuals. As we demonstrated within the model, immune evasion is more concerning
than increased transmissibility, because it can facilitate larger epidemic outbreaks.

Keywords: COVID-19 pandemic; SARS-CoV-2; Omicron variant; genome sequencing; mutation

1. Introduction

Omicron, the novel SARS-CoV-2 Variant of Concern (VOC, Pango lineage B.1.1.529,
Nextstrain clade identifier 21K) was first collected in South Africa on 2 November 2021,
(GISAID [1] sequence accession ID: EPI_ISL_8182767). Compared to the original SARS-CoV-2
virus, Omicron carries 30 amino acid non-synonymous substitutions, three small deletions,
and one small insertion in the spike protein [2]. Altogether, Omicron has 51 amino-acid
level mutations, and its closest known sibling has 15 mutations (GISAID sequence ac-
cession ID: EPI_ISL_622806) with only nine common mutations, implying a distance of
42 mutations from the last common ancestor (based on the phylogenetic tree generated by
Nextstrain [3]). The collection date of the sibling genome, 13 September 2020, suggests
more than a year of evolution in an isolated niche, possibly in an immunocompromised
host, but more data is necessary to rule out or confirm the existence of hidden branches
(see [4] for discussion). The lineage started spreading rapidly in South Africa’s Gauteng
province in November 2021, approaching fixation in the whole of South Africa by the end of
that month and causing abrupt epidemic outbreaks across South Africa, then Europe, and
finally other continents. In all these locations, Omicron outcompeted Delta VOC (lineage
B.1.617.2), which in October 2021 accounted for more than 99% of genomes sequenced in
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Europe, North America, and Oceania, more than 90% in Asia and South America, and
nearly 90% in Africa.

The rapid spread of Omicron both in South Africa, having a widespread infection-
induced seroprevalence [5], and in Western European countries, where a high proportion
of the population is vaccinated [6], suggests immune evasion that may be linked to the
high number of mutations in viral spike glycoprotein, the major target of neutralizing
antibodies [7]. This is confirmed by a growing number of (i) in vitro studies showing
Omicron resistance to humoral immunity provided by vaccine- or pre-existing variant
infection-induced antibodies, as well as epidemiological studies indicating (ii) significantly
reduced vaccine effectiveness against infection with Omicron and (iii) higher chance of
reinfections with Omicron compared to Delta.

(i) For two mRNA-based vaccines, BNT162b2 (Pfizer) and mRNA-1273 (Moderna),
Liu et al. demonstrated a >21-fold and >8.6-fold decrease (Omicron versus D614G) in
ID50 (infectious dose), respectively. For two vector vaccines, Ad26.COV2.S (Johnson
& Johnson) and ChAdOx1 (AstraZeneca), all samples obtained from patients without
a previous history of SARS-CoV-2 infection were below the level of detection against
Omicron [8]. After three homologous mRNA vaccinations, the average ID50 drop
was 6.5-fold [8]. Planas et al. showed that sera from either BNT162b2 or ChAdOx1
vaccine recipients (sampled 5 months after complete vaccination) barely inhibited
Omicron. Sera from COVID-19 convalescent patients (collected 6 or 12 months post
symptoms) displayed low-to-absent neutralizing activity against Omicron, whereas
administration of a booster dose of BNT162b2 as well as vaccination of previously
infected individuals generated an anti-Omicron neutralizing response, but with titers
5–31-fold lower than against Delta [9]. Omicron VOC was found to be 5.3–7.4-fold less
sensitive than Beta VOC when assayed with serum samples obtained from individuals
inoculated with 2 mRNA-1273 doses [10]. A meta-analysis of 24 studies showed a de-
crease in the neutralization titer (not significantly different between different vaccines)
compared to the ancestral virus for the previous four VOCs: Alpha (1.6-fold), Gamma
(3.5-fold), Delta (3.9-fold), and Beta (8.8-fold) [11]. This loss of neutralization activity is
not as substantial as in the case of Omicron [8]. These findings are in line with another
study that shows barely detectable serum neutralizing activity against Omicron after
two mRNA vaccination doses (and still much lower neutralizing activity after the
“booster” dose in relation to wild-type virus as well as the Delta VOC) [12].

(ii) Andrews et al. showed a decrease in vaccine effectiveness against symptomatic infec-
tion by Omicron with respect to Delta [13]. Half a year after two-dose ChAdOx1 vacci-
nation, the effectiveness was 42% against Delta, with no effect observed against Omi-
cron starting 15 weeks after the second ChAdOx1 vaccination. In the case of BNT162b2,
the protection 15 weeks after vaccination was 63% against Delta and 34–37% against
Omicron. The BNT162b2 booster increases protection to above 93% against Delta
and 75% against Omicron [13]. A report from the UK Health Security Agency con-
firms these results and additionally indicates that the mRNA “booster” effect against
Omicron, but not against Delta, wanes rapidly in time to about 40% 10 weeks post
“booster” dose [14]. These findings are in line with a report from the MRC Cen-
tre for Global Infectious Disease Analysis indicating a significantly increased risk
of an Omicron case compared to Delta for those with vaccine status AZ 2+weeks
post Dose 2 (PD2), Pfizer 2+w PD2, AZ 2+w post Dose 3 (PD3) and PF 2+w PD3
vaccine states with hazard ratios of 1.86 (95% CI: 1.67–2.08), 2.68 (95% CI: 2.54–2.83),
4.32 (95% CI: 3.84–4.85), and 4.07 (95% CI: 3.66–4.51), respectively [15].

(iii) The same report indicates that Omicron is associated with a 5.41 (95% CI: 4.87–6.00)-fold
higher risk of reinfection compared with Delta [15].

Although all the evidence is based on a limited number of cases and may be influenced
by population-level biases, one can expect that the hazard ratio of Omicron versus Delta in-
fection is in the range 2–5 and depends principally on specific vaccines, the proportion of the
population vaccinated by the “booster” dose, and resistance after recovery from COVID-19.
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In this work, we estimated the Omicron variant doubling time in South Africa based
on the daily number of new COVID-19 cases in the two most populated South African
provinces, Gauteng and KwaZulu-Natal [16]. Further, we repeated this estimation for
Australia, the UK, Denmark, and New York State, four locations that differ with respect to
their COVID-19 epidemic histories and proportions of COVID-19 vaccine manufacturers.
In all these locations, new COVID-19 cases are expected to be relatively reliably reported
and to have their viral genomes screened by sequencing. Based on data for the three
latter locations, we showed that the weekly growth of the ratio of Omicron to Delta cases
significantly exceeds previous weekly growths of the ratio of Delta to Alpha cases, and the
ratio of Alpha cases to cases caused by pre-existing strains. To rule out hidden spread of
the Omicron variant, which could potentially influence the above estimates, we used an
Omicron phylogenetic tree from Nextrain to estimate the strain divergence date. Finally, we
employed a two-strain mathematical model to demonstrate that observed rapid outbreaks
of Omicron strain can be explained solely by immune evasion, which expands the pool of
individuals susceptible to infection.

2. Materials and Methods
2.1. Genomic Sequence-Based Analysis

All data used in this study were retrieved as of 9 January 2022. The GISAID [1] data
include genomes with submission dates earlier than 6 January 2022.

In Figure 1 the weekly cases of Omicron, Delta, and pre-existing strains were esti-
mated based on GISAID data and the cumulative number of COVID-19 cases in Gaut-
eng and KwaZulu-Natal (DSFSI at the University of Pretoria, https://github.com/dsfsi/
covid19za/tree/master/data, accessed on 9 January 2022). For Gauteng this dataset was
amended by changing the number of cases from 8099 to 605 for 23 November 2021 us-
ing information from the South African National Institute for Communicable Diseases
(NICD, https://www.nicd.ac.za/latest-confirmed-cases-of-covid-19-in-south-africa-23
-november-2021, accessed on 9 January 2022). According to NICD, the difference results
from a retrospective addition of 7494 antigen test results. The dataset used for Figure 1A,C
is provided as Supplementary Table S1.

Mobility in Gauteng and KwaZulu-Natal (Figure 1B) was assessed based on the
COVID-19 Community Mobility Reports from Google (https://www.google.com/covid19/
mobility, accessed on 9 January 2022). Weekly averages were calculated based on workdays.

The Omicron strain divergence date and mutation accumulation rate (Figure 1D) were
determined by Poisson regression, assuming that the mean number of mutations grows lin-
early with time. The Omicron phylogenetic tree (with last update on 3 January 2022) was re-
trieved from Nextstrain [4]; sample collection dates of genome sequences selected by Nextstrain
were retrieved from GISAID. The resulting dataset is provided as Supplementary Table S2.

Two lists of GISAID IDs and corresponding acknowledgments for all genomes col-
lected from 19 April 2021 until 2 January 2022 in Gauteng and KwaZulu-Natal are provided
as Supplementary Tables S3 and S4.

https://github.com/dsfsi/covid19za/tree/master/data
https://github.com/dsfsi/covid19za/tree/master/data
https://www.nicd.ac.za/latest-confirmed-cases-of-covid-19-in-south-africa-23-november-2021
https://www.nicd.ac.za/latest-confirmed-cases-of-covid-19-in-south-africa-23-november-2021
https://www.google.com/covid19/mobility
https://www.google.com/covid19/mobility


Viruses 2022, 14, 294 4 of 13
Viruses 2022, 14, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 1. Growth and divergence of the Omicron strain. (A) Weekly aggregated cases of Omicron, 
Delta and other variants in two South African provinces, Gauteng and KwaZulu-Natal. (B) Weekly 
averaged workday mobility in Gauteng (filled circles) and KwaZulu-Natal (filled triangles) in work-
places (blue) and retail and recreation centers (pink). (C) Exponential growth of the Omicron strain 
in weeks 45–48 in 2021 (8 November–5 December) in Gauteng and in weeks 46–49 in KwaZulu-
Natal. (D) Accumulation of mutations by the Omicron strain worldwide based on the Nextstrain 
phylogenetic tree. The green line shows the mutation accumulation trend determined by the linear 
regression assuming Poisson distribution of the number of mutations at a given time. The 95% cred-
ible interval of time is marked in light green. The dataset for panels A and B is provided as Supple-
mentary Table S1; the phylogenetic tree (with dates) is provided as Supplementary Table S2. 
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Table S5. 

Figure 1. Growth and divergence of the Omicron strain. (A) Weekly aggregated cases of Omicron,
Delta and other variants in two South African provinces, Gauteng and KwaZulu-Natal. (B) Weekly
averaged workday mobility in Gauteng (filled circles) and KwaZulu-Natal (filled triangles) in work-
places (blue) and retail and recreation centers (pink). (C) Exponential growth of the Omicron strain in
weeks 45–48 in 2021 (8 November–5 December) in Gauteng and in weeks 46–49 in KwaZulu-Natal.
(D) Accumulation of mutations by the Omicron strain worldwide based on the Nextstrain phyloge-
netic tree. The green line shows the mutation accumulation trend determined by the linear regression
assuming Poisson distribution of the number of mutations at a given time. The 95% credible interval
of time is marked in light green. The dataset for panels (A,B) is provided as Supplementary Table S1;
the phylogenetic tree (with dates) is provided as Supplementary Table S2.

In Figures 2 and 3 the weekly cases of Omicron, Delta, and pre-existing strains were
estimated based on sequence data from GISAID and case data aggregated by Johns Hopkins
University [17]. The datasets used for Figures 2 and 3 are provided as Supplementary Table S5.

The Omicron doubling time (Figures 1C, 2B,E and 3B,E) was estimated by log–linear
regression of the (estimated) number of Omicron cases in the exponential phase of its
growth. Daily new cases were aggregated by week. An appropriate four-week period was
used in each location except Australia, for which a six-week period was used.
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Figure 2. Succession of SARS-CoV-2 strains in the UK and in Denmark. (A,D) Estimated number
of weekly cases infected with a particular strain over the weeks of 2020 and 2021. (B,E) Estimated
number of weekly Omicron cases and the doubling time estimate based on log–linear regression in
four whole-week periods (filled circles). (C,F) Ratios of weekly cases of an emergent strain to the
previously dominant strain, and the estimate of ratios’ growth rates based on log–linear regression in
four whole-week periods (subpanels correspond to shaded regions in respective panels (A,D)). A
dataset for this figure is provided as Supplementary Table S5.
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Figure 3. Succession of SARS-CoV-2 strains in New York State and in Australia. (A,D) Estimated num-
ber of weekly cases infected with a particular strain over the weeks of 2020 and 2021. (B,E) Estimated
number of weekly Omicron cases and the doubling time estimate based on log–linear regression in
four (Panel (B)) and six (Panel (E)) whole-week periods (filled circles). (C,F) Ratios of weekly cases of
an emergent strain to the previously dominant strain, and the estimate of ratios’ growth rates based
on log–linear regression in four whole-week periods (subpanels correspond to shaded regions in
respective panels (A,D)). A dataset for this figure is provided as Supplementary Table S5.
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The weekly (multiplicative) growth rates of the ratios of an emerging to a pre-existing
strain (Figures 2C,F and 3C,F) were also estimated by log–linear regression. To enable
comparison between emerging strains, we select four-week periods of the fastest growth, so
that in at least two of those weeks the emerging strain has lower counts than the pre-existing
one. This additional criterion ensures that the analyzed period captures the emergence
of the new strain. We use the reporting convention in which the weekly (multiplicative)
growth rate of two implies doubling of the strain-to-strain ratio every week.

2.2. Mathematical Modeling

The mathematical model has been formulated as an extended susceptible–exposed–
infectious–recovered (SEIR) model amended with a vaccinated (V) compartment. We
assumed that the latent period was the same as the incubation period and was Erlang-
distributed with the shape parameter m = 6 (which in the model structure is reflected
by the inclusion of six exposed subcompartments) and the mean of 1/σ = 3 days. The
average period of infectiousness is 1/γ = 3 days (such a short period reflects the assumption
that the individuals with confirmed infection are quickly isolated and then cannot infect
susceptible individuals). The recovered individuals become susceptible at the rate of
$ = 1/year. Susceptible individuals are vaccinated at the rate of ν = 2/year, and their
vaccine-induced immunity wanes at the rate $ (same as the rate of transition from a
recovered to a susceptible compartment).

We consider two model variants—see Figure 4A,B. In Model A, there is a single
pool of individuals susceptible to both Delta and Omicron, whereas in Model B there
are two additional compartments of individuals that are susceptible to either only Delta
or only Omicron, and that are fed with the post-Omicron recovered or the post-Delta
recovered, respectively, at the rate of π = 1.5/year. From these two additional susceptible
compartments there are transitions to the compartment of individuals susceptible to both
Delta and Omicron (at the rate $). In this way we account for only partial overlap in
reciprocal post-infection protection. In Model A, transmissibility of Omicron is 4-fold
higher than that of Delta, whereas in Model B the transmissibility of Omicron and Delta is
the same but, due to the specific choice of transition parameters, the aggregated pool of
individuals susceptible to Omicron is four-fold higher than that of individuals susceptible
to Delta in the steady state before the appearance of Omicron. Model B is symmetrical with
respect to both strains; however, by including an additional transition from the vaccinated
compartment to the compartment of individuals susceptible only to Omicron (at the rate
π), we account for faster waning of post-vaccination immunity to Omicron.

Model dynamics are governed by a system of ordinary differential equations (18 ODEs
in Model A, 20 ODEs in Model B). The ODEs may be unambiguously derived, assuming
mass-action kinetics, based on model schemes in Figure 4A,B, and parametrized with
kinetic rates given in Figure 4C. On the first day shown in Figure 4D–G, when the system
is in equilibrium with Delta, just one individual (in a population of 106 individuals) is
exposed to Omicron. As emphasized further in Results, the initial exponential phase of the
Omicron outbreak is nearly identical within both models.



Viruses 2022, 14, 294 8 of 13Viruses 2022, 14, x FOR PEER REVIEW 8 of 13 
 

 

 

Figure 4. Two COVID-19 two-strain SEIR models with vaccination. (A) Scheme of Model A, in which
the transmissibility of Omicron (O) is four-fold higher than that of Delta (∆) and both strains have a



Viruses 2022, 14, 294 9 of 13

common pool of susceptible individuals (10% of simulated population in the pre-Omicron steady
state). (B) Scheme of Model B, in which the transmissibility of Omicron (O) and Delta (∆) is the
same but the aggregated pool of individuals susceptible to Omicron is four-fold higher than to Delta
(40% vs. 10% of simulated population in the pre-Omicron steady state). Essential modifications
with respect to Model A are shown in blue. (C) Values of rate parameters of both models. Model
variant-specific parameters are blue. (D) Initial dynamics of Omicron dynamics in both models shows
similar growth and identical doubling time in the 4-week time window in the initial exponential
phase of the epidemic outbreak, but not in later time points. (E) Ratio of Omicron to Delta new daily
cases and its growth rate in both models. (F) Dynamics of the outbreak of Omicron infections in
Model A (G).

3. Results
3.1. Divergence and Growth of Omicron Strain in South Africa

The Delta VOC became the dominant variant in Gauteng and KwaZulu-Natal in
June 2021, causing an epidemic wave that peaked at the beginning of July 2021 in Gauteng
and the end of August 2021 in KwaZulu-Natal, Figure 1A. The number of Omicron (or
other variant) cases were estimated by multiplying the weekly number of total COVID-19
confirmed cases by the proportion of Omicron (or other variant) genomes among all
collected genomes in a given week (see Supplementary Table S1). Between July and
October 2021 in Gauteng and in September and October in KwaZulu-Natal, the weekly
number of COVID-19 cases was decreasing despite no significant reduction in population
mobility at workplaces and retail and recreation centers (Figure 1B). The emergence of the
Omicron variant has caused recent rapid epidemic outbreaks in both provinces considered
(Figure 1A). In Figure 1C we show the exponential growth of Omicron variant cases
in weeks 45–48 in 2021 (8 November–5 December) in Gauteng and in weeks 46–49 in
Kwazulu-Natal. This method, in contrast to analyzing only the proportion of new strain
genomes [18], enabled us to follow Omicron growth after its fixation in weeks 47–48 in 2021.
The Omicron doubling time, estimated based on the log–linear regression of the number
of weekly cases in the four-week periods, is equal to 3.3 days (95% CI: 3.2–3.4 days) in
Gauteng, and 2.7 days (95% CI: 2.7–3.3 days) in KwaZulu-Natal.

The log–linear regression suggests that the exponential growth of Omicron started in
Gauteng around October 11, 2021; however, the initial epidemic growth is highly stochastic
and may be heavily disturbed by superspreaders in the cascade of infections [19]. The
profile of mutation accumulation in Figure 1D indicates that the Omicron strain started
diverging between 6 October and 29 October 2021 (95% CrI), at an average mutation
accumulation rate equal 0.33/week (95% CrI: 0.26–0.40 per week). This is lower than
the average (global) SARS-CoV-2 mutation accumulation rate equal to approximately
0.45/week (based on the Nextstrain [3] estimate as of 15 January 2021 [20]). An assumption
of a higher mutation rate would yield a later divergence date.

3.2. Succession of SARS-CoV-2 Variants of Concern

In Figure 2 we analyze dynamics of Omicron-driven COVID-19 outbreaks in the
UK and Denmark, and compare them with outbreaks caused therein by two previous
VOCs, Alpha and Delta. In both these countries, the Alpha variant outcompeted pre-
existing strains, approaching fixation, and then it was outcompeted by the Delta variant,
which also approached fixation; in December 2021, Omicron became the dominant strain
(Figure 2A,D). We estimate the doubling time of Omicron to be 2.4 and 2.0 days in the
UK and in Denmark, respectively, based on its nearly exponential growth in the 4-week
period from 22 November to 19 December 2021, Figure 2B,E. The short doubling time of
Omicron is on par with its rapid gain of dominance over the Delta VOC. In the 4-week
period considered, the Omicron:Delta ratio increases exponentially with a weekly growth
rate of 8.1 in the UK and 10.2 in Denmark. This is faster than the earlier growth of the
Delta:Alpha ratio, estimated to be 3.2 in the UK and 4.2 in Denmark, and much faster than
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the growth of Alpha with respect to pre-existing strains, which was 2.7 in the UK and 2.0 in
Denmark. All data used in Figure 2 are provided in Supplementary Table S5.

In Figure 3 we analogously analyze Omicron-driven outbreaks in New York State and
Australia, and again compare them with outbreaks caused by two previous VOCs, Alpha
and Delta. In New York State, the Alpha variant arrived during the end phase of the second
wave, and consequently caused a noticeable but relatively modest rise in cases. It was then
outcompeted by Delta, which, causing the third epidemic wave, quickly reached fixation.
In Australia, due to stringent lockdowns and strict border rules, there were relatively few
COVID-19 cases before the Delta variant. In both regions, Omicron became the dominant
variant within one month after its first detection (Figure 2A,D). We estimate the doubling
time of Omicron to be 2.5 and 3.0 days in New York State and Australia, respectively
(Figure 2B,E). In the 4-week period considered, the Omicron/Delta ratio was found to
grow exponentially with a weekly rate 7.7 in New York State and 7.2 in Australia. This is
significantly higher than the Delta/Alpha and Alpha/pre-existing strains growth rates in
the New York State, estimated to be 2.5 and 1.8, respectively. All data used in Figure 3 are
provided in Supplementary Table S5.

3.3. Two-Strain Mathematical Model

To corroborate whether the observed rapid surge of Omicron cases that displace Delta
may be attributed to immune evasion, as widely suggested by the references cited in
the Introduction, we analyzed two variants of a mathematical model of the COVID-19
pandemic (Figure 4). In Model A (Figure 4A), transmissibility of Omicron is four-fold
higher than that of Delta and both strains share a common pool of susceptible individuals.
In Model B (Figure 4B), transmissibility of Omicron and Delta is identical but, in the steady
state before the appearance of Omicron, the aggregated pool of individuals susceptible
to Omicron is four-fold higher than that of individuals susceptible to Delta. The models
were structured and parametrized (Figure 4C) such that the doubling time of Omicron
cases in both models is equal to 2.5 days (Figure 4D), which lies roughly in the middle of
the range of doubling times observed in six geographical locations considered previously.
Moreover, the ratio of new Omicron to new Delta cases is accordant in both models and
equal to 6.9 days (Figure 4E), only slightly lower than in the four locations for which this
ratio was determined.

Despite having non-distinguishable initial exponential phases, in later time points the
two models exhibit divergent trajectories that differ markedly in terms of the peak of the
number of daily new Omicron cases. According to the model, with increased Omicron
transmissibility (Model A), the maximum number of new daily cases is below 1% of the
population (Figure 4F). In the model with the increased pool of individuals susceptible to
Omicron (Model B), the initial exponential growth phase lasts longer, which contributes
to delaying and, most importantly, elevating this maximum to above 3% of population
(Figure 4G).

4. Discussion

We have demonstrated the exponential growth of the Omicron strain in the South
African provinces of Gauteng and KwaZulu-Natal in the four-weeks period starting,
respectively, on November 8 and 15, 2021, with the doubling times equal to 3.3 days
(95% CI: 3.2–3.4 days) and 2.7 days (95% CI: 2.3–3.3 days). Based on the mutation accumu-
lation profile, we found that the Omicron strain started diverging between 6 October and
29 October 2021, which agrees with the date suggested by the log–linear regression of the
number of weekly cases in the first affected province of Gauteng, 11 October 2021. Notably,
an unnoticed spread before October 2021 would imply that the strain growth rate is lower
than that estimated based on the exponential growth rate in the analyzed four-week period
in Gauteng. Before the Omicron outbreaks, the Delta variant was the dominant strain
in Gauteng and KwaZulu-Natal, and in September and October the COVID-19 epidemic
was receding without significant mobility reduction, suggesting that the population of
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these provinces might have reached a transient herd immunity to the Delta variant. The
population-level immunity has been apparently overcome by the Omicron variant.

The potential of Omicron to create rapid outbreaks was confirmed by analyzing its
spread in the UK, Denmark, New York State, and Australia. In these locations the doubling
time of Omicron was in the range of 2.0–3.0 days. Additionally, based on the relatively high
number of sequenced genomes sampled in these locations, we estimated the weekly growth
of the ratio of Omicron to Delta to be in the range of 7.2–10.2, considerably higher than
the growth of the ratio of Delta to Alpha (estimated to be in in the range of 2.5–4.2), and
Alpha to pre-existing strains (estimated to be in the range of 1.8–2.7). These findings are in
line with the observed ability of Omicron to infect vaccinated and recovered individuals,
which endows it with a natural advantage over Delta [15]. Notably, the Alpha outbreak
took place in winter 2020/2021, when the proportion of vaccinated individuals was very
low. In turn, the reduction of vaccine effectiveness for Delta in reference to Alpha [11,21]
was substantially lower than in the case of Omicron in relation to Delta [15]. This suggests
that, in contrast to Omicron, the Alpha and Delta variants become transiently dominant
mainly because of their higher infectivity and not due to significant immune evasion.

In the six locations considered, the Omicron doubling time was found to be in the
range of 2.0–3.3 days, which is comparable to the doubling times during the first COVID-19
pandemic outbreaks in spring 2020. For that time, doubling time was estimated to lie
between 1.86 and 2.88 days for China, Italy, France, Germany, Spain, UK, Switzerland, and
New York State [19]. Here, the weekly growth of the ratio of Omicron to Delta was found in
the range of 7.2–10.2, considerably higher than the previous ratios of Alpha and Delta at the
times when they were gaining dominance. These findings strongly suggest that Omicron
will outcompete Delta and become (transiently) the dominant strain.

Omicron accumulated more than 30 mutations in its spike protein, with 15 substitu-
tions in the receptor binding domain (RBD, residues 319–541) alone [2]. Many of these
RBD mutations are thought to decrease potency of neutralizing antibodies [22], which is
in agreement with growing evidence that Omicron has a several-fold increased ability to
infect both vaccinated and recovered individuals, as discussed in the Introduction.

Our mathematical model-based analysis of COVID-19 dynamics clearly demonstrates
two points relevant to the initial phase of the outbreak. First, if only rough epidemiological
data are analyzed, in the first weeks of the outbreak immune evasion may be indistinguish-
able from increased transmissibility. Second, being able to distinguish between the two
scenarios based on tangential evidence supporting immune evasion is of crucial importance
for predicting the impact of a new strain on longer term epidemic dynamics. Immune
evasion is more concerning than increased transmissibility, because dodging protection
provided by vaccination or infection with prior variant(s) renders a significant share of
the population susceptible to an emerging variant, promoting larger outbreaks. These
outbreaks may be hard to curb by lockdowns due to increasing lockdown fatigue, but in
the case of Omicron plausibly will not result in proportionally high death toll, as suggested
by early estimates of Omicron-associated mortality [5,23].
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containing phylogenetic tree with dates; Supplementary Table S3: list of GISAID IDs and acknowledg-
ments for genomes collected in Gauteng since 19 April 2021 till 2 January 2022; Supplementary Table S4:
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till 2 January 2022; Supplementary Table S5: Data used for Figures 2 and 3.
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