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Abstract: Phages utilize lysis systems to allow the release of newly assembled viral particles that kill
the bacterial host. This is also the case for phage AP1, which infects the rice pathogen Acidovorax
oryzae. However, how lysis occurs on a molecular level is currently unknown. We performed in
silico bioinformatics analyses, which indicated that the lysis cassette contains a holin (HolAP) and
endolysin (LysAP), which are encoded by two adjacent genes. Recombinant expression of LysAP
caused Escherichia coli lysis, while HolAP arrested growth. Co-expression of both proteins resulted in
enhanced lysis activity compared to the individual proteins alone. Interestingly, LysAP contains a
C-terminal region transmembrane domain, which is different from most known endolysins where a
N-terminal hydrophobic region is found, with the potential to insert into the membrane. We show
that the C-terminal transmembrane domain is crucial for protein localization and bacterial lysis in
phage AP1. Our study characterizes the new phage lysis cassette and the mechanism to induce cell
disruption, giving new insight in the understanding of phage life cycles.

Keywords: Acidovorax oryzae phage AP1; lysis cassette; holin; endolysin

1. Introduction

Phages employ two different strategies to release progeny phage from a host bacterial
cell. Some simple ssDNA or RNA phages of Gram-negative bacteria rely on a single gene
to lyse the bacteria by inhibiting the synthesis of peptidoglycan in the bacterial cell wall [1].
Most dsDNA tailed phages use efficient and specific “holin-endolysin” two-component
lysis cassettes to induce lysis in the host cells [2]. The endolysin, which is a peptidoglycan-
degrading enzyme, accumulates in the cytosol at the end of the replication cycle [3–5]. The
holin, a small hydrophobic membrane spanning protein, is essential for the endolysin to
translocate across the membrane to enter the periplasm [6]. Holins form membrane lesions
in the cytoplasmic membrane at a genetically predetermined time, which permeabilizes
the inner membrane allowing the endolysin to cross this barrier [7]. The cell will then burst
due to the degradation of the peptidoglycan, allowing the mature phage particles to be
released [8].

Interestingly, endolysins are also exported via a holin-independent mechanism. In this
case, holin does not form macropores on the membrane to release endolysin, but activates
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the release of endolysin to the periplasmic to lyse the cell wall by dispersing the proton
dynamic potential, so as to control the time of lysis. However, there is a difference between
Gram-positive and Gram-negative bacterial phages in holin-independent mechanism. For
example, endolysin Lys44 of Gram-positive bacterium Oenococcus oeni phage fOg44 was
found to contain a cleavable signal peptide, which hijacks the host–transport system to
facilitate its translocation into the periplasm [9] However, endolysins are exported in
Gram-negative bacteria by connecting with signal-arrest-release (SAR) sequences [10]. For
instance, the endolysins of Siphoviridae bacteriophage swi2 with hydrophobic and positively
charged amino acids at the N-terminus showed strong activity to naturally lyse Gram-
negative bacteria [11]. The coliphages P1 and 21 encode the proteins Lyzp1 and R21, which
are functional peptidoglycan-degrading enzymes, yet do not have typical cleavable signal
peptides but a SAR region in the N-terminal region, which serves as a signal-arrest domain
that facilitates the secretion of the endolysin via the Sec translocon [12,13].

In this study we systematically investigated the lysis cassette of phage AP1 using a
variety of approaches. We found that LysAP is different from other known endolysins as
it does not encode the traditional SAR N-terminal transmembrane domain (TMD), but
employs the same strategy: the secretion across the membrane through the Sec pathway.

2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions

The bacterial strains and plasmids used in this study are indicated in Table 1. Ao
strains were cultured in Luria–Bertani (LB) agar or broth medium (Oxoid Ltd., Hamp-
shire, UK) at 30 ◦C [14]. E. coli strains were grown in LB agar or broth medium at 37 ◦C.
If necessary, kanamycin (50 µg/mL), ampicillin (100 µg/mL), or IPTG (isopropyl-β-D-
thiogalactopyranoside; 1 mM) was added to the medium (Sangon Biotech Co., Ltd., Shang-
hai, China).

Table 1. Strains, phage, and plasmids.

Description Source or Reference

Strains

RS-2 Acidovorax oryzae, pathogen of bacterial brown stripe Lab collection

DH5α
F-Φ80d lacZ∆M15∆(lacZYA-argF) U169 recA1 endA1,
hsdR17(rk-, mk+) phoAsupE44 λ- thi-1 gyrA96 relA,

Escherichia coli
Vazyme

BL21(DE3) Host for overexpressing proteins driven by T7
promoter, Escherichia coli Invitrogen

BTH101 Host for overexpressing proteins in bacterial
two-hybrid, Escherichia coli Chen et al. [15]

Phage

AP1 phage of Acidovorax oryzae Lab collection

Plasmids

pETDuet-1 AmpR; expression vector with HIS label Promega

pETDuet-HolAP AmpR; recombinant expression vector with HIS label
with HolAP

This study

pETDuet-LysAP AmpR; recombinant expression vector with HIS label
with LysAP

This study

pETDuet-HolAP-LysAP AmpR; recombinant expression vector with HIS label
with HolAP and LysAP

This study
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Table 1. Cont.

Description Source or Reference

pETDuet-LysAP∆TMD
AmpR; recombinant expression vector with HIS label

with LysAP∆TMD
This study

pET-28a(+) KanR; expression vector with HIS label Novagen

pET-28a-HolAP KanR; recombinant expression vector with HIS label
with HolAP

This study

pET-28a-LysAP KanR; recombinant expression vector with HIS label
with LysAP

This study

pET-28a-LysAP∆TMD
KanR; recombinant expression vector with HIS label

with LysAP∆TMD
This study

pET-28a-LysR222A KanR; point mutation recombinant expression vector
with HIS label with LysAP

This study

pET-28a-LysE15A KanR; point mutation recombinant expression vector
with HIS label with LysAP

This study

pKNT25 KanR; expression vector for bacterial two-hybrid test Chen et al. [15]
pKNT-LysAP KanR; recombinant expression vector for B2H test This study

pCH363 AmpR; expression vector for bacterial two-hybrid test Chen et al. [15]
pCH-HolAP AmpR; recombinant expression vector for B2H test This study

KanR, AmpR, indicate Kanamycin-, Ampicillin-resistant, respectively.

2.2. Bioinformatics Analysis

DNAMAN v. 6 and SnapGene Viewer v. 2.2 software were used to analyze the po-
sition, base composition, and GC content of HolAP and LysAP coding genes; NEBcutter
(http://nc2.neb.com/NEBcutter2/, accessed on: 10 January 2021) Prediction of restriction
enzyme and other information. Application of ExPASY prot param tool (http://www.
expasy.org/proteomics/protein, accessed on: 15 March 2019) to predict the physicochemi-
cal properties of HolAP and LysAP proteins, including isoelectric point, molecular weight,
stability index, aliphatic index, hydrophobicity, hydrophilicity, and enzyme digestion char-
acteristics. Applying blastp in NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on:
7 June 2021) to carry out the conservative functional domain analysis of phage AP1 HolAP
and LysAP. TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/services/TMHMM/, accessed
on: 15 March 2019), I-TASSER (https://zhanglab.ccmb.med.umich.edu/I-TASSER/, ac-
cessed on: 15 March 2019), Signal P 4.0 Server (http://www.cbs.dtu.dk/services/SignalP-4.
0/, accessed on: 15 March 2019) were applied to analysis the biological characteristics and
secondary structure of HolAP and LysAP proteins, such as transmembrane domain, signal
peptide and coiled coil. The 3D structure of LysAP protein was predicted through the
website (https://zhanglab.ccmb.med.umich.edu/I-TASSER/, accessed on: 15 March 2019)
using parameters with default values. Protein active sites were predicted according to
the references [12,13]. Genomes of Acidovorax and other related bacterial genus phages
were downloaded from NCBI. DNAMAN v. 6 was used to align the sequence to show the
conservatism of LysAP.

2.3. Standard DNA Manipulation, PCR and DNA Sequencing

Genomic DNA of phage AP1 was extracted using traditional phage genome extraction
ways with slight modification [16]. In brief, phage lysates were centrifuged at 11,000× g
for 15 min at 4 ◦C to remove cell debris. Then, the supernatants were concentrated and
genomic DNA was extracted using phage genome extraction kit (Sangon Biotech Co., Ltd.,
Shanghai, China). Procedures for the isolation of plasmid DNA, DNA amplification by PCR,
PCR product purification and DNA sequencing were performed according to standard
procedures [16] or in accordance with the manufacturer’s protocol (Axygen, Tewksbury,
MA, USA). All other enzymes were purchased from Thermo.

http://nc2.neb.com/NEBcutter2/
http://www.expasy.org/proteomics/protein
http://www.expasy.org/proteomics/protein
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.cbs.dtu.dk/services/TMHMM/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://www.cbs.dtu.dk/services/SignalP-4.0/
http://www.cbs.dtu.dk/services/SignalP-4.0/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
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2.4. Recombinant Plasmids Construction

The DNA inserts for these constructs were PCR-amplified from the following sources:
for pETDuet-HolAP, pET-28a-HolAP, and pCH-HolAP, the HolAP gene was from AP1
DNA; pETDuet-LysAP, pET-28a-LysAP∆TMD, and pKNT-LysAP, the LysAP gene was from
AP1 DNA; for pETDuet-HolAP-LysAP, the HolAP and LysAP gene was from AP1 DNA; the
PCR product was digested with and cloned into unique NcoI and BamHI restriction sites
in the ampicillin resistance plasmid pETDuet-HolAP; the PCR product was digested with
and cloned into unique NdeI and BglII restriction sites in the ampicillin resistance plasmid
pETDuet-LysAP; the PCR product was digested with and cloned into unique HindIII and
EcoRI restriction sites in plasmid pCH-HolAP; and the PCR product was digested with
and cloned into unique BamHI and EcoRI restriction sites in plasmid pKNT-LysAP. The
plasmid pET-28a-LysAP∆TMD in which the transmembrane domain (TMD) was knocked
out, was under control of the lac promoter. All the primers used in this study were listed in
Table 2.

Table 2. Primers used in this study.

Primers Name Sequences (5′-3′) Length

pETDuet-LysF CTATACATATGATGAAAACCTCTGATCGCGGAC 684 bp
pETDuet-LysR GAAGATCTTGACCACCCCTCTCGCCG
pET28a-LysF CGGGATCCATGAAAACCTCTGATCGCGGAC 684 bp
pET28a-LysR CCCAAGCTTTGACCACCCCTCTCGCCG

Lys4TMDF CGGGATCCATGAAAACCTCTGATCGCGGACTCGC
615 bp

Lys4TMDR CCCAAGCTTTGACCACCCCTCTCGCCGCACCTTCACAC-
GCTCGTCAGCGCTCGACTTGATG

E15A-F AGCAAATGGGTCGCGGATCCATGAAAACCTCTGATCGCGGACTCGCG-
CTGATCGAAGAATTCGCGGGCTTC 684 bp

E15A-R TCGAGTGCGGCCGCAAGCTTTCATGACCACCCCTCTCGCC
R222A-F AGCAAATGGGTCGCGGATCCATGAAAACCTCTGATCGCGGACTCGC 684 bp
R222A-R TCGAGTGCGGCCGCAAGCTTTCATGACCACCCCTCTGCCCGCACCTTCACACG

pETDuet-HolF TATGCCATGGATGCAATCCATGAATGTCGAAAC 336 bp
pETDuet-HolR CGGGATCCCTTAGCAGACTCGAGTGCG
pET28a-HolF CGGGATCCATGCAATCCATGAATGTCGAAACC 336 bp
pET28a-HolR CCCAAGCTTCTTAGCAGACTCGAGTGCG

pCH-HolF GCAAGCTTATGCAATCCATGAATGTCGAAACC 336 bp
pCH-HolR CGGAATTCCTTAGCAGACTCGAGTGCG
pKNT-LysF CGGGATCCATGAAAACCTCTGATCGCGGAC 684 bp
pKNT-LysR TATAGAATTCTGACCACCCCTCTCGCCG

Note: Nucleotides with underline indicated restriction sites of the enzymes: BamHI, EcoRI, NdeI, BglII, and NcoI.

2.5. Growth Measurement

Bacterial growth was determined by measuring the OD600 values using Microplate
Spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA) [17]. In brief, 50 µL
of freshly grown overnight culture was used to inoculate 5 mL, at OD600 = 0.6, induction
was initiated by adding IPTG (1 mmol/L) and incubating at 37 ◦C, 200 rpm. LB broth
without bacteria was used as the negative control. The experiment was repeated three
times with three replicates of each treatment. To block the SecA secretory system, NaN3 (1
to 10 mM) was added simultaneously with induction [18].

2.6. Protein Expression, Purification and Western-Blotting

An overnight culture of E. coli BL21(DE3) harboring recombinant plasmid were diluted
1:100 into 250 mL of LB medium and incubated at 37 ◦C and 200 rpm. At an OD600 of
0.6, production of proteins was induced by the addition of IPTG to 1mM. After incubation
for 4–8 h at 30 ◦C and 200 rpm, the cells were harvested, and the pellet was resuspended
in 20 mL of native lysis buffer (300 mM NaCl, 50 mM NaH2PO4, 10 mM imidazole; pH
8.0). The cells were lysed using Ultrasonic processor (SXSONIC, Shanghai, China). The
protein was purified by ProteinIso® Ni-NTA Resin (TransGen Biotech, Beijing, China)
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following the manufacturer’s protocol. Proteins were applied to sodium dodecyl sulfate
(SDS)-polyacrylamide gels, and the separated proteins were stained with Coomassie blue.
Western blotting was conducted using Anti-His tagged antibody following the reported
protocols [16].

2.7. Detection of β-Galactosidase Activity

β-galactosidase activity was conducted following the previous report with modifi-
cation [2]. A volume of 50 µL of overnight bacterial culture was used to inoculate 5 mL
LB broth and cultured at 37 ◦C, 200 rpm. When OD600 reached 0.4, IPTG was added and
induction was conducted at 20 ◦C for 6 h, 12 h, and 24 h. The culture was centrifuged at
12,000 rpm for 5 min, after which a 500 µL aliquot of extracellular supernatant was added
to 100 µL of ortho-Nitrophenyl-β-galactoside (ONPG) (20 mM). The mixture was incubated
in a 45 ◦C water bath for 30 min. To stop the reaction, 600 µL Na2CO3 (0.5 mM) was added.
The β-galactosidase activity was determined by measuring the optical density at 420 nm
(OD420) using a microplate photometer.

2.8. Live/Dead Cell Staining

Bacterial lysis was determined by live/dead cell staining [19]. Briefly, 5 mL of LB
broth was inoculated with 50 µL of overnight culture and cultured at 37 ◦C, 200 rpm. At
OD600 = 0.6, induction was initiated with IPTG and incubated at 37 ◦C for 30 to 60 min.
Live/dead staining assay was conducted with the BacLight bacterial viability kit (Invitro-
gen). The kit includes two nucleic acid stains, a red-fluorescent (propidium iodide stain, PI)
for dead bacteria, and a green fluorescent (SYTO 9 stain) for live bacteria. Fluorescence was
detected using an inverted confocal microscope (Leica-SP8, Heidelberg, Germany).

2.9. Microscopy Analysis

Bacterial sample preparation for TEM was conducted as previously described with
some revision [20]. Briefly, bacteria were collected by centrifugation at 5000 g for 5 min, then
washed 3 times with 0.1 M PBS solution followed by fixing with 2.5% (v/v) glutaraldehyde.
The samples were then stained with 1% (w/v) osmium tetroxide in 0.1 M PBS for 1 h at
room temperature, then washed three times with 0.1 M PBS. Following this, the samples
were dehydrated stepwise over a range of ethanol solutions (70%, 80%, 90%, 95%, and
100% v/v) with each step lasting for 15 min at room temperature. Dehydrated samples were
embedded in Epon 812, a low-viscosity embedding resin. TEM (JEM-1230, JEOL, Akishima,
Japan) was used to observe the changes in bacteria according to the operating methods. For
Gram staining, bacterial strains to be observed were collected and washed by PBS (pH 7.2)
twice. Gram Stain Kit (Solarbio, Beijing, China) was used and the stained bacteria were
observed through microscopic examination.

2.10. Bacterial Two-Hybrid Assays

Bacterial two-hybrid assays were performed similarly to what was described previ-
ously [21]. The coding region of LysAP (excluding the stop codon) was amplified by PCR
using primers pKNT-LysF and pKNT-LysR. The PCR products were digested with BamHI
and EcoRI and were cloned into the plasmid pKNT25, resulting in pKNT-LysAP. Similarly,
the PCR product of HolAP was digested with HindIII and EcoRI and cloned into the same
sites of pCH363, generating pCH-HolAP. Positive and negative controls were stored by lab.
BTH101 expressing the motA and ypfA proteins was used as the positive control, while
BTH101 with no plasmids was used as the negative control [15].

To introduce recombinant plasmids into the E. coli host strain BTH101, 5 µL of each
pair of the recombinant plasmids was mixed with 100 µL of chemically competent cells
of BTH101. Samples were incubated at 4 ◦C for 30 min and then heat shocked at 42 ◦C
for 90 s. An 800 µL volume of LB broth was added to the heat-shocked cells, and cells
were incubated with shaking for 1 h at 37 ◦C. Cells were concentrated and spread on LB
plates supplemented kanamycin (50 µg/mL) and ampicillin (100 µg/mL). Plates were
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incubated overnight at 37 ◦C. Single colonies were picked and grown at 37 ◦C in LB broth
plus kanamycin (50 µg/mL) and ampicillin (100 µg/mL) with vigorous shaking. Then,
5 µL aliquots of cells (optical density at 600 nm (OD600), 1.0) were spotted on LB plates
supplemented with 40 µg/mL 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal),
500 µM IPTG, 100 µg/mL ampicillin, and 50 µg/mL kanamycin. Plates were incubated for
48 h at 23 ◦C before imaging.

3. Results
3.1. In Silico Description of AP1 Lysis Cassette

We first analyzed the phage genome (GenBank accession number OM049504) and lysis
cassette of phage AP1 using bioinformatics. The AP1 genome region encoding the lysis
cassette contains two open reading frames, HolAP (ORF71) and LysAP (ORF72), which
encode a putative holin and an endolysin, respectively (Figure 1a). The lysis genes of AP1
appear to be arranged in canonical order, such that HolAP (45,283–45,618 bp) is located
upstream of LysAP (45,628–46,311 bp), which is consistent with the genetic architecture of
lysis cassettes found in most phages infecting Gram-negative bacteria.

HolAP is a small protein, predicted to be composed of 111 amino acids with a molecu-
lar weight of 11.9 kDa (Figure 1b). Protein sequence analysis shows that HolAP belongs to
the phage holin 2_3 superfamily. HolAP has a type III holin structure: a membrane protein
with a transmembrane region (amino acids 32–54), the N-terminal region of which is found
in the periplasm while the C-terminus of the protein is located in the cytoplasm and is rich
in positively and negatively charged amino acids (Figure 1c).

LysAP is larger with 227 amino acids and a molecular weight of 24.5 kDa. Bioinfor-
matic analysis indicates that there is no typical signal peptide, and conserved domain
analysis showed that the presence of two regions with a lysozyme-like domain, a member
of GH24 family, which is thought to display glycosyl hydrolase activity (amino acids 3–135)
and a transmembrane domain (TM; 194–216 amino acid sites) (Figure 1d). GH24 shows the
conserved catalytic triad (E15, D24, and T30) (Figure 1e), similar to many phage lysozymes
(Figure 1f). Notably, the C-terminal of LysAP was relatively unique although having high
sequence homology to other phages. A SAR peptide is located in the C-terminal region,
which is in stark contrast to the known, “traditional” endolysin topology (N-terminal).

3.2. Holin HolAP Inserts in the Cell Membrane and Interacts with Endolysin LysAP

pET-type plasmids have been widely used to express bacteriophage-derived lytic
enzymes [22], such as holins and endolysins [23,24], which provides us with a vector to
study the proteins in vitro and their activity in cells. Thus, in this study, we cloned the
respective proteins into E. coli expression vectors (pET-28a) and introduced the plasmids
into E. coli strain BL21 (DE3). Following IPTG induction, intracellular and membrane
protein samples were collected from the induced E. coli BL21 cells expressing pET-28a-
HolAP. Furthermore, Western blotting analysis indicated no protein band was observed in
the cytoplasmic fraction, in contrast, a single band with a molecular weight of about 17 kDa
was detected in isolated membranes. This result confirmed that HolAP is a membrane
protein (Figure 2a).
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Figure 1. In silico characterization of the AP1 lysis cassette: (a) Genomic organization of HolAP and
LysAP in the genome of phage AP1. (b) Analysis of amino acids in HolAP. Charged residues are
indicated by a + or− sign; The transmembrane domain (TMD) is indicated with a box; Potential trans-
lation start codons are highlighted in grey. (c) Topological model of HolAP. (d) Domain organization
(top) and model of LysAP (bottom) with the hydrolase domain indicated by the “Pac-Man” shape.
(e) 3D structure prediction of LysAP. (f) Sequence alignment of endolysin LysAP with that of Acidovo-
rax phage ACP17 (YP_009609701.1), Acidovorax phage ACPWH (AXY83360.1), Plesiomonas phage P4-7
(ANW09608.1), Edwardsiella phage Edno5 (AYP69211.1), Pseudomonas phage PAJU2 (YP_002284361.1),
Salmonella phage SEN5 (YP_009191752.1), Vibrio phage pYD38-A (YP_008126192.1), and Agrobacterium
phage Atu_ph07 (ASV44718.1). Red triangles (E15, D24, T30) represent the catalytic triad residues.

In many lysis systems, holins facilitate the translocation of endolysins into the periplasm.
However, it is unclear if the proteins interact with each other since holins could form non-
specific pores that allow the leakage of cytoplasmic content out of the cell. We therefore
employed bacterial two-hybrid to investigate if HolAP and LysAP interact. In this ap-
proach, a direct interaction of the two proteins allows the association of two fragments of an
enzyme that ultimately leads to the production of β-galactosidase, which can be detected
by cleavage of X-Gal forming blue-colored colonies. When expressing HolAP together with
LysAP, we obtained the same result as that observed for the positive control, indicating a
direct interaction (Figure 2b).
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Figure 2. (a) Sub-cellular localization of protein HolAP by coomassie gel (left) and Western blotting
assay (right). Anti-His antibody was used to detect for target proteins. (b) Protein interaction
identified between HolAP and LysAP by bacterial-2-hybrid. (c) Construction of co-expression
plasmid pETDuet-HolAP-LysAP.

3.3. Expression of AP1 Lysis Cassette Leads to Cell Lysis

We constructed three plasmids to test the impact of protein expression in E. coli BL21
(DE3): Two plasmids encoded HolAP and LysAP separately while a third plasmid allowed
the co-expression of both proteins (HolAP-LysAP) together. The expression of HolAP alone,
similar to the negative control (pETDuet-1), had no impact on bacterial growth, assessed
by the absorbance at 600 nm (OD600). However, when protein expression was induced in
cells containing the co-expression plasmid, cell lysis occurred 30 min post induction, with
the solution becoming viscous displaying cell debris typical for phage-induced lysis. The
observed decrease was larger than that of LysAP alone, which also showed a reduction in
growth (Figure 3a), indicating that LysAP is able to induce growth arrest or lysis; however,
not as effectively as in concert with HolAP.
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We then performed a live–dead stain to assess whether the cells expressing the proteins
are indeed lysed or only arrested in growth, or if the observed decrease in light absorbance
is due to other factors such as morphological changes. E. coli cells expressing HolAP alone
showed green fluorescence, an indicator that the bacteria are alive, which is consistent with
our observation of the growth curves. In contrast, a high ratio of cells expressing LysAP
were stained red, indicating that the expression of the protein leads to the collapse of the
membrane integrity, thus killing the cells. The ratio of dead to live cells increased over
the time as more protein was expressed. However, most of the E. coli cells co-expressing
HolAP and LysAP proteins together were already stained red after a brief induction time of
30 min, indicating that most of the bacteria died (Figure 3b), with even more pronounced
effects after 1 h. These findings suggest that the expression of HoLAP alone does not cause
bacterial death. Expression of LysAP alone causes cell death, however to a lesser extent
than that caused by the co-expression of HolAP and LysAP together. Therefore, HolAP is
not responsible for cell lysis, but accelerates the process significantly, demonstrating the
concerted action of the protein together with the SAR endolysin.
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3.4. Expression of AP1 Lysis Cassette Proteins Affect Membrane Integrity and Induce
Morphological Changes

As we had observed that the expression of LysAP and protein production of LysAP,
together with HolAP, led to cell death in E. coli, we used an additional method to demon-
strate that the integrity of the membrane was compromised. β-galactosidase is a cytosolic
enzyme that cannot cross the membrane barrier unless the cell envelope exhibits defects
larger than the protein. By using this approach, we determined the increase in absorbance
of β-galactosidase in cells expressing either protein or both. As shown in Figure 4a, HolAP
(E. coli expressing HolAP alone) had a similar color with the negative control pETDuet-1
(E. coli containing the empty vector) with the OD420 of 0.125 and 0.126, respectively, indi-
cating that the membranes remained intact. However, the color of LysAP turned yellow
with the OD420 of 0.368, which can be attributed to the fact that the expression of LysAP
destabilizes bacterial membrane, resulting in cells lysis, and the release of the enzyme. This
change in color was even more pronounced in cells expressing both LysAP and HolAP with
the OD420 of 0.88, which was significantly higher than that of the HolAP and LysAP alone.
This clearly shows that the concerted action of both proteins results in the destruction of
the bacterial cell envelope, leading to the leakage of cell contents.
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The morphological changes in E. coli BL21 (DE3) expressing genes in the lysis cassette
were verified by transmission electron microscope (TEM) (Figure 4b). Consistent with the
β-galactosidase activity assay, the morphology of cells serving as a negative control was
normal, the structure of the cell wall and cell membrane were unaltered, the density of
the cellular contents appeared high, and the cell color was dark. In comparison, the cell
wall and cell membrane of E. coli expressing HolAP had shrunk slightly, the density of
the cellular content had decreased and the color of the cell appeared much lighter. This
may be due to the expression of HolAP protein, which may cause the change in membrane
permeability by forming pores. In the case of E. coli cells expressing LysAP alone, or
during the co-expression of HolAP with LysAP for 30 min, the bacterial cell membrane
shrunk dramatically, the cell wall structure became irregular, and the cell color became
light, indicating disintegration of the cellular envelope.

In addition, Gram-stained cells expressing HolAP alone did not have an impact on the
shape of the bacteria; however, the bacteria became shorter and adhered to each other when
LysAP was expressed. The cells adopted a spherical morphology prior to lysis. Moreover,
when the two proteins were expressed together, the cell boundary became less clear, and
the shape changed from rod-shaped to spherical, with bacteria adhering to each other, in
addition to the complete disintegration of the cells and the formation of cell fragments
(Figure 4c). The above findings indicate that HolAP cooperated with LysAP to mediate
bacterial lysis while having an impact on the morphology of the bacteria.

3.5. The C-Terminal Transmembrane Domain (TMD) Plays an Important Role in LysAP Lysis

Since the transmembrane domain is located in 194–216 amino acid sites of LysAP,
we constructed LysAP∆TMD through deleting the 194–216 transmembrane domain and
connecting the 193 amino acid with the 217 amino acid directly. Recombinant production
of the truncated protein LysAP∆TMD appeared not to be toxic for the host cell, which is in
contrast to the production of the full length endolysin LysAP. As described before, when
LysAP was expressed alone, OD600 dropped by almost two thirds after three hours of
induction. In contrast, in the presence of the TMD deletion mutant, the OD600 value
increased indicating cell growth, exhibiting almost no difference compared to the negative
control (Figure 5a). The large quantities of LysAP lacking the C-terminal transmembrane
region in cells suggested that LysAP could not be anchored in the cell membrane, but
accumulated in the cytosol after the C-terminal transmembrane region of LysAP was
deleted (Figure 5b). These findings strengthen in silico predictions that the C-terminal TMD
is involved in the transport of LysAP.

Analysis of the amino acids sequence of LysAP reveals that there are only four cationic
amino acids R218, K220, R222, and R223 near the end of the TMD, which may affect the
stability of TMD and the transport of LysAP. Representative point mutations (pET-28a-
LysR222A and pET-28a-LysE15A) were constructed to explore the function of cationic
amino acids and conserved catalytic triads. Growth ability assay showed that conserved
amino acid site E15 is an important factor affecting LysAP lysis function while the cationic
amino acid R222 has no significant effect on cell lysis. When pET-28a-LysR222A was
inducted, the OD600 decreased continuously from the initial 0.6 to 0.3 within 80 min, and
the number of bacteria decreased by 50%, which was consistent with the cleavage trend of
the positive control (pET-28a+), which showed that R222A had a limited effect on LysAP
lysis function. In comparison, the growth curves of pET-28a-LysE15A and the negative
control were basically the same, both maintained the normal growth trend of bacteria, and
their OD600 values gradually increased, reaching more than 0.7 after 80 min, indicating
that E15A can effectively prevent LysAP from playing its cleavage function (Figure 5c).
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Figure 5. (a) Effect of LysAP∆TMD expression on bacteria growth. (b) Purification of LysAP∆TMD. M,
maker; 1, Cell lysate; 2–4, Flow through; 5, 6, Wash; 7–9, Elution. (c) Growth curve of E. coli BL21(DE3)
carrying pET-28a-LysE15A and pET-28a-LysR222A. LysAP: BL21(DE3) carrying pET-28a-LysAP as
positive control; pET-28a: BL21(DE3) carrying pET-28a as negative control; LysE15A and LysR222A:
BL21(DE3) carrying pET-28a-LysE15A and pET-28a-LysR222A recombined plasmid respectively.
“+” means adding 1 mM IPTG and “−” means not adding IPTG. (d) Staining of live or dead bacteria.
(e) Detection of extracellular β-galactosidase activity.

This result was further verified through a staining test of live/dead bacteria (Figure 5d)
and β-galactosidase activity assay (Figure 5e). Under the induction of IPTG for 30 min,
E. coli carrying pET-28a-LysR222A plasmid were stained and observed. Results showed
that most of the bacteria emitted green fluorescence while some of them were red (around
24%), indicating that some bacteria died, which was consistent with the LysAP expression
(the bacterial death rate was 35%). E. coli carrying pET-28a-LysE15A plasmid and the
negative control (pET-28a) showed nearly all fluoresced green, which indicated that almost
all of the bacteria survived normally (Figure 5d). The results of the β-galactosidase activity
test showed that the supernatant of the recombinant plasmid carrying pET-28a-LysE15A
and the negative control was transparent with the OD420 of 0.131 and 0.123, respectively;
however, the supernatant of E. coli carrying pET-28a-LysR222A and LysAP turned yellow
with the OD420 of 0.283 and 0.359, respectively (Figure 5e). The above experiments also
confirmed that the conserved active site E15 was an important site affecting the cleavage
function of LysAP, while the effect of cationic amino acid R222 was not significant.

3.6. Sec System Is Involved in the Release Process of LysAP

Sodium azide (NaN3) has been widely used as an inhibitor of the ATPase activity of
SecA, which is necessary for translocation of endolysin across the membrane [13,18,25].
Therefore, we used NaN3 to examine the involvement of the Sec system during LysAP
production (Figure 6). Under the condition of adding 1 mM IPTG and 0 mM sodium azide,
the OD600 of E. coli expressing LysAP decreased from 0.6 to about 0.2 within 160 min,
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which is similar to that when changing the NaN3 concentration to 1 mM, indicating that
low concentrations of NaN3 could not effectively prevent lysis. Moderately increasing
the concentration of NaN3 can effectively postpone lysis of the expression culture further
(10 mM), which is consistent with the reported results. These observations suggest the
involvement of the Sec machinery in the secretion of LysAP to the periplasm.
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hollow icon means the conditions with or without IPTG induction, respectively; 0 mM, 1 mM, and
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3.7. Lysis Model for C-Terminal SAR Endolysin-Holin Cassette

The Sec-dependent signal sequence and its essential nature for significant enzymatic
activity confirm that LysAP is a C-terminal SAR endolysin. In addition, the observation
of a stronger lysis effect in the expression culture after co-expression of HolAP-LysAP
is consistent with the role of HolAP as a pinholin. Based on the experimental results, a
probable lysis model for C-terminal SAR endolysin–holin cassette is proposed (Figure 7).
HolAP and LysAP are anchored to the cell membrane, pinholes are formed afterwards, and
LysAP is activated and released due to pinholin-induced membrane depolarization, which
eventually leads to bacterial cell lysis.
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to the cell membrane (left), then HolAP formed pinholes (middle), and LysAP was activated and
released (right). OM: Outer membrane; PG: Peptidoglycan; IM: Inner membrane.
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4. Discussion

The lysis cassette in most phages of Gram-negative hosts has been shown to require
holin and endolysin, which aims at cytoplasmic membrane and peptidoglycan, respec-
tively [2,26,27]. A third class of lysis proteins, the spanins, which attack outer membrane,
was also included in some of the lysis cassettes [28]. In this study, a new type of holin–
endolysin lysis cassette in A. oryzae phage AP1 was identified and no putative spanin was
found, which was consistent with the result of Holt et al. [29], who found that ~15% of
phages lack a spanin gene through bioinformatics analysis.

Holin is a small membrane protein produced by many phages at the end of the lytic
cycle [6,30,31]. There are two main functions of holins in the phage lysis system. One is to
form holes in the cell membrane (allowing 500 kDa protein to pass through) and release
endolysin without signal peptide. These holes are nonspecific and allow endolysin and
other proteins to pass through [8,32]. Holin can also act as a timer to regulate the phage
cracking of bacteria precisely [33,34]. In this study, through bioinformatics analysis, we
predicted that there was only one transmembrane region (32–54) in phage AP1 HolAP
with the N-terminus located outside the membrane, and the C-terminal located inside
the membrane, displaying the structural characteristics of type III holin. However, it is
opposite to the N-terminal and C-terminal distribution of the typical type III holin in E. coli
T4 phage [35].

The predicted size of HolAP is about 11.9 kDa, while the size of HolAP is about 17 kDa
in Western-blotting analysis. Similarly, the predicted size of LysAP∆TMD is about 22 kDa,
while the size of the extracted LysAP∆TMD is about 25 kDa. In agreement with the result of
this study, the phenomenon has also been reported in some previous studies [2,36]. The
difference between theoretical and actual protein size may be main due to both the high
isoelectric point and His tag fusion, which have a great influence on the migration of the
proteins in SDS PAGE gels.

Because there is only one transmembrane region, it is difficult for holin to form
macropores in the cell membrane to release the synthesized endolysin [37]. In this study,
β-galactosidase activity assay showed that HolAP could not form macropores for the
intracellularly synthesized β-galactosidase and other macromolecular substances to be
transported out of the cell membrane. In addition, while TEM showed that the permeability
of the cell membrane had been changed, the growth of the bacteria was not inhibited.
Related studies have shown that the accumulation of these holins can change in the proton
dynamic potential across the cell membrane at a precise time point, resulting in the activa-
tion of the inactive endolysin anchored in the cell membrane. The activated endolysin is
then released into the periplasm to cleave the cell wall [30].

As previously mentioned, the TMD in LysAP is found in the C-terminal part of the
protein, which differs from the traditional endolysin topology (N-terminal) in phages
infecting Gram-negative bacteria. Therefore, this study explored the function of the C-
terminal TMD by constructing the TMD deletion mutant LysAP∆TMD. Furthermore, it is
noteworthy that it was difficult to obtain and purify LysAP protein after induction of IPTG
due to severe cell lysis, which is one of the reasons why we purified LysAP∆TMD instead.
Indeed, when transmembrane region of LysAP was deleted, a single band was observed in
LysAP∆TMD following protein extraction and purification.

Previous studies have shown that about 25% of endolysins in E. coli phages that
cannot synthesize signal peptide have signal-anchoring release domains instead, and
the holins encoded by these phages generally form “pinholes” [38,39]. In this study, we
identified the function of LysAP, and found that it could lyse bacteria when expressed
alone. Bioinformatics analysis predicted that there is a TMD at the C-terminus of LysAP,
suggesting that LysAP might have the function of SAR. LysAP cannot lyse the bacteria
without the C-terminal TMD. Our previous attempts found the wild type LysAP protein to
be challenging to purify in vitro mainly due to the toxicity of LysAP to the bacterial cell.
However, the deletion of the C-terminal TMD resulted in high yields of protein produced.
These results indicate that the C-terminal TMD plays an important role in the function of



Viruses 2022, 14, 167 15 of 17

LysAP, facilitating anchoring of LysAP in the cell membrane. Single amino acids mutations
of cationic residues near LysAP TMD verified the connection between the charge change
and LysAP release. In addition, co-expression of HolAP and LysAP was demonstrated to
have a synergistic effect on bacterial lysis. However, the specific mechanism of holin, and
how LysAP, a C-terminal TMD endolysin, is anchored in the membrane and reaches the
periplasm through the cell membrane, need to be further studied.

5. Conclusions

The present study identified and investigated the functions of lysis proteins, holin
HolAP, and endolysin LysAP in phage AP1, defining a new binary lysis cassette. LysAP
alone can be transported to the periplasm via its C-terminal TMD and Sec system. Addi-
tionally, with the interaction of LysAP with HolAP, which acts as a probable pinholin, lysis
is more efficient. This study could elucidate the phage–bacteria interaction mechanism and
provide insights to the biological control of bacterial pathogens.
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