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Abstract: Influenza epidemics cause considerable morbidity and mortality every year worldwide.
Climate-driven epidemiological models are mainstream tools to understand seasonal transmission
dynamics and predict future trends of influenza activity, especially in temperate regions. Testing the
structural identifiability of these models is a fundamental prerequisite for the model to be applied in
practice, by assessing whether the unknown model parameters can be uniquely determined from
epidemic data. In this study, we applied a scaling method to analyse the structural identifiability of
four types of commonly used humidity-driven epidemiological models. Specifically, we investigated
whether the key epidemiological parameters (i.e., infectious period, the average duration of immunity,
the average latency period, and the maximum and minimum daily basic reproductive number) can
be uniquely determined simultaneously when prevalence data is observable. We found that each
model is identifiable when the prevalence of infection is observable. The structural identifiability of
these models will lay the foundation for testing practical identifiability in the future using synthetic
prevalence data when considering observation noise. In practice, epidemiological models should be
examined with caution before using them to estimate model parameters from epidemic data.

Keywords: influenza; structural identifiability; climate-driven epidemiological model; scaling method

1. Introduction

Influenza epidemics cause considerable morbidity and mortality every year world-
wide [1–6]. According to The World Health Organization, influenza leads to about 3 to
5 million cases of severe illness and about 290,000 to 650,000 deaths annually [7]. This
burden might be alleviated by understanding historical and current transmission dynamics
and predicting further transmission trends of influenza to assist public health authorities
in designing effective interventions and vaccination strategies, especially in some special
situations (for example, the emergence of influenza A (H1N1) viruses and the potential
rebound of influenza in the post-COVID-19 pandemic period) [8–12].

Climate-driven epidemiological models, such as models driven by humidity, are
mainstream tools for understanding seasonal transmission dynamics and predicting future
trends in influenza activity. Recently, climate-driven epidemiological models have been
successfully applied to recreate historical activity time series of influenza and to forecast the
week with the highest influenza activity in temperate, tropical and subtropical regions (for
example, in the United States and Hong Kong) [13–17]. Confident predictions using these
models depend on testing various numerical optimization algorithms, such as filter-based
data-assimilation algorithms, which fit the model to epidemic data when parameterizing
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models to simulate the transmission dynamics of influenza [13]. However, the model
structure identifiability needs to be tested to avoid the optimization algorithm falling into a
set of the locally optimal solution.

Model identifiability includes structural and practical identifiability, involving
investigation of whether unknown model parameters can be uniquely determined from
noise-free epidemic data and accurately identified from noisy data, respectively [18–24].
The structural identifiability of the model is a fundamental prerequisite for practical
identifiability and for the model to be used in practice [25]. It is necessary, but insufficient,
to accurately identify model parameters from actual noisy data because a model that is
structurally identifiable might be unidentifiable when noisy data are used. The scaling
method, which is a structural identifiability analysis method that has been proposed
in recent years, is based on the scale invariance of the equations [26]. Compared with
existing structural identifiability methods (such as differential algebra), this method
has the advantage of simple operation (no advanced computing skills are required)
and low computational cost, particularly when analyzing high-dimensional non-linear
models [27–30]. This method has been used to analyze the structural identifiability of
mathematical modeling describing biological processes, such as the generalized mass-
action model [31–33].

In this study, we apply the scaling method to analyse the structural identifiability of
several types of commonly used humidity-driven epidemiological models. We investigate
whether the key epidemiological parameters (infectious period, the average duration of
immunity, the average latency period, the maximum and minimum daily basic reproductive
number) can be determined simultaneously when the population prevalence of infected
people is observable.

2. Methods

Here, we briefly introduce the process from building an epidemiological model
to applying the model in real-world applications. After building an epidemiological
model of influenza transmission, we test the structural identifiability of the model
to investigate the properties of the model itself (the upper part of Figure 1). If the
model is structurally identifiable, then we test the practical identifiability of the model,
which determines whether the model is identifiable for noise data (e.g., reported noise),
using synthetic data experiments. If the model is also practically identifiable, then
this model can potentially be used in practice after evaluating its performance for
specific functions (e.g., inference, forecasting, etc.). On the other hand, if a model is
structurally unidentifiable, any parameter estimated by optimization algorithms might
be unreliable; then, we need to consider modifying the model. For some complex
models, for example, agent-based influenza transmission models [34], we can only test
the practical identifiability directly after building the model (the lower part of Figure 1),
as current mathematical methods may not be able to theoretically test the structural
identifiability of these complex models. Here, we mainly focus on testing the structural
identifiability of humidity-driven epidemiological models.

2.1. Humidity-Driven Epidemiological Model

We test the structural identifiability of several commonly used humidity-driven epi-
demiological models. The form of each model is as follows.

1. SIS model:
dS
dt

=
I
D
− β(t)IS

N
− α,

dI
dt

=
β(t)IS

N
− I

D
+ α.

(1)
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2. SIRS model:
dS
dt

=
N − S− I

L
− β(t)IS

N
− α,

dI
dt

=
β(t)IS

N
− I

D
+ α.

(2)

3. SEIR model:
dS
dt

= − β(t)IS
N

− α,

dE
dt

=
β(t)IS

N
− E

W
+ α,

dI
dt

=
E
W
− I

D
.

(3)

4. SEIRS model:
dS
dt

=
N − S− E− I

L
− β(t)IS

N
− α,

dE
dt

=
β(t)IS

N
− E

W
+ α,

dI
dt

=
E
W
− I

D
.

(4)

where N, S, E, and I represent the total number of people, the number of susceptible people,
the number of exposed people, and the number of infectious individuals, respectively.
N = S + I in the SIS model, N = S + I + R in the SIRS model, and N = S + E + I + R in
the SEIR model and the SEIRS model. α represents the rate at which influenza viruses are
imported into the model due to travel. t represents time, such as the day, week or year. β(t)
represents the transmission rate at time t. D represents the mean infectious period in all
four models. L represents the average duration of immunity in the SIRS model and the
SEIRS model. W represents the average latency period in the SEIR model and the SEIRS
model. The flow diagrams of these models are presented in Figure A1 in Appendix A.

Use the model 
in practice

Build model Test structural identifiability

Test practical identifiability

A method — Scaling method:

 Scale all parameters and unobserved variables;


Obtain the scaled version for each functionally 
independent function;


Find the identifiability equations.
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Figure 1. The process from building the model to putting it into use. The grey arrows show the
feedback from testing the model identifiability results to modifying the model. The blue box illustrates
the process of testing the model structural identifiability that our work focuses on.
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The basic reproductive number, R0(t), represents the average number of secondary
infections generated by a primary case in a fully susceptible population at time t, which is
proportional to the transmission rate. The expression is as follows:

R0(t) = β(t)D. (5)

The influenza virus survival and transmission are relative to the absolute humidity
(AH) shown from laboratory experiments [35]. The specific humidity (SH) is a measure of
AH, in which q(t) represents SH at time t. In this model, the humidity factor modulates
R0(t) through an exponential relationship:

R0(t) = e(a·q(t)+b) + R0min, (6)

where a = −180 is estimated by fitting laboratory influenza virus survival to the value
of AH using a regression model. b = log(R0max − R0min), R0max and R0min are the
maximum and minimum daily basic reproductive number, respectively. Parameter sets
Θ1 = {D, R0max, R0min} in the SIS model, Θ2 = {D, L, R0max, R0min} in the SIRS model,
Θ3 = {D, W, R0max, R0min} in the SEIR model and Θ4 = {D, L, W, R0max, R0min} in the
SEIRS model may be estimated by fitting the model to the epidemic data. We analyse the
structural identifiability of these models, which tests whether each parameter set can be
uniquely determined simultaneously when the prevalence data is observable (using the
observation record from the beginning to the end time, such as one influenza season in
temperate regions).

2.2. The Frameworks for the Scaling Method

The scaling method is easy to use for identifying the structural identifiability of a
non-linear model based on simple scaling transformations and the solution of simple
sparse systems of equations [26]. The ordinary differential equations(ODE) model, which
is applied to the frameworks of the scaling method, is as follows:

dxi
dt

= fi(x1, · · · , xs, xs+1, · · · , xn; θ1, · · · , θm),

xi(0) = xi,0, i = 1, · · · , n,
(7)

where xi(0) represents the initial conditions, dxi
dt represents the change of xi over time,

depending on m parameters θj, and the number of state variables is n. fi is a function
characterising the specific details of the change rate of xi. The simplicity of this method
depends on the ability to decompose functions fi as a sum of P functional independent
components, fij,

dxi
dt

= fi(x1, · · · , xs, xs+1, · · · , xn; θ1, · · · , θm)

=
P

∑
j=1

fij(x̄j, θ̄j).
(8)

A property of fij is that fij is functionally independent of fik for every j 6= k. Here,
x̄j and θ̄j represent the subset of variables and parameters of function fij, respectively. In
simple terms, if fi(xi, x2, . . .), . . . , fn(xi, x2, . . .) are linearly independent functions, then the
only solution of the equation

n

∑
i=1

ai fi(x1, x2, . . .) = 0 (9)

is a1 = a2 =, . . . ,= an = 0. The functional independence theorems used in this work are
presented in Appendix A.
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Based on decomposing functions, the steps of the scaling method are as follows:

Step 1. Scale all parameters and unobserved variables using unknown scaling factors, µ:

θi → µθi θi i = 1, · · · , m,

xj → µxj xj j = s + 1, · · · , n,
(10)

and substitute them into Equation (8). The experiment measures variables x1, . . . , xs
without modifying them (n is the total number of state variables, x1, . . . , xs is the
observable state variable and xs+1, . . . , xn is the unobserved state variable).

Step 2. Obtain the scaled version for each functionally independent function. Namely,

fij(x̄j, θ̄j) = fij(x̄j, µθ̄j
θ̄j) i = 1, · · · , s (11)

and
fij(x̄j, θ̄j) =

1
µxi

fij(µx̄j x̄j, µθ̄j
θ̄j) i = s + 1, · · · , n. (12)

Step 3. Find scaling factor combinations that maintain the system invariant. Only the
parameters θ̄j with a solution µθ̄j

= 1 are identifiable. Only the variables, x̄j with
µx̄j = 1 are observable. Otherwise, parameters whose scaling factors are coupled
form identifiable groups but cannot be identified independently.

3. Results

Here, we demonstrate how to use the simple scaling method to test the identifiability
of the four humidity-driven epidemiological models introduced in the Methods section.

We consider a scenario where only I is observed, representing a kind of epidemic data
that can be collected in practice. For example, in the UK, the COVID-19 Infection Survey
identified those people testing positive for coronavirus (COVID-19) in private residential
households (surveillance sensors) at a point in time to help the government make decisions
on how to respond to the emerging epidemic and provide information to the public [36].
This infection survey can, in principle, be extended to survey influenza to identify new
positive cases of influenza regularly around the influenza season. In this scenario, we
can obtain I from the sentinel surveillance systems. We test whether the humidity-driven
epidemiological models in Equations (1)–(4) are structurally identifiable, respectively.

3.1. SIS Model

For the SIS model, we test whether parameter set Θ1 = {D, R0max, R0min} can be
determined uniquely from the observable I. First, we investigate whether the differential
equation in Equation (1) can be decomposed into a sum of linearly independent functions.
This is a prerequisite for using the scaling method. For the differential equation associated
with S, we have:

fS1 =
I
D

, fS2 = − β(t)IS
N

. (13)

According to Theorem A1, the generalized Wronskian determinant is as follows:

WS =

∣∣∣∣40 fS1 40 fS2
41 fS1 41 fS2

∣∣∣∣ =
∣∣∣∣∣ I

D − β(t)IS
N

1
D − β(t)(S+I)

N

∣∣∣∣∣ = − β(t)I2

DN
6= 0. (14)

So, fS1 and fS2 are linearly independent functions. Similarly, for the differential
equation associated with I, we have:

f I1 =
β(t)IS

N
, f I2 = − I

D
. (15)
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The corresponding generalized Wronskian determinant is as follows:

WI =

∣∣∣∣40 f I1 40 f I2
41 f I1 41 f I2

∣∣∣∣ =
∣∣∣∣∣ β(t)IS

N − I
D

β(t)(S+I)
N − 1

D

∣∣∣∣∣ = β(t)I2

DN
6= 0. (16)

So, f I1 and f I2 are linearly independent functions. Next, we explore whether parameter
set Θ1 = {D, R0max, R0min} can uniquely be determined from the observable I using the
scaling method. The steps of the scaling method are as follows:

Step 1. We scale the parameter set Θ1 = {D, R0max, R0min} and the unobserved variable
(S) by unknown scaling factors:

D → µDD,
R0max → µR0max R0max,
R0min → µR0min R0min,

S→ µSS.

(17)

Step 2. We obtain the scaled version for each functional linear independent function in
Equations (13) and (15).

Step 3. We obtain the identifiability equations:

I
µSµDD

=
I
D

, (18)

IµSS
µSNµDD

[
eaq(t)(µR0max R0max − µR0min R0min

)
+ µR0min R0min

]
=

IS
ND

[
eaq(t)(R0max − R0min) + R0min

]
,

(19)

IµSS
NµDD

[
eaq(t)(µR0max R0max − µR0min R0min

)
+ µR0min R0min

]
=

IS
ND

[
eaq(t)(R0max − R0min) + R0min

]
,

(20)

I
µDD

=
I
D

. (21)

Manipulating the above formulas, the identifiability equations are:
µD = 1,
µS = 1,

eaq(t)(µR0max R0max − µR0min R0min
)
+ µR0min R0min

= eaq(t)(R0max − R0min) + R0min.

(22)

From the last formula in Equation (22), we further manipulate this formula and obtain
the following equation:

eaq(t)[(µR0max − 1)R0max − (µR0min − 1)R0min
]
= (1− µR0min)R0min. (23)

eaq(t) is not equal to zero. When the left and right sides of the equation are equal, we have:{
(µR0max − 1)R0max − (µR0min − 1)R0min = 0,
(1− µR0min)R0min = 0, R0max > 0, R0min > 0.

(24)
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By solving the above equation, we can obtain:{
µR0max = 1,
µR0min = 1.

(25)

Therefore, the SIS model is identifiable. Namely, parameter set Θ1 = {D, R0max, R0min}
can be determined uniquely from the observable I.

3.2. SIRS Model

For the SIRS model, we test whether the parameter set Θ2 = {D, L, R0max, R0min} can
be determined uniquely from the observable I. First, we investigate whether the differential
equation in Equation (2) can be decomposed into a sum of linearly independent functions.
For the differential equation associated with S, we have: For the differential equation
associated with S, we have:

fS1 =
N − S− I

L
, fS2 = − β(t)IS

N
. (26)

According to Theorem A1, the generalized Wronskian determinant is as follows:

WS =

∣∣∣∣40 fS1 40 fS2
41 fS1 41 fS2

∣∣∣∣ =
∣∣∣∣∣ N−S−I

L − β(t)IS
N

−2
L − β(t)S

N − β(t)I
N

∣∣∣∣∣ = β(t)[I(I − N) + S(S− N)]

LN
6= 0. (27)

So, fS1 and fS2 are linearly independent functions. Similarly, for the differential
equation associated with I, we have:

f I1 =
β(t)IS

N
, f I2 = − I

D
. (28)

The corresponding generalized Wronskian determinant is as follows:

WI =

∣∣∣∣40 f I1 40 f I2
41 f I1 41 f I2

∣∣∣∣ =
∣∣∣∣∣ β(t)IS

N − I
D

β(t)(S+I)
N − 1

D

∣∣∣∣∣ = β(t)I2

DN
6= 0. (29)

So, f I1 and f I2 are linearly independent functions. Next, we explore whether the
parameter set Θ2 = {D, L, R0max, R0min} can be determined uniquely from the observable
I using the scaling method. The steps of the scaling method are as follows:

Step 1. We scale the parameters and unobserved variables by unknown scaling factors:
D → µDD,
L→ µLL,

R0max → µR0max R0max,
R0min → µR0min R0min,

S→ µsS.

(30)

Step 2. We obtain the scaled version for each functional linear independent function in
Equations (26) and (28).

Step 3. We obtain the identifiability equations:

N − µSS− I
µSµLL

=
N − S− I

L
, (31)

IµSS
µSµD DN [eaq(t)(µR0max R0max − µR0min R0min) + µR0min R0min]

= IS
DN [eaq(t)(R0max − R0min) + R0min],

(32)
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IµSS
µD DN [eaq(t)(µR0max R0max − µR0min R0min) + µR0min R0min]

= IS
DN [eaq(t)(R0max − R0min) + R0min],

(33)

I
µDD

=
I
D

. (34)

Manipulating Equations (31)–(34), the identifiability equations are:
µD = 1,
µS = 1,
µL = 1,

(µR0max − 1)R0max = (µR0min − 1)(1− 1
eaq(t) )R0min

(35)

From the last formula in Equation (35), the left side of Equation (35) is constant, the
right side of this equation is the function of t, and eaq(t) is not equal to zero. For the equation
to be satisfied, µR0max − 1 = 0 and µR0min − 1 = 0. Hence, the system has a unique solution
(µR0max = µR0min = 1). It follows that the SIRS model is identifiable.

3.3. SEIR Model

For the SEIR model, we test whether the parameter set Θ3 = {D, W, R0max, R0min} can
be determined uniquely from the observable I. First, we investigate whether the differential
equation in Equation (3) can be decomposed into a sum of linearly independent functions.
For the differential equation associated with S, we have:

fS1 = − β(t)IS
N

. (36)

According to Theorem A1, the generalized Wronskian determinant is as follows:

WS =
∣∣40 fS1

∣∣ = − β(t)IS
N

6= 0. (37)

So, fS1 is a linearly independent function. Similarly, for the differential equation
associated with E, we have:

fE1 =
β(t)IS

N
, fE2 = − E

W
. (38)

The corresponding generalized Wronskian determinant is as follows:

WE =

∣∣∣∣40 fE1 40 fE2
41 fE1 41 fE2

∣∣∣∣ =
∣∣∣∣∣ β(t)IS

N − E
W

β(t)(S+I)
N − 1

W

∣∣∣∣∣ = β(t)
NW

[E(S + I)− IS] 6= 0. (39)

So, fE1 and fE2 are linearly independent functions. For the differential equation
associated with I, we have:

f I1 =
E
W

, f I2 = − I
D

. (40)

The generalized Wronskian determinant is as follows:

WI =

∣∣∣∣40 f I1 40 f I2
41 f I1 41 f I2

∣∣∣∣ = ∣∣∣∣ E
W − I

D
1

W − 1
D

∣∣∣∣ = I − E
WD

6= 0. (41)

So, f I1 and f I2 are linearly independent functions. Next, we explore whether parameter
set Θ3 = {D, W, R0max, R0min} can be determined uniquely from observable I using the
scaling method. The steps of the scaling method are as follows:
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Step 1. We scale the parameter set Θ3 = {D, W, R0max, R0min} and the unobserved variable
(S) by unknown scaling factors:

W → µWW,
D → µDD,

R0max → µR0max R0max,
R0min → µR0min R0min,

S→ µSS,
E→ µEE.

(42)

Step 2. We obtain the scaled version for each functional linear independent function in
Equations (36), (38) and (40).

Step 3. We obtain the identifiability equations:

IµSS
µSNµDD

[
eaq(t)(µR0max R0max − µR0min R0min

)
+ µR0min R0min

]
=

IS
ND

[
eaq(t)(R0max − R0min) + R0min

]
,

(43)

IµSS
µENµDD

[
eaq(t)(µR0max R0max − µR0min R0min

)
+ µR0min R0min

]
=

IS
ND

[
eaq(t)(R0max − R0min) + R0min

]
,

(44)

µEE
µEµWW

=
E
W

, (45)

µEE
µWW

=
E
W

, (46)

I
µDD

=
I
D

. (47)

According to formulas (45)–(47), it is easy to get:
µW = 1,
µD = 1,
µE = 1.

(48)

Pressing µD = 1 into the formula (43), we can use Equation (23) in the SIS model.
Then by Equation (24) in the SIS model, we can obtain:{

µR0max = 1,
µR0min = 1.

(49)

Next, pressing the above results into formula (44), we can get µS = 1. Therefore, the
SEIR model is identifiable. Namely, the parameter set Θ3 = {D, W, R0max, R0min} can be
uniquely determined from the observable I.

3.4. SEIRS Model

For the SEIRS model, we test whether the parameter set Θ4 = {D, L, W, R0max, R0min}
can be determined uniquely from observable I. First, we investigate whether the differential
equation in Equation (4) can be decomposed into a sum of linearly independent functions.
For the differential equation associated with S, we have:

fS1 =
N − S− E− I

L
, fS2 = − β(t)IS

N
. (50)
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According to Theorem A1, the generalized Wronskian determinant is as follows:

WS =

∣∣∣∣40 fS1 40 fS2
41 fS1 41 fS2

∣∣∣∣ =
∣∣∣∣∣N−S−E−I

L − β(t)IS
N

1
L − β(t)(S+I)

N

∣∣∣∣∣ (51)

=
β(t)
NL

[IS− (N − S− E− I)(S + I)] 6= 0. (52)

So, fS1 and fS2 are linearly independent functions. Similarly, for the differential
equation associated with E, we have:

fE1 =
β(t)IS

N
, fE2 = − E

W
. (53)

The corresponding generalized Wronskian determinant is as follows:

WE =

∣∣∣∣40 fE1 40 fE2
41 fE1 41 fE2

∣∣∣∣ =
∣∣∣∣∣ β(t)IS

N − E
W

β(t)(S+I)
N − 1

W

∣∣∣∣∣ = β(t)
NW

[E(S + I)− IS] 6= 0. (54)

So, fE1 and fE2 are linearly independent functions. For the differential equation
associated with I, we have:

f I1 =
E
W

, f I2 = − I
D

. (55)

The generalized Wronskian determinant is as follows:

WI =

∣∣∣∣40 f I1 40 f I2
41 f I1 41 f I2

∣∣∣∣ = ∣∣∣∣ E
W − I

D
1

W − 1
D

∣∣∣∣ = I − E
WD

6= 0. (56)

So, f I1 and f I2 are linearly independent functions. Next, we explore whether the pa-
rameter set Θ4 = {D, L, W, R0max, R0min} can be determined uniquely from the observable
I using the scaling method. The steps of the scaling method are as follows:

Step 1. We scale the parameter set Θ4 = {D, L, W, R0max, R0min} and the unobserved vari-
able (S) by unknown scaling factors:

L→ µLL,
W → µWW,
D → µDD,

R0max → µR0max R0max,
R0min → µR0min R0min,

S→ µSS,
E→ µEE.

(57)

Step 2. We obtain the scaled version for each functional linear independent function in
Equations (50), (53) and (55).

Step 3. We obtain the identifiability equations:

N − µSS− µEE− I
µSµLL

=
N − S− E− I

L
. (58)

IµSS
µSNµDD

[
eaq(t)(µR0max R0max − µR0min R0min

)
+ µR0min R0min

]
=

IS
ND

[
eaq(t)(R0max − R0min) + R0min

]
,

(59)
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IµSS
µENµDD

[
eaq(t)(µR0max R0max − µR0min R0min

)
+ µR0min R0min

]
,

=
IS

ND

[
eaq(t)(R0max − R0min) + R0min

]
,

(60)

µEE
µEµWW

=
E
W

, (61)

µEE
µWW

=
E
W

, (62)

I
µDD

=
I
D

. (63)

Similar to the previous derivation of the corresponding part of the SEIR model, it is
easy to obtain: 

µL = 1,
µW = 1,
µD = 1,
µR0max = 1,
µR0min = 1,
µS = 1,
µE = 1.

(64)

Therefore, the SEIRS model is identifiable. Namely, the parameter set Θ4 = {D, L, W,
R0max, R0min} can be determined uniquely from the observable I.

4. Discussion

In some existing studies, the authors explored the performance of different data as-
similation algorithms when inferring parameters from observational epidemic data [13].
For example, ensemble filters are better at reproducing historical influenza incidence time
series than particle Markov chain Monte Carlo. However, we still do not know whether
the model is structurally unidentifiable, which affects the performance of the optimization
algorithms. In this study, we applied the scaling method to analyse the structural identi-
fiability of four types of commonly used humidity-driven epidemiological models when
prevalence data is observable. Specifically, we investigated whether each parameter set
Θ1 = {D, R0max, R0min} in the SIS model, Θ2 = {D, L, R0max, R0min} in the SIRS model,
Θ3 = {D, W, R0max, R0min} in the SEIR model and Θ4 = {D, L, W, R0max, R0min} in the
SEIRS model can be uniquely determined (D is the infectious period, L is the average
duration of immunity, W is the latency period, and R0max, R0min are the combination of
the maximum and minimum daily basic reproductive number and the minimum daily
basic reproductive number). We find each model is identifiable when the prevalence is
observable. Aside from considering prevalence data as observational data, this study
also considered the number of new cases as observational data. For example, when we
introduced the differential equation of the new case changes over time in the SIRS model,
the differential equation decomposition components (obtained based on Equation (8) from
the frameworks of the scaling method part) are not linear-independent. So the scaling
method cannot be used to determine whether the model is structurally identifiable when
the new cases are observable.

Much work needs to be done to further test, validate, and improve the ability of
humidity-driven epidemiological models to predict influenza activity. In the future, we
will test more expanded humidity-driven epidemiological models (such as a model that
includes more than one exposed state) to provide theoretical support for these models
to be used in practice. This investigation involved testing of the structure identifiability
of different humidity-driven epidemiological models. In the future, we will assess the
practical identifiability of these models to provide synthetic experimental support to enable
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these models to be used in practice. In addition, we will explore other model structure
identifiability methods to test the structural identification of the humidity-driven epidemi-
ological model when the number of new cases is observable. We will also consider more
data types, such as the cumulative number of incidences.

In conclusion, our analysis suggests that the structural identifiability of these models
can lay the foundation for testing practical identifiability in the future. In practice, epidemi-
ological models should be examined with caution before using them to estimate model
parameters from epidemic data.
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Appendix A

We show the theorem to prove that the functions in the humidity-driven epidemiolog-
ical model are linearly independent.

Theorem A1 ((Generalized Wronskian theorem) [37]). Let ∆0, · · · , ∆n−1 be differential opera-
tors denoting by

∆s = (
∂

∂x1
)j1 · · · ( ∂

∂xm
)jm , j1 + · · ·+ jm 6 s. (A1)

Then if the generalized Wronskian, W, over the functions fi(x1, x2, · · · , xm), with i = 1, · · · , n,

W =

∣∣∣∣∣∣
∆0 f1 · · · ∆0 fn
· · · · · · · · ·

∆n−1 f1 · · · ∆n−1 fn

∣∣∣∣∣∣ (A2)

is different from zero, then functions fi are linearly independent. The only solution of the equation

n

∑
i=1

ai fi(x1, x2, · · · ) = 0 (A3)

is a1 = · · · = an = 0.
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SIS model: 

 

 
 

SIRS model: 

 
 
 

SEIR model: 

 
 
 

SEIRS model: 

 
 
 Figure A1. Flow diagram of the four types of humidity-driven epidemiological models.
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