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Abstract: Since the first confirmation of African swine fever (ASF) in domestic pig farms in South
Korea in September 2019, ASF continues to expand and most notifications have been reported in wild
boar populations. In this study, we first performed a spatio-temporal cluster analysis to understand
ASF spread in wild boar. Secondly, generalized linear logistic regression (GLLR) model analysis
was performed to identify environmental factors contributing to cluster formation. In the meantime,
the basic reproduction number (R0) for each cluster was estimated to understand the growth of
the epidemic. The cluster analysis resulted in the detection of 17 spatio-temporal clusters. The
GLLR model analysis identified factors influencing cluster formation and indicated the possibility of
estimating ASF epidemic areas based on environmental conditions. In a scenario only considering
direct transmission among wild boar, R0 ranged from 1.01 to 1.5 with an average of 1.10, while, in
another scenario including indirect transmission via an infected carcass, R0 ranged from 1.03 to 4.38
with an average of 1.56. We identified factors influencing ASF expansion based on spatio-temporal
clusters. The results obtained would be useful for selecting priority areas for ASF control and would
greatly assist in identifying efficient vaccination areas in the future.

Keywords: African swine fever; spatio-temporal epidemiology; wild boar; basic reproduction number
(R0); Asia; South Korea; regression model; environmental factor

1. Introduction

African swine fever (ASF), caused by the ASF virus (ASFV), is one of the most im-
portant transboundary animal diseases. ASFV is a double-stranded DNA virus of about
170–190 kbp and belongs to the family Asfaviridae. Pigs, including wild boar, are generally
regarded as susceptible hosts. The clinical signs exhibited by infected individuals vary
and are classified into four main stages based on clinical presentations and pathological
lesions: peracute, acute, subacute, and chronic [1]. Susceptible animals can become infected
via direct contact with infected individuals [2,3]. In addition, indirect contact with ASFV-
contaminated material may play an important role in the spread of the virus over long
distances [4]. One of the main characteristics of ASFV is its high environmental resistance.
It is well known that the virus can maintain its infectivity for a long time under various
conditions. The virus is shed in large quantities in the blood where the virus can survive
for 15 weeks at room temperature, months at 4 ◦C, and indefinitely when frozen [5]. In the
case of raw meat, it can survive for more than three months in meat and offal [6]. Feces
and urine are also infectious; the half-life of the virus in urine is 15 days depending on the
environmental temperature [7], and in feces, it is reported to be 5–8 days, but viral DNA
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can be detected for up to 2–4 years [7]. Infected carcasses could contaminate soil and be
exposed to other wild boar, which heightens the risk of disease spread [4,5].

In Asia, since the first ASF notification was reported in China in 2018, outbreaks
have been confirmed in 17 countries (China, Mongolia, Vietnam, Cambodia, North Korea,
Laos, Myanmar, the Philippines, South Korea, East Timor, Indonesia, Papua New Guinea,
India, Malaysia, Bhutan, Thailand, and Nepal) as of the end of September 2022 [8]. Most
of these ASF-affected countries reported the disease in domestic pig sectors, which was
presumably due to inadequate biosecurity measures and illegal trade of infected pigs, as
well as the transport of contaminated pork products [9]. Contrary to this, the majority
of notifications in South Korea have been reported in wild boar populations [10]. The
first ASF outbreak was confirmed in September 2019 at a pig farm in the northwestern
part of the country [11]. About half a month later, the first ASF case in wild boar was
reported along the border with North Korea, about 33.5 km distant from the first reported
ASF-outbreak pig farm [11]. Immediately after confirmation of the wild boar case, fencing
around the case-reported area was implemented to contain further spread of ASF infection
in wild boar [12]. Since then, the government has been actively working on population
control by searching for and hunting wild boar, as well as installing fences around infected
areas to prevent the spread of infection within the wild boar population [12]. In South
Korea, government-led search teams are organized nationwide, by region, to search for
wild boar on a constant basis [11,13]. The search teams are composed of a variety of people,
including civilians, hunters, and military personnel, and the government facilitates the
search by offering a bounty for the discovery of wild boar. Search areas are concentrated
in and around fenced infected areas, and when a carcass is found, they are obligated to
report it to the municipality. These carcasses are to be buried at the place of discovery
after being sampled. Recently, drones have been introduced to search inaccessible areas
and detection dogs are used to search for carcasses [14,15]. However, the number of
infected wild boar continues to increase while expanding the infected areas (Gangwon-do,
Gyeonggi-do, Chungcheongbuk-do, and Gyeongsangbuk-do), with 2661 cases reported as
of the end of September 2022 [16]. During this period, strict management of biosecurity
measures has also been promoted at pig farms to prevent the virus from entering the
farms [12]. However, ASF outbreaks on pig farms have occurred sporadically each year,
with 27 outbreaks reported as of the end of September 2022 [16] (Figure 1).

To control ASF, it is crucial to understand the epidemiology of the disease and deter-
mine the factors that influence its spread. This requires a holistic understanding of the
natural, geographical, and socio-cultural background of the disease, as well as ecological
knowledge. The population density of wild boar is one of the important factors contributing
to disease expansion, while related information is limited in most cases. In South Korea,
information regarding wild boar population density is disclosed by the government [17]
and relevant information is also available in some areas [18]. However, on a national scale,
detailed data on habitat distribution and density are largely unknown [19].

The objective of this study was to elucidate the spread of ASF in wild boar populations
by spatio-temporal epidemiological analysis and to identify the influence of environmental
factors on the epidemic status. Furthermore, the evolution of ASF in wild boar populations
was elucidated by determining basic reproduction numbers in infected populations.
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Figure 1. African swine fever notifications in South Korea as of the end of September 2022. The
map was depicted in ArcGIS software version 10.8.1 based on the given data. Red circle indicates
outbreaks in domestic pig farms, while green triangles represent wild boar cases.

2. Materials and Methods

Based on the geographic and temporal data obtained regarding ASFV PCR-positive
wild boar, a spatio-temporal cluster analysis was performed. Then, generalized linear
logistic regression (GLLR) models were used to analyze environmental factors that may
contribute to cluster formation. In the meantime, we estimated the basic reproduction
number (R0) within each cluster to understand the growth of the epidemic in the wild
boar population.

2.1. Epidemiological Data Preparation

Epidemiological information about ASFV PCR-positive wild boar (geographic coordi-
nates and notification date) reported between 16 September 2019 and 1 September 2022
was provided by the Dodram pig research center, South Korea [20].

2.2. Identification of Spatio-Temporal Clusters

A space-time permutation technique was applied to identify the spatial and temporal
concentrations of ASF cases in wild boar during the study period. Three key parameters had
to be determined for the implementation of the model: the maximum size of the temporal
and spatial clusters and the time aggregation. A previous study indicated that ASF cases
in wild boar relate to the season [21]. There are indeed seasonal variations in the ASF
epidemic trend in South Korea [22]. Thus, we set a maximum window size of 90 days. The
minimum time aggregation was set as seven days to consider the within-week variability
of surveillance activities [23]. To define the maximum size of the spatial clusters, a multi-
distance spatial cluster analysis tool based on Ripley’s K function was applied on ArcGIS
software version 10.8.1 (ESRI, Redlands, CA, USA) following the manufacturer’s tool



Viruses 2022, 14, 2779 4 of 16

guidance [24]. For the analysis of the spatial pattern of ASF cases in wild boar, observed K
values were compared to the expected K values of a completely random spatial distribution
of ASF detection with 999 simulations, equivalent to a confidence level of 99.9%. Diff K
contains the observed K values minus the expected K values. In this study, the expected
K values giving the highest diff K were set as the upper limit on the geographical size of
the cluster. A Monte Carlo process was implemented using 999 replications to test for the
presence of candidate clusters (p ≤ 0.05). Analyses were performed in SaTScan software
v9.6 (Kulldorff, Boston, MA, USA) [25].

2.3. Identification of Environmental Factors Contributing to Spatio-Temporal Cluster Formation
Based on GLLR Model

The density of wild boar is presumed to be one of the factors contributing to ASF
spread, but the associated information is usually limited. Thus, an attempt was made
to estimate areas with a high number of ASF cases in wild boar based on environmental
factors. To examine the influence of environmental factors on spatio-temporal cluster
formation, a generalized linear logistic regression (GLLR) model was developed with
a binary response (logit link). A binary number was selected for the response variable,
whether the wild boar case formed a spatio-temporal cluster or not (1 for in-cluster and
0 for out-of-cluster). Various environmental variables were selected as explanatory vari-
ables based on previous studies, knowledge, and experience: elevation, distance from
road (roadway and sidewalk), wild boar distribution index, travel time to major cities,
soil moisture, temperature seasonality (bioclim 4), temperature annual range (bioclim 7),
precipitation seasonality (bioclim 15), precipitation of warmest quarter (bioclim 18), and
precipitation of coldest quarter (bioclim 19). Previous studies identified Elevation as a
factor that affects wild boar habitat [26]. The data were obtained from the SRTM 90 m DEM
Digital Elevation Database [27]. Some infected areas may not have adequate surveillance
due to the precipitous mountain ranges, and thus the distance from the nearest road to
the wild boar case was included as a variable. Road maps (roadway and sidewalk) were
retrieved from the Korea National Spatial Data Infrastructure Portal [28] and distance from
road was then calculated with the “Near” tool in ArcGIS 10.8.1 [29]. The wild boar distribu-
tion index was generated by multiplying the seasonal normalized difference vegetation
index (NDVI) [30] and quality of available habitat (QAH) map for wild boar developed by
Bosch et al., [31]. The QAH map is a tool that quantifies the optimal habitat for wild boar on
seven levels (0, 0.1, 0.5, 1, 1.5, 1.75, 2) [32]. NDVI is an index measuring the quantity, quality
and development of vegetation and is thus often incorporated in the species distribution
model as one of the predictors [33]. Travel time to major cities was defined as the travel
time to a location of interest using land (road/off-road) or water (navigable river, lake
and ocean) from places with a population of 50,000 people or more [34]. As such, it can
be assumed as an indirect indicator of landscapes such as urban and rural areas. Data
were available from the Forest Resources and Carbon Emissions database managed by the
Directorate-General for Joint Research Centre [34]. As ASF cases in wild boar have been
found both in natural areas and in agroforestry and agro-urban areas, the variable was
used to assess the impact of different landscapes. Soil moisture is considered one of the
variables that determines surface ecosystem health and stress [35] and may be indirectly
related to vegetation cover and food resource availability as it affects a range of soil and
plant dynamics. The soil moisture data were retrieved from the Center for Sustainability
and the Global Environment database [36]. The association between ASF cases in wild
boar and climatic factors has been well discussed and used in previous studies [37]. From
these, we selected several factors based on our knowledge and experience. Data on climatic
factors were obtained from WorldClim; temperature seasonality (bioclim 4), temperature
annual range (bioclim 7), precipitation seasonality (bioclim 15), precipitation of warmest
quarter (bioclim 18), and precipitation of coldest quarter (bioclim 19) [38].

Since no simple linear relationship was found between response and explanatory
variables, all explanatory variables were categorized [39]. Variables were equally divided



Viruses 2022, 14, 2779 5 of 16

such that the sample size for each category was as equal as possible. A single regression
analysis was performed to examine the relationship between each explanatory and response
variable. Variables with a p-value greater than 0.15 were excluded at this stage. Likelihood
ratio tests were used to compare models with the explanatory variables of interest to
null models with no explanatory variables. The null hypothesis was “of the two models
compared, the more complex model has the same or less goodness of fit to the data than the
less complex model”. If the p-value was very small (less than p = 0.05), the null hypothesis
was rejected, and the variable of interest was selected as a candidate for inclusion in the
multivariate model. This step was performed with the “lrtest” function of the “lmtest”
package in the R programming environment [40].

The GLLR model was developed using the “glmer” function in the “lme4” package [41]
with the explanatory variables selected in the univariate analysis as fixed effects and the season
(Spring: Mar–May; Summer: Jun–Aug; Autumn: Sep–Nov and Winter: Dec–Feb) as random
effects. Variance inflation factor (VIF) analysis was performed using the “vif” function in the
“car” package [42] to account for multicollinearity among the explanatory variables. Here,
variables with a VIF > 3 were eliminated. The backward elimination and forward selection
procedures were then used to select the best model (criterion: p-value ≤ 0.05). All analyses were
performed under the R programming environment.

The le Cessie-van Houwelingen normal test, proposing a class of tests based on
smoothed residuals, was used to determine the goodness of fit of the model (criterion:
p-value ≤ 0.05) [43,44]. A receiver operating characteristic (ROC) curve was complimentar-
ily drawn and subsequently area under the curve (AUC) was calculated. An AUC of 1 was
the most optimal and a value of 0.5 implied no better than a random model [45].

2.4. Estimation of Basic Reproduction Number (R0) in the Spatio-Temporal Cluster

The basic reproduction number (R0) is a well-known epidemiological indicator of the
contagiousness of an infectious disease [46]. When an infectious agent enters a susceptible
population, the average number of secondary infectious agents that reproduce during the
entire infectious period is defined as R0. If R0 > 1, the epidemic will expand, but if R0 < 1, the
epidemic will spontaneously disappear. The basic mathematical model for determining R0
is called the SIR model, which divides the population into three compartments (susceptible,
infectious, and removed/recovered) according to the stage of infection and models the
temporal changes in infection-related status [47]. However, when determining R0 for
wildlife infections, the number of susceptible populations is usually unknown. To address
these issues, an attempt was made to assume that cases grow at an exponential rate during
the early stages of the epidemic and compute R0 at this stage as a function of doubling
time and infectious period [47,48]. Estimation of R0 for the ASF epidemic in wild boar
populations has been performed several times in combination with spatio-temporal cluster
analysis [49–51]. Here, we followed previous studies to calculate R0 within each spatio-
temporal cluster detected.

Initially, case data assigned to each spatio-temporal cluster was log-transformed and
fitted to a linear model to evaluate the fit of the data sets to an exponential distribution.
Adjusted R-squared values were obtained to assess model fit for each subset. These
steps were performed with Microsoft Excel. According to Anderson et al. [47], given the
assumption that outbreaks increase exponentially in the initial epidemic, the number of
cases λ(t) at time t can be estimated from the initial number of cases λ(0) and the growth
rate Λ using the following formula.

λ (t) = λ (0)e(Λt)

Growth rate Λ can then be expressed as follows.

Λ = (R0 − 1)/D
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Citing previous literature [48,50], R0 can be obtained by the following equation based
on the above equations, assuming the initial number of cases is 1.

R0 = 1 + (D/td) ln2

where D indicates the infectious period, and td is the time taken for the number of infections
to double. While the value of td could be calculated from the epidemic curve within a
cluster [48,50], D had to be determined based on virological and epidemiological insights.
In this study, we considered “wild boar–habitat cycle”, which is characterized by both
direct transmission between infected and susceptible wild boar and indirect transmission
via carcasses in the habitat [52]. The transmission cycle may differ depending on the
infected area and the timing of the occurrence. Some areas may be well-surveilled with
most infected carcasses being quickly detected and properly removed. On the other hand,
there may be areas where surveillance is inadequate and infected carcasses are left for
long periods of time due to geographical or weather conditions, or low priority of the
surveillance, etc. In the real situation, we believed these scenarios to be mixed, depending
on location and time period. Unfortunately, there was no information available about this.
Alternatively, we have indicated two separate scenarios. The first only considers direct
transmission between wild boar. This scenario assumes that most ASF-infected carcasses
were found by surveillance or decomposed quickly, such that carcasses were not included
in the transmission cycle. According to the previous study, the infectious period of a highly
virulent ASFV strain is between 2 and 9 days, assuming direct transmission between wild
boar [53]. Assuming that the prevalent strain in South Korea is also highly virulent [54],
the minimum and maximum D was set as 2 and 9 days, respectively. On the other hand,
positing the second scenario, wherein infected carcasses were not promptly removed but
remained, indirect transmission via these carcasses may play an important role in the spread
of ASF in the wild boar population [55]. In this case, the infectious period was considered
to be highly dependent on environmental factors, such as temperature, vegetation, and
sunlight [56,57]. Here, this was taken as the period between infection and skeletonization of
wild boar (when the carcass decomposes into skin and bones), referring to a previous study
conducted in South Korea on seasonal patterns of carcass decomposition [58]. In summer,
it took 7–12 days for fresh carcasses to skeletonize, while in winter this required 11–51 days.
Thus, the minimum and maximum D in each cluster was set considering the influence of the
season. As information regarding spring and autumn was not available, the average D for
winter and summer was applied. Hence, minimum, and maximum Ds in spring, summer,
autumn, and winter were set as 11–40.5, 9–21, 11–40.5, and 13–60 days, respectively. Since
no further information was available, we assumed a uniform distribution and performed
10,000 iterations to compute R0 in the R programming environment.

3. Results

Epidemiological information was obtained for a total of 2658 ASF wild boar cases
confirmed by a PCR test in the government laboratory.

3.1. Identification of Spatio-Temporal Clusters

The upper limit of the geographical size of the cluster was set as 23.7 km, which re-
sulted from multi-distance spatial cluster analysis. A total of 17 significant spatio-temporal
clusters were detected (p ≤ 0.05) (Figure 2). No spatio-temporal clusters were detected in
2019. Many clusters were detected in 2020–2021, mainly in the northern part of the country.
These were found repeatedly in the same areas in different periods. Multiple clusters
detected from the end of 2021 to July 2022 were located in more southern areas (Table 1).
This suggested that the epidemic center was gradually moving southward. Classifying
each season as spring (March to May), summer (June to August), autumn (September to
November), and winter (December to February), most clusters were found in winter (n = 9),
followed by summer (n = 4), spring (n = 3) and autumn (n = 1).
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Table 1. Detailed information regarding each spatio-temporal cluster and R0. Scenario 1 considers direct transmission between wild boar, while Scenario 2 includes
indirect transmission via infected carcasses. The season containing more days was assigned.

Cluster
No.

Number of
Cases Start Date End Date Season

Case
Doubling

Time (Day)

Adjusted
R-Square

Scenario 1 R0
(Dmin, max = 2, 9)

Confidence
Interval

(95%)

Scenario 2
R0

Confidence
Interval

(95%)

Scenario 2
D (min–max)

1 165 2020/1/9 2020/4/1 Winter 37.5 0.95 1.10 1.04–1.16 1.66 1.27–2.09 13–60

2 159 2020/1/16 2020/4/8 Winter 35.7 0.93 1.11 1.04–1.17 1.72 1.28–2.14 13–60

3 43 2020/3/12 2020/5/13 Spring 63.6 0.93 1.06 1.02–1.1 1.28 1.13–1.43 11–40.5

4 32 2020/8/13 2020/11/4 Autumn 117.5 0.96 1.03 1.01–1.05 1.15 1.07–1.23 11–40.5

5 18 2020/12/3 2020/12/16 Winter 12.1 0.83 1.33 1.13–1.51 3.06 1.81–4.38 13–60

6 135 2021/1/7 2021/3/17 Winter 32.1 0.93 1.12 1.05–1.19 1.82 1.3–2.27 13–60

7 66 2021/1/21 2021/4/14 Winter 55.0 0.96 1.07 1.03–1.11 1.45 1.18–1.74 13–60

8 42 2021/2/11 2021/5/5 Spring 73.0 0.96 1.05 1.02–1.08 1.25 1.11–1.38 11–40.5

9 9 2021/6/17 2021/7/21 Summer 105.0 0.97 1.04 1.01–1.06 1.10 1.06–1.14 9–21

10 11 2021/7/8 2021/8/25 Summer 138.6 0.95 1.03 1.01–1.04 1.07 1.05–1.1 9–21

11 62 2021/7/22 2021/9/15 Summer 36.3 0.92 1.11 1.04–1.17 1.29 1.18–1.39 9–21

12 99 2021/11/18 2022/1/5 Winter 29.1 0.65 1.13 1.05–1.21 1.84 1.34–2.4 13–60

13 50 2021/12/23 2022/2/16 Winter 51.0 0.93 1.07 1.03–1.12 1.49 1.2–1.8 13–60

14 189 2022/1/6 2022/3/30 Winter 36.1 0.94 1.11 1.04–1.17 1.70 1.28–2.13 13–60

15 95 2022/2/3 2022/4/27 Spring 56.4 0.95 1.07 1.03–1.11 1.31 1.14–1.49 11–40.5

16 35 2022/2/17 2022/3/9 Winter 19.7 0.80 1.20 1.08–1.31 2.30 1.5–3.07 13–60

17 5 2022/6/9 2022/7/6 Summer 231.0 0.70 1.02 1.01–1.03 1.05 1.03–1.06 9–21
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Figure 2. Locations of the significant space-time clusters of African swine fever (ASF) cases in wild
boar. The spatio-temporal clusters are depicted by light blue circles, and the clusters are ordered
chronologically.

3.2. Identification of Environmental Factors Contributing to Spatio-Temporal Cluster Formation
Based on a GLLR Model

As a result of univariate analysis, the precipitation seasonality (bioclim 15) variable
was excluded from the candidate explanatory variables at this stage (p > 0.15) (Table 2). A
subsequent likelihood ratio test against the null model excluded the temperature seasonality
(bioclim 4) variable and selected the remaining variables as candidates for inclusion in the
GLLR model (p ≤ 0.05).

Since all explanatory variables had a VIF < 3, no variables were eliminated in terms
of multicollinearity. After the backward elimination and forward selection procedure, the
GLLR model was finally constructed with variables of elevation, distance from road, wild
boar distribution index, travel time to major cities, soil moisture, temperature annual range
(bioclim 7), precipitation of warmest quarter (bioclim 18), and precipitation of coldest
quarter (bioclim 19) as fixed effects and season as random effects. Elevation and travel
time to major cities were positively related to the response variables, but the wild boar
distribution index related differently to the response variable depending on the grade. The
remaining variables were negatively correlated with the response variable (Table 3).
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Table 2. Results of univariate analysis: the relationship between response and explanatory variables.
Each explanatory variable was categorized (equally divided from grade I to a maximum of V by
descending value). Variables with p-values less than 0.15 (in bold) were advanced to the next step.

Variables Grade
(Threshold)

Total Samples
(n = 2578) Coefficients Standard

Errors p-Value

Elevation

Grade I (232) 648 - - -
Grade II (352) 649 −0.185 0.079 0.099
Grade III (490) 640 0.261 0.112 0.020
Grade IV (1157) 641 0.082 0.112 0.459

Distance from road (roadway and
sidewalk)

Grade I (276.2) 645 - - -
Grade II (602) 644 −0.009 0.111 0.933

Grade III (1171.5) 644 −0.072 0.112 0.521
Grade IV (6887.1) 645 −0.295 0.112 0.009

Wild boar distribution index

Grade I (0.415) 516 - - -
Grade II (0.504) 517 0.216 0.125 0.086
Grade III (0.628) 514 −0.070 0.125 0.576
Grade IV (0.761) 517 −0.675 0.127 >0.001

Grade V (1) 514 0.794 0.128 >0.001

Travel time to major cities

Grade I (57) 647 - - -
Grade II (107.5) 642 −0.048 0.112 0.670
Grade III (213) 645 −0.252 0.112 0.025
Grade IV (860) 644 0.146 0.111 0.191

Soil moisture

Grade I (137.6) 775 - - -
Grade II (139.6) 975 −0.670 0.098 >0.001
Grade III (141.3) 258 −0.280 0.144 0.053
Grade IV (143.2) 570 −0.965 0.114 >0.001

Temperature seasonality (bioclim 4)

Grade I (9726.3) 645 - - -
Grade II (10,073) 646 −0.264 0.112 0.018

Grade III
(10,226.8) 642 −0.221 0.112 0.048

Grade IV (10,435) 645 −0.311 0.112 0.005

Temperature annual range (bioclim 7)

Grade I (381) 656 - - -
Grade II (390) 670 −0.14 0.110 0.189

Grade III (396) 650 −0.27 0.111 0.015
Grade IV (411) 602 −0.36 0.114 0.002

Precipitation seasonality (bioclim 15)

Grade I (81) 660 - - -
Grade II (91) 641 0.099 0.111 0.374
Grade III (98) 656 −0.062 0.111 0.573

Grade IV (105) 621 0.039 0.112 0.728

Precipitation of warmest quarter
(bioclim 18)

Grade I (731) 658 - - -
Grade II (792) 634 0.190 0.112 0.089
Grade III (849) 651 0.161 0.111 0.145
Grade IV (911) 635 −0.209 0.112 0.064

Precipitation of coldest quarter
(bioclim 19)

Grade I (72) 693 - - -
Grade II (78) 610 −0.247 0.112 0.027
Grade III (94) 640 −0.060 0.110 0.583

Grade IV (163) 635 0.093 0.110 0.397
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Table 3. Results of the Generalized linear logistic regression analysis. Variables with p-values less
than 0.05 are shown in bold.

Variables Variable
Total

Samples
(n = 2578)

Coefficients Standard
Errors Odds Ratio (95% CI) p-Value VIF

Elevation

Grade I 648 - - - -

1.38
Grade II 649 0.530 0.164 1.70 (1.24–2.35) 0.001
Grade III 640 1.142 0.195 3.13 (2.14–4.60) >0.001
Grade IV 641 1.062 0.237 2.89 (1.82–4.61) >0.001

Distance from
road (roadway
and sidewalk)

Grade I 645 - - - -

1.04
Grade II 644 −0.130 0.125 0.88 (0.69–1.12) 0.300
Grade III 644 −0.210 0.127 0.81 (0.63–1.04) 0.099
Grade IV 645 −0.519 0.132 0.60 (0.46–0.77) >0.001

Wild boar
distribution

index

Grade I 516 - - - -

1.08
Grade II 517 0.173 0.150 1.19 (0.89–1.60) 0.248
Grade III 514 −0.071 0.154 0.93 (0.69–1.26) 0.646
Grade IV 517 −0.378 0.190 0.69 (0.47–0.99) 0.047
Grade V 514 0.643 0.261 1.90 (1.15–3.21) 0.014

Travel time to
major cities

Grade I 647 - - - -

1.10
Grade II 642 0.137 0.132 1.15 (0.89–1.49) 0.299
Grade III 645 −0.004 0.144 1.00 (0.75–1.32) 0.976
Grade IV 644 0.465 0.154 1.59 (1.18–2.15) 0.002

Soil moisture

Grade I 775 - - - -

1.31
Grade II 975 −1.341 0.158 0.26 (0.19–0.36) >0.001
Grade III 258 −0.219 0.181 0.80 (0.56–1.15) 0.226
Grade IV 570 −1.005 0.155 0.37 (0.27–0.50) >0.001

Temperature
annual range

(bioclim 7)

Grade I 656 - - - -

1.36
Grade II 670 −0.817 0.182 0.44 (0.31–0.63) >0.001
Grade III 650 −1.230 0.224 0.29 (0.19–0.45) >0.001
Grade IV 602 −1.068 0.227 0.34 (0.22–0.54) >0.001

Precipitation of
warmest quarter

(bioclim 18)

Grade I 658 - - - -

1.46
Grade II 634 0.561 0.162 1.75 (1.28–2.41) >0.001
Grade III 651 0.420 0.207 1.52 (1.02–2.29) 0.042
Grade IV 635 −0.107 0.260 0.90 (0.54–1.50) 0.679

Precipitation of
coldest quarter

(bioclim 19)

Grade I 693 - - - -

1.78
Grade II 610 −0.748 0.207 0.47 (0.31–0.71) >0.001
Grade III 640 −1.698 0.266 0.18 (0.11–0.31) >0.001
Grade IV 635 −1.834 0.317 0.16 (0.09–0.30) >0.001

The null hypothesis of the le Cessie-van Houwelingen normal test is “no lack of fit”.
The results obtained presented a p-value of 0.199, thus indicating the validity of our model.
The ROC curve was drawn based on the multivariate model obtained and the AUC was
calculated to be 0.743 (Figure 3).
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Figure 3. ROC curve (receiver operating characteristic curve) for the Generalized linear logistic
regression model was plotted with the true positive ratio (Se) against the false positive ratio (1-Sp),
where Se represented the y-axis and 1-Sp the x-axis.

3.3. Estimation of Basic Reproduction Number (R0) in the Spatio-Temporal Cluster

In Scenario 1, which only assumed direct transmission among wild boar, R0 ranged
from 1.01 to 1.51, with an average of 1.10. In scenario 2, which also included indirect
transmission via infected carcass, R0 ranged from 1.03 to 4.38, with an average of 1.56
(Table 1). The adjusted R-square value was generally higher. Of the 17 clusters, 13 were
over 0.9 and two over 0.8. The remainder were 0.7 and 0.65.

4. Discussion

The current approach was implemented to understand the evolution of ASF in wild
boar populations and the influence of environmental factors on cluster formation. The
results of the spatio-temporal cluster analysis indicated that, while clusters were repeatedly
detected at different times in the same area, some clusters were detected in more southern
areas in 2022. Of the 17 clusters detected, nine were identified in winter, which is consistent
with the seasonal variation in the number of ASF case reports among wild boar in South
Korea (the number of reports peaks in winter, with the lowest number in summer). It is
assumed that finding animals is more difficult in summer because of the thick foliage on
the trees, whereas, in winter, the leaves fall off the trees making it easier to detect wild boar.
Active surveillance searching for wild boar is regularly conducted throughout the year.
However, these natural phenomena might contribute to the seasonality trend in the case of
ASF in wild boar.

Spatio-temporal cluster analysis depends on spatio-temporal information regarding
wild boar cases. However, the multivariate analysis results obtained suggested the pos-
sibility of predicting ASF hotspots in wild boar based on environmental conditions and
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timing of occurrence in South Korea (AUC: 0.743). In general, an AUC of 0.7 or higher
is considered “good” accuracy, and 0.8 or higher is considered “excellent” accuracy. In
countries where disease outbreaks are endemic, prioritization of control areas is not a
straightforward task. Disease control can be even more complex, especially when target
animal populations fluctuate widely and have large distribution areas. For the purpose
of estimating the distribution area and population density of wild boar, camera traps are
commonly used to observe the behavior patterns of wild boar. While highly reliable data
can be obtained, it is difficult to implement over a wide area from the standpoint of cost
and time. In this respect, if we can identify areas where outbreaks are likely to be clustered
based on environmental conditions, more efficient countermeasures can be taken.

Multivariate analysis showed that the explanatory variables elevation, travel time to
major cities and precipitation of warmest quarter (bioclim 18) were positively correlated
with spatio-temporal cluster formation as a response variable. Negative correlations were
observed for distance from road, soil moisture, temperature annual range (bioclim 7), and
precipitation of coldest quarter (bioclim 19). The wild boar distribution index showed
a positive correlation in grade V but a negative correlation in grade IV. The affected
area extends around the Taebaek Mountains that traverse the eastern part of the Korean
Peninsula. Considering that the lower elevation areas are human habitation areas and
higher elevation areas are mountainous but human-accessible areas, it is understandable
that Grades III and IV have a strong positive correlation with the response variable. We
hypothesized that differences in the behavioral patterns of wild boar in forested and near-
urban areas [59] might have some influence on the spread of infection, but our study did
not provide sufficient results to support this assumption. A positive correlation with the
variable of travel time to major cities was found in grade IV, which indicated that ASF cases
were concentrated in remote forest areas. This might be because wild boar are cautious
animals, and their preferred habitat areas are resource-rich forested areas [60]. The wild
boar distribution index is a quantified measure of habitat quality for wild boar and was
used to indirectly describe their abundance. Here, grade V showed a significant positive
correlation with the response variable. It has been pointed out that wild boar seek out
their last resting place after infection with ASF [61], and the Grade V area is considered
to be such an area. Assuming that direct contact between infected carcasses and wild
boar could occur [62], this would explain the significant effect on cluster formation. The
present results for the variables temperature annual range (bioclim 7) and precipitation
of warmest quarter (bioclim 18) were consistent with findings from previous studies. A
negative correlation between wild boar density and temperature annual range (bioclim 7)
had been found in northeastern Europe [63]. The significant positive effect of increased
precipitation in the warm season on cluster formation (grades II and III) can be explained
by observations from a past study in Sweden and current problems of fence installation
in South Korea. Increased precipitation during the warm season increases wild boar
activity [64], thus potentially increasing their chances of encountering infected animals or
carcasses. In addition to ecological factors for wild boar, anthropogenic factors may have
contributed to this outcome. In South Korea, the problem of installed fences collapsing
due to heavy rains in the summer has been frequently reported in many areas [65]. During
the fence repair period, wild boar can freely move in and out of the fenced area through
the damaged sites, hence the opportunities for contact between wild boar may increase as
their range of activity expands. Soil moisture is “the total amount of water, including water
vapor, in unsaturated soil” and represents the surface water present in soil pores [66]. The
negative correlation between soil moisture and wild boar ASF cluster formation presented
here cannot be easily explained. One possibility is that the results may suggest optimal
environments for certain plants and organisms, which may be indirectly related to the
ecology of wild boar. In this respect, further research is needed.

The correlation between environmental factors and spatio-temporal cluster formation
has been discussed. However, it should be noted that the topography of South Korea is
mountainous and steep, which may pose limitations for surveillance activities in infected
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areas. The negative correlation between the variable distance from road grade IV and
cluster formation suggests that areas relatively far from roads are less frequently reported
due to difficult access. Similarly, winter precipitation (bioclim 19) in northeastern South
Korea can be considered snow cover, and areas with higher precipitation can be considered
areas with harder-to-reach surveillance. In a country such as South Korea, where ASF
outbreaks are endemic to some areas while expanding in others, the selection of surveillance
areas is challenging. In terms of economic losses, protecting pig farmers from ASF would
be the top priority. However, attention should always be paid to the possibility that the
disease could be maintained in surveillance inaccessible areas.

In recent years, several studies have been conducted to compute R0 in spatio-temporal
clusters with various approaches [49–51]. The estimation of the infectious period (D) is
key to the computation of R0, but conditions probably differ depending on the virulence of
the virus, susceptibility of the host, and the mode of transmission. Here, we considered
scenario 1, which only considered direct transmission, and scenario 2, which also included
indirect transmission via infected carcasses. While there appeared to be no seasonal
difference in R0 between clusters in scenario 1, the R0 of clusters observed in winter was
generally higher than that of other seasons in scenario 2. In winter, the decomposition of
infected carcasses takes more time, resulting in a longer exposure period to other wild boar.
The shorter case doubling period in winter compared with other seasons is logical when
assuming that indirect transmission plays an important role. Perhaps direct transmission is
the primary mode of transmission in the summer, when carcasses decompose more quickly,
and indirect transmission plays a more important role in winter. Since sufficient evidence
does not exist to support this, further investigation is required. The association between
surveillance bias and increasing numbers of winter cases was discussed earlier, but these
ecological factors may also contribute.

In this study, we attempted to estimate the hot spot areas of ASF-positive wild boar
from environmental conditions. Moreover, we analyzed the evolution of the disease within
the clusters, accounting for the mode of transmission and seasonality. Since information on
the distribution and abundance of wild boar is generally scarce, this method is useful for
the rapid estimation of high outbreak areas based on available information. In situations
where the disease is spreading widely, priority control areas need to be selected. This tool
will also play an important role in selecting vaccination areas when a vaccine against ASF
for wild boar is commercialized in the future.

Information on ASF-negative wild boar was not available in the current study. There-
fore, the analysis was conducted based on the location of positive cases. In South Korea,
active surveillance has been promoted since the early stages of the outbreak and population
reduction measures have been implemented [67]. If further information were accessible,
more precise assessments of epidemic status, identification of risk areas, and estimates of
future spread could be achieved.

Recently, the emergence of lower virulent ASFV has been reported in China [68,69].
These are reported to be characterized by a long incubation period, unclear clinical signs,
and low lethality [68,69]. At present, there is no information on the severity of the disease
in wild boar. In South Korea, where the majority of positive cases are found as carcasses, it
will be more challenging to control the disease in the event that these viruses are introduced
into the wild boar population. Thus, early detection will be the key [70]. In the end, we
believe that this article provides important knowledge on the status of ASF in South Korea
and other Asian countries.
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