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Abstract: Genetic analysis of intra-host viral populations provides unique insight into pre-emergent
mutations that may contribute to the genotype of future variants. Clinical samples positive for
SARS-CoV-2 collected in California during the first months of the pandemic were sequenced to define
the dynamics of mutation emergence as the virus became established in the state. Deep sequencing
of 90 nasopharyngeal samples showed that many mutations associated with the establishment of
SARS-CoV-2 globally were present at varying frequencies in a majority of the samples, even those
collected as the virus was first detected in the US. A subset of mutations that emerged months
later in consensus sequences were detected as subconsensus members of intra-host populations.
Spike mutations P681H, H655Y, and V1104L were detected prior to emergence in variant genotypes,
mutations were detected at multiple positions within the furin cleavage site, and pre-emergent
mutations were identified in the nucleocapsid and the envelope genes. Because many of the samples
had a very high depth of coverage, a bioinformatics pipeline, “Mappgene”, was established that
uses both iVar and LoFreq variant calling to enable identification of very low-frequency variants.
This enabled detection of a spike protein deletion present in many samples at low frequency and
associated with a variant of concern.

Keywords: severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2); variant; mutation;
sequence; quasispecies; iSNV; LoFreq; emergence; evolution

1. Introduction

The emergence, spread, and evolution of severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) has been chronicled by the scientific community with greater
speed and depth than any other human pathogen due to the advent of widespread genomic
sequencing. Additionally, numerous websites and dashboards enable emergence of muta-
tions to be visualized and contextualized [1–3]. RNA viruses such as SARS-CoV-2 evolve
as a mutant spectra due to the high mutation rate that characterizes the evolutionary dy-
namics of these viruses [4], and deep sequencing is required to capture the genetic diversity
of intra-host viral populations that shape infection outcome and variant emergence [5,6].
However, the genomic sequences used to populate the databases that scientists and public
health officials rely on to study the transmission and evolution of SARS-CoV-2 repre-
sent the consensus (dominant) sequence detected in a sample. The sequencing methods
used to generate consensus sequence data, multiplexed RT-PCR amplification of the viral
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genome [7], may also generate important information about genotypes that are present
in clinical samples at low frequency. Data on subconsensus mutations that comprise the
mutant spectra provide a rich source of genetic information about the emergence of viral
variants. In this study, Illumina sequence data were derived from 90 COVID-positive, early
pandemic clinical samples were analyzed for the presence and persistence of subconsensus
mutations that later emerged in consensus sequences as the pandemic progressed.

SARS-CoV-2, a member of the Betacoronavirus genus and the Coronaviridae family,
has a single-stranded, positive-sense RNA genome of ~30 kb [8]. The 5′ two-thirds of
the genome codes for 16 non-structural proteins (nsp) which are derived from two open
reading frames (orf1A and orf1b) via protease digestion of two overlapping polyproteins
(Supplementary Figure S1). The 3′ one-third of the genome codes for the structural proteins
including the Spike (S) protein, the Envelope (E) protein, the Membrane (M) protein, and
the Nucleocapsid (N) protein, as well as multiple accessory proteins (ORF3a, ORF3b, ORF6,
ORF7a, ORF7b, ORF8b, ORF9b and ORF10). The S protein largely determines the host
range, immune evasion and virulence, and is the most thoroughly studied [9,10]. Similar
to other viruses with an RNA genome, the RNA-dependent RNA polymerase (RdRp) is
low fidelity and introduces errors at a high rate during replication. The error rate of CoVs
is lowered by greater than 10-fold in SARS-CoV-2 and other coronaviruses due to the
presence of the nsp14 gene which encodes a protein with 3′-5′ exonuclease proof-reading
activity [11,12]; however, the error rate is still high enough to generate a mutant swarm of
variant genotypes during replication within a host.

The presence and fate of mutant SARS-CoV-2 genotypes in clinical samples from early
in the pandemic were explored via deep sequencing of 90 human clinical samples obtained
from California Department of Public Health (CADPH) collected between February and July
2020. A bioinformatic pipeline was assembled to enable rapid analysis of the large datasets
generated from high depth coverage, deep sequencing of the genome. The intra-host single
nucleotide variants (iSNVs) that were detected were compared to consensus sequence data
present in public databases (GISAID and NCBI) to determine if deep sequencing analysis
provided insight into the persistence and eventual emergence of viral variant genotypes.

2. Materials and Methods

RNA extraction: Clinical respiratory specimens were either nasopharyngeal or oropha-
ryngeal swabs in a viral transport medium or a universal transport medium. Samples were
extracted using either the manual Qiagen QIAamp DSP Viral RNA Mini Kit or the Qiagen
EZ1 DSP Virus Kit using the QIAgen EZ1 Advanced XL instrument (Qiagen Sciences, MD,
USA).

RT-qPCR: Respiratory specimens collected prior to 21 May 2020 were tested for SARS-
CoV-2 using the US Food and Drug Administration (FDA) Emergency Use Authorized
(EUA) CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel (ht
tps://www.fda.gov/media/134922/download, accessed on 1 October 2021), as previously
described. Briefly, extracted samples were added to an amplification reaction mix per the
EUA assay (4X TaqPath 1-step RT-PCR master mix (Thermo Fisher, Carlsbad, CA, USA),
1.5 µL primer (N1, N2, or RNase P), 12.5 µL nuclease-free water, and 1 µL RNA) and
one-step RT-PCR was performed (25 ◦C for 2 min, reverse transcription at 50 ◦C for 15 min,
95 ◦C for 2 min, followed by 45 cycles PCR with denaturing at 95 ◦C for 3 s and extension at
55 ◦C for 30 s). A confirmed positive sample was defined as having both N1 and N2 targets
resulting at a Ct value of 40 cycles or less. After 21 May 2020, samples were extracted using
the KingFisher Flex (Thermo Fisher Scientific) instrument according to the manufacturer’s
instructions. These later samples were tested using the FDA EUA approved the Taqpath™
Multiplex Real-time RT-PCR test, which includes nucleoprotein (N) gene, spike (S) gene,
and ORF1ab gene targets. Confirmed positives were those samples with 2 or more viral
gene targets having Ct values of 37 or less. Only samples with a Ct below 28 (estimated to
have greater than 1000 viral genomes per reaction) were selected for sequencing analysis.

https://www.fda.gov/media/134922/download
https://www.fda.gov/media/134922/download
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RT-PCR. Viral RNA was amplified and sequenced using a version of the ARTIC proto-
col, nCoV-2019 sequencing protocol (RAPID barcoding, 1200bp amplicon) V.3 (https://ww
w.protocols.io/view/ncov-2019-sequencing-protocol-rapid-barcoding-1200-bh7hj9j6; ac-
cessed on 13 October 2020). As described in Freed et al. (2020) [13], cDNA from each sample
was amplified in a tiled approach using 2 highly multiplexed reactions using 2 different
primer pools that span the genome. ARTIC 1200 bp primer sets were obtained from IDT
(Integrated DNA Technologies) as two premixed primer sets (IDT Midnight Panel). The RT
reaction was performed using the SuperScript IV VILO Master Mix kit (Invitrogen) with
the first step using a DNase removal enzyme. The cDNA was amplified in a 50 µL PCR
reaction using 2.5 µL cDNA and 2X Master mix (NEB). The PCR cycling program was 98 ◦C
for 30 s, then 35 cycles of 98 ◦C for 15 s, 65 ◦C for 5 min. A negative PCR control for each
PCR set was prepared using PCR grade water as a template. A PCR product from one of
these negative controls was sequenced as a negative control. The PCR products from each
reaction were pooled then were purified using AMPureXP beads (Beckman Coulter, Brea,
CA, USA).

A no template negative control (NTC) was processed along with the other samples
using the same PCR and sequencing protocols, and analyzed using the Mappgene pipeline.
Most regions from the NTC had 0–20 reads mapped; however, a 120 nt region with >100 K
depth of coverage was detected at nucleotide positions (nt pos) 21551-21670. The 5′ end
of this region corresponds approximately to a forward primer (#22L) and occurs near the
beginning of the S gene. A distinct peak in mapped reads at this region was also seen in
coverage data from several experimental samples although deep coverage preceding and
after this spike in mapped reads made the pattern less pronounced. Based on these data,
any variant calls within this region were excluded from analysis.

Sequencing. A total of 1 ng of the purified PCR product was tagmented using Nextera
XT kit (Illumina, San Diego, CA, USA) and added unique dual sequencing indices by
10 cycles of PCR to make an Illumina sequencing library. The sequencing libraries were
then purified and size selected for 300–500 bp with double SPRI using TotalPure NGS
beads (Omega Bio-tek, Norcross, GA, USA). The prepared libraries were then quantified
using KAPA Illumina library quantification kit (Roche, Budapest, Hungary) and run
on a LightCycler 480 real-time PCR instrument (Roche). The quantified libraries were
multiplexed and the pool of libraries was prepared for sequencing on the Illumina NovaSeq
6000 sequencing platform using NovaSeq XP v1.5 reagent kits (Illumina), S4 flow cell, and
following a 2x150 indexed run recipe.

Bioinformatic analysis. We developed Mappgene, (https://github.com/LLNL/ma
ppgene v1.1.1, accessed 26 January 2022) a modular bioinformatics pipeline for high
performance computing (HPC) (Supplementary Figure S2). It can convert high-throughput
sequencing reads (FASTQ) into annotated variant calls in multiple formats (VCF/snpSIFT/
bedGraph). Mappgene parses paired and unpaired FASTQ files and organizes them
into directories for each subject. Then, it parallelizes processing tasks using the Parsl
framework [14], enabling portability to almost any HPC platform. Software dependencies
are stored in a Singularity container [15], ensuring software and version consistency. As a
result, Mappgene can run at scales from a personal computer to hundreds of nodes on a
supercomputer. To ease development, individual commands can be swapped in and out
via Python scripting. Mappgene employs BWA-MEM [16] for read alignment, iVar for read
trimming/filtering/variant calling, and LoFreq to call variants.

Base quality score recalibration. Mappgene takes a conservative approach to recali-
brating RTA3 Illumina read qualities. Initially, these read quality scores are labels for low,
medium, and high-quality base bins as determined by Illumina. However, they are still
represented as numeric Phred scores that sequence analysis tools interpret as actual error
probabilities. This Phred score is meant to correspond to the average score for bases in
low, medium, or high-quality base bins as determined by Illumina. Left as is, this could
lead to both over- and underestimates of errors used to judge alignments, variant calls,
and various filtering steps. Mappgene adjusts the Phred score to align with the expected

https://www.protocols.io/view/ncov-2019-sequencing-protocol-rapid-barcoding-1200-bh7hj9j6
https://www.protocols.io/view/ncov-2019-sequencing-protocol-rapid-barcoding-1200-bh7hj9j6
https://github.com/LLNL/mappgene
https://github.com/LLNL/mappgene
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lower boundary of the scores in the medium and high-quality bins (37 becomes 30 and
25 becomes 20).

Read trimming and filtering. iVar trim soft clips primer sequences from reads (soft
clipping means the trimmed sequence is still in the bam file, but it is flagged as clipped
and typically not included in length calculations). iVar trim trims bases from the 5′ end of
reads if the average base quality drops below 20, using a 4 bp sliding window to calculate
average base quality. iVar trim removes trimmed reads shorter than 31 bp and removes
reads with mismatches in a primer region.

Variant Calling. iVar variants skips bases with quality scores less than 20. The
minimum variant frequency iVar variants will detect is 1%. The LoFreq variant caller calls
and filters variant calls according to its defaults which include a strand bias filter and
minimum read count per locus of 10. iVar was used for variant calling for iSNV at 1% or
greater and LoFreq was used for detection of variants <1%.

Variant Summary. A new software package MappgeneSummary (https://github.com
/LLNL/MappgeneSummary; v0.6.3, accessed 26 January 2022) was developed to summa-
rize the number and type of variants in the deeply sequenced samples. The bioinformatics
pipeline used to analyze the data included 2 distinct variant callers, iVar and LoFreq. LoFreq
uses a generalized binomial coverage aware sequence error model to give a statistically
rigorous filter for variants occurring at less than 3% due to sequencing error. The program
gives an orthogonal assessment to iVar, taking into consideration additional elements of
sequencing quality such as variable depth of sequencing coverage not considered by iVar.

3. Results
3.1. Genome Sequencing and iSNV Detection Pipeline

Viral RNA was extracted from respiratory swab samples and the viral genome was
amplified using a modified version ARTIC RT-PCR protocol [13], a well-established and
widely used protocol that enables rapid enrichment of the viral genome. SARS-CoV-2 viral
RNA was also quantified in each sample using Taqman PCR and the average Ct was 18.5.

Although the ARTIC RT-PCR (1200 bp) protocol was selected to increase consistency of
read coverage across regions of the genome that often showed relatively low coverage [13],
including much of the S protein ORF, most of the samples had highly variable coverage
across the genome with some regions yielding over 1 million x coverage and other regions
yielding coverage of less than 100 reads. The high variation and extreme coverage depth
can stall bioinformatic analysis pipeline runs of sequence data, even when run on high
performance computers. Rapid and thorough analysis of this dataset necessitated the
assembly of a specialized bioinformatic pipeline that took into consideration variation
in the amount of sequencing coverage across the genome output by this combination of
PCR protocol and Illumina platform. This new bioinformatics pipeline, Mappgene, is
designed to process a large number of deeply sequenced samples and detect low-frequency
variants with high confidence when supported with high read coverage while limiting
iSNV calls to higher frequency in regions of lower read coverage (Figure 1). Building
on previous work developing a bioinformatics iSNV pipeline [17], extensions to existing
publicly available software were made by incorporating LoFreq [18] variant calling into
the iVar analysis pipeline [7], a robust bioinformatics pipeline designed for use with the
ARTIC primer protocol. Importantly, LoFreq adds the use of additional statistical analysis
to enable lower-frequency iSNV (<1%) to be called in regions that have adequate read
coverage and quality.

https://github.com/LLNL/MappgeneSummary
https://github.com/LLNL/MappgeneSummary
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Two samples (#171 and #220) were sequenced as technical duplicates to gauge the
consistency of sequencing and bioinformatic results. As expected, this analysis showed all
mismatches between duplicates occurred at frequencies lower than 3% [7]. Specifically, the
average frequency for the 11 mismatches detected for #171 duplicates was 1.5%, and the
#220 duplicates had 0 mismatches. For sample #171, the mutations that were detected in
only one of the duplicates occurred in regions of lower coverage, with approximately 80 K
average depth of coverage for mutations detected in both samples as compared to 1.5 K
average coverage depth for mutations detected in only one duplicate [7]. Sample #171 was
selected because it was one of the earliest samples collected in CA (28 February 2020) and
had the potential to give unique insight into the earliest mutations that were circulating as
the epidemic ignited. However, this sample had the disadvantage of previously being used
for a previous study and this increased the number of freeze–thaw cycles which may have
impacted RNA quality. Although the Ct for this sample was 23, analysis of the mapped
reads showed that the coverage across the genome was very uneven with large gaps in
coverage. Sample #220 had very good coverage across the genome (>2000× coverage for
the vast majority of the genome, with an average of 84,895× coverage), and the Ct was 15.

3.2. Ranking of iSNVs According to Detection Frequency

iSNV analysis of 90 samples detected 759 unique nonsynonymous mutations (either
missense, inframe indels, or premature stop codons) detected in 2 or more samples or in one
sample at greater than 3% frequency. For the purposes of this study, an iSNV was defined
as a nucleotide that differed from the consensus sequence of the initial strain (NC_045512.2),
so that the frequency of detection of this mutation may or may not be <50% in the clinical
sample. Thus, in the case of iSNVs detected at >50%, the iSNV would be present as a
mutation in the consensus sequence derived from the clinical sample.

Given the large number of mutations detected, only mutations that resulted in a
change in the amino acid sequence (missense mutations) and a subset of in-frame deletions
are analyzed in this study. To understand the potential impact of these mutations, the
mutations were compared to emergent consensus mutations described in literature and
by referencing several highly informative SARS-CoV-2 websites such as outbreak.info,
covariants.org, and Nextstrain.org [1,3,19].

To determine which of these particular iSNVs are notable in terms of prevalence (#
of samples with the iSNV, or “sample count”) and frequency of detection within samples,
sample count was multiplied by median frequency of iSNV detection, and mutations were
ranked according to these metrics. Additionally, the list of iSNVs and in-frame deletions
identified in these samples were queried for the presence of mutations that characterize
variants of concern (VOC) and/or variants of interest (VOI).
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Ranking of the mutations that were detected in the CADPH samples according to
sample count and frequency revealed that most of the top-ranked mutations were also
identified by other studies as prevalent missense mutations detected globally (Table 1) [20].
In particular, the 11 top-ranked mutations were detected at an average frequency ranging
from 39 to 98% and were also detected in consensus sequences from early in the pandemic.
In some cases, top-ranked mutations were founding mutations for clades that expanded
as the pandemic progressed. For example, ORF1b P314L (ORF1ab 4715) was a founding
mutation of PANGOLIN B.1 lineage [21] and was detected in 70 samples at an average
frequency of 95.2%. Similarly S protein mutation D614G, an early mutation which rapidly
became dominant early in the pandemic (Figure 2), was detected in most samples as were
the other mutations known to accompany D614G, a C-to-T mutation in the 5′ UTR 241 [20]
and ORF1b P314L (nsp12 P323L).

Table 1. Top 10 mutations as ranked according to sample count and frequency. Mutations were
ranked by multiplying the sample count by the median detection frequency. N protein mutations
R203K and G204R are considered co-occurring. NT POS: nucleotide position; SAMPLE COUNT:
number of samples with the mutation; AVG FREQ: average frequency; MED FREQ: median frequency;
REF NT: nucleotide in the reference sequence; ALT NT: nucleotide in the sample sequence; AA MUT:
residue number in the gene with the amino acid mutation and the amino acid change.

NT POS Sample
Count Rank AVG

FREQ
MEDIAN

FREQ REF NT ALT NT AA MUT Gene

14408 70 69.98 0.952 1.000 C T P314L orf1b

23403 68 68.00 0.978 1.000 A G D614G S

25563 40 31.04 0.616 0.776 G T Q57H orf3a

1059 42 25.99 0.547 0.619 C T T265I orf1a

17858 18 17.95 0.831 0.997 A G Y1464C orf1b

28144 17 16.98 0.895 0.999 T C L84S orf8

17747 17 16.88 0.887 0.993 C T P1427L orf1b

28821 20 16.14 0.651 0.807 C A S183Y N

28854 41 12.34 0.413 0.301 C T S194L N

28883 43 10.35 0.394 0.241 G C G204R N

28881 43 10.23 0.392 0.238 G A N203R N

Four of the top eleven ranked mutations occurred in the N protein, with all occurring
within the linker region of the protein which encompasses residues 174 to 249 [22]. Muta-
tions R203K and G204R are present in consensus sequences from early in the pandemic, and
were detected as iSNV in 43 CADPH samples each, at frequencies ranging from 1% to >99%
from early March to mid-July. Mutations R203K and G204R persisted in the consensus
sequences from many lineages and are consistently present in VOC/VOI [23]; however,
mutations S183Y and S194L peaked and then decreased in prevalence. Mutation S183Y was
seldom detected in consensus sequences collected in CA or the US early in the pandemic
and briefly peaked at approximately 10% in late summer of 2020 (outbreak.info). The
S183Y iSNV was detected in 20 CADPH samples at 6% to almost 100% from mid June
through the latest collection date in July 2020 indicating that this iSNV was frequently
present during this early stage of the pandemic. Mutation S194L was infrequently detected
in early consensus sequences from CA but peaked at approximately 70% by fall 2020 before
declining dramatically by spring of 2021 (outbreak.info). This mutation was detected as
an iSNV in 41 CADPH samples from early March to mid-July at frequencies ranging from
1 to nearly 100% suggesting that this mutation is frequently generated and is not likely to
reduce genotype fitness.
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Figure 2. Emergence, prevalence, and duration of highly ranked mutations. (A) Prevalence of
top-ranked mutations over the course of the pandemic. Each graph represents the 7 day rolling
average of the percent positive sequences for each mutation (data obtained from outbreak.info with
analysis period through 31 October 2021). (B) Emergence, peak and duration of highly ranked
mutations. Graphs show for each mutation the date the mutation was detected, the date it reached
peak prevalence, and the date last detected. Mutations are considered to be persistent when they are
still detected in 1 November 2021, the latest date sequence data available through outbreak.info were
analyzed for this study.

Focusing on the S protein, iSNVs were ranked according to the sample count and
median frequency of the iSNV (Table 2). All the top 10 iSNVs were also present as mutations
in consensus sequences on outbreak.info site (Figures 2B, 3 and 4), and persisted into
October of 2021 (the date the analysis was performed and the outbreak.info site was
queried). Although most of these mutations were subsequently detected only as low-
frequency variants in these data from early in the pandemic, three of the mutations, D614G,
P681H, and V1104L, emerged in VOC/VOI genotypes months later.
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Table 2. Highest and lowest-ranked S protein mutations. The 71 mutations detected in the S protein
were ranked by multiplying the sample count by the median detection frequency. NT POS: nucleotide
position; SAMPLE COUNT: number of samples with the mutation; AVG FREQ: average frequency;
MED FREQ: median frequency; REF NT: nucleotide in the reference sequence; ALT NT: nucleotide
in the sample; sequence; AA MUT: residue number in the gene and the amino acid mutation. Gene
Regions are noted within the S1 subunit: NTD: N-terminal domain; FCS: furin cleavage site (within
or directly adjacent); S1: Spike subunit 1; S2: Spike subunit 2.

NT POS Sample
Count Rank AVG

FREQ
MEDIAN

FREQ REF NT ALT NT AA MUT Gene
Region Rank #

23403 68 68.0 0.978 1.000 A G D614G S1 1

22088 6 2.5 0.478 0.410 C T L176F NTD 2

23613 2 2.0 0.995 0.995 C T A684V FCS 3

23604 11 2.0 0.295 0.181 C A P681H FCS 4

24872 16 1.4 0.171 0.090 G C V1104L S2 5

22482 10 1.3 0.253 0.131 C T T307I S1 6

23311 2 1.0 0.500 0.500 G T E583D S1 7

23501 1 1.0 1.000 1.000 G T A647S S1 8

24399 1 1.0 0.998 0.998 G T G946V S2 9

25290 2 0.8 0.404 0.404 G T C1243F S2 10
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Figure 4. Emergence, peak and duration of highest ranked spike mutations. Graphs show for each
highest ranked mutation the date the mutation was detected, the date it reached peak prevalence,
and the date last detected. Mutations are considered to be persistent when they are still detected
in November 2021, the latest date sequence data available through outbreak.info were analyzed for
this study.

A subset of the highly ranked mutations such as D614G occur at residues known
to impact S protein phenotype. In particular, mutations were detected in 3 of the amino
acids in or directly adjacent to the S protein furin cleavage site at the following residues
-mutation (number of samples, average frequency): P681H (11, 29.5%), R683Q (1, 8.0%),
and A684V (2, 99.5%). Two of these mutations, P681H and A684V were highly ranked.

3.3. Mutations Associated with Voc and/or Voi

Some of the mutations detected in these samples were already well established as
dominant within the January to February 2020 time frame, thus detection of these mutations
as iSNV could not be considered predictive of later emergence even though these mutations
are present in most VOC/VOI genotypes. Notably, none of the mutations that later defined
the VOI or VOC genotypes such as N501Y or E484K were detected at this early stage of the
epidemic. However, some trends in mutation emergence were noted particularly in the
S protein, with a subset of mutations being detected as high frequency iSNV in multiple
samples prior to widespread emergence.

The S protein residue D614G mutation, which rapidly became dominant early in the
pandemic, was present in 68 out of 90 samples at an average frequency of 97.8%. Samples
without this iSNV detected were all collected in the first months of the pandemic, February
and March 2020, with one exception (#231 collected 22 June 2020). All samples collected
May to July 2020 except for sample #231, had 614G at >80% frequency. The 2 samples that
had 614G detected at <80% occurred in Feb and March at the following percentages and
collection dates (in parentheses): 5.3 (11 March 2020) and 52.1 (15 March 2020). Note, no
samples from March 16 to May 13 were processed. Thus, the presence and frequency of
this iSNV reflected the emergence and establishment of 614G.
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S protein P681H was detected in 11 samples at an average frequency of 29.5% (median
of 18.1%), and in two additional samples detected by the LoFreq variant caller at less than
1% frequency. All samples with this iSNV were collected within the last month of the
study period (29 June 2020 to 20 July 2020). The 681H mutation was first detected in CA on
2020/03/11 but was at low prevalence until late 2020 (outbreak.info 30 September 2021)
(Figure 3). The P681H mutation is present in multiple clades and VOC/VOI genotypes
Alpha, Gamma, Theta, and Omicron.

S protein mutation H655Y was detected in 31.76% of reads from one sample collected
in mid-March 2020 (#210 date 13 March 2020) which is a few months before this mutation
was detected as consensus sequence in CA in 4 June 2020 (outbreak.info). It is found in the
Gamma VOC genotype and most recently in the Omicron VOC.

Sixteen samples had S protein mutation V1104L detected at an average frequency of
17.07%. The sample collection dates ranged from 15 March 2020 to 20 July 2020; however,
15 of the 16 samples were collected later in this study, between 22 June 2020 and 20 July
2020. The V1104L mutation that recently emerged in many sequences in the Delta 21J clade
(AY.36 lineage) and is notable in its relative increase in prevalence in summer of 2021 [1,3].
This residue falls within a T cell epitope [24] and may increase protein stability [25].

E protein mutation P71L, a mutation present in the Beta VOC genotype, was detected
in 7 CADPH samples collected between mid-May to mid-June 2020 at an average frequency
of 42.9%. Data from outbreak.info show that it was first detected in consensus sequences
from CA on 28 March 2020 and continued to be detected at a low frequency (<1%) until
there was a brief and minor spike in spring 2021.

3.4. Detection of Rare Mutations Using the LoFreq Variant Caller

A deletion in the S protein between residues 141-145 is commonly found in some
variant genotypes. For example, the Alpha, Eta, and Omicron variants have deletions of
two or more amino acids at this site. Analysis of LoFreq data show that there is a deletion
of residues 141–144 in 11 samples with an average frequency of 0.11%, and a deletion of
residue 145 in 25 samples with an average frequency of 0.12%.

3.5. Analysis of Impact of Mutations on Antiviral Drugs

iSNV analysis can also be useful for early detection of mutations that may confer
resistance to antiviral drugs, thus the SARS-CoV-2 mutations of interest detected in CADPH
data were cross-checked against binding pockets of interest reported [26]. Overlap between
the mutations of interest and pockets of interest was observed at the following sites: L214,
L373, and G954 in nsp3; Q189 in nsp5; and Y28, E154, L176, R237, P463, E471, V722, D796,
L828, A956, L981, T1009, E1017, Q1071, F1103, and D1163 in the S protein. No overlapping
sites were observed in nsp12. A comprehensive search of compounds targeting SARS-
CoV-2 and other viruses was performed to assess their predicted interaction with the
overlapping sites, which could lead to antiviral resistance. For each pocket of interest
containing an overlapping site, PDBspheres modeling of protein–ligand interactions [27]
was used to identify ligands that are predicted to bind to the pocket. Each of these ligands
was compared against the compounds in DrugBank [28] based on Tanimoto similarity,
with scores between 0.8 and 1.0 considered a match. Encouragingly, current SARS-CoV-
2 compounds were not found to interact with rare variant sites of concern in nsp3 and Spike.
Even though antivirals developed against SARS-CoV-2 (GC-373, GC-376, and PF-07304814)
were observed to interact with a mutation of interest in nsp5, the mutation (Q189) is so
rare that this interaction is unlikely to present a realistic concern. At the same time, a small
collection of compounds targeting other viruses (telaprevir, rimantadine, amantadine, and
umifenovir) were found to interact with Spike and nsp5 variants, indicating candidate
therapeutic small molecules structures to avoid. Altogether, we conclude that rare variant
samples do not point to any immediate concerns.
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4. Discussion

RNA viruses evolve as a genetically diverse intra-host population (“mutant spectrum”
or “quasispecies”) and the diversity at the population level may determine the outcome
of the infection. Although studies indicate that iSNVs generally occur at frequencies low
enough to preclude inter-host transmission [29,30], deep sequencing of viral quasispecies
has been used to identify mutations that are present in clinical samples and serve as a
source for the emergence of variant genotypes [31]. In particular, iSNVs that are consistently
generated over time may become transmitted due to changes in host environment such as
persistent infection of an immunocompromised host or cross species transmission [32,33].
Thus, deep sequencing data may reveal which variants are poised to emerge, and influence
outbreak trajectory.

Deep sequencing of clinical and wastewater samples can provide insight into the
emergence and persistence of mutations that may not be apparent in analysis of consensus
sequence data; however, the methods used for detection of low-frequency mutations vary in
sensitivity and specificity [34] In particular, the accuracy and sensitivity of detection of low-
frequency variants are impacted by sequencing technology, depth of coverage, viral genome
copy number, and variant calling algorithms [35] To address these challenges, we limited
analysis to samples with at least 1000 viral genomes and employed two different variant
callers, including LoFreq which uses statistically rigorous filter for variants occurring at
less than 3% due to sequencing error [18].

The CADPH samples analyzed in this study were collected during the first several
months of the pandemic, thus the iSNVs were generated largely in response to interaction
of the virus (mutant spectrum) with immunologically naïve hosts. This limits the selection
pressure of the adaptive immune response on the S protein, although previous exposure to
endemic CoVs such as OC43 could potentially influence immune recognition of conserved
regions of SARS-CoV-2. In this host environment, the measure of “success” in terms of
proliferation and transmission of variant genotypes with particular mutations may be
determined according to factors such as viral interaction with the host innate immune
response and viral replication rate.

This study detected many of the mutations that emerged and became established
within the first few months; therefore, detection of these mutations as iSNV could not be
considered predictive of later emergence. The speed of this emergence and establishment
is most apparent in the rapid conversion of the original “wild-type” sequence of strain
Wuhan-Hu-1 (NC_045512.2) to the sequence characterized by the S protein D614G mutation
that rapidly arose to dominate the first year of the pandemic. The D614G mutation was
detected in 76% samples from this study at an average frequency of 98%. Most samples
without this iSNV detected were collected in the first months of the pandemic, February
and March 2020, whereas all samples but one were collected late in this study (May to July
2020) had the mutation at >80% frequency. Thus, the presence and frequency of this iSNV
reflected the emergence and establishment of 614G.

Due to the large number of mutations detected, iSNVs were ranked for further analysis
by multiplying the number of samples with the mutation (sample count) by the median
frequency the iSNV was detected within a sample (Table 1). Not surprisingly, many of
the mutations associated with early expansion of the virus globally were also detected as
iSNV in these CA samples from early in the pandemic. For example, ORF1b P314L and
S protein D614G were ranked 1 and 2. These rankings agree well with previous analysis
of mutational dynamics in the United States. A study by Wang et al. [36] grouped most
of these high-ranking mutations as co-occurring, with ORF1ab T265I (nsp2 T85I), ORF1b
P314L, S protein D614G, ORF3a Q57H occurring together along with ORF8 S24L, which
was not detected in our study. A subset of strains with these mutations also included
co-occurring with N protein mutations R203K and G204R.

Although many of the highly ranked mutations persisted as the pandemic progressed,
some highly ranked mutations peaked relatively early in the pandemic but did not persist,
such as ORF1b Y1464C and P1427L, ORF8a L84S, and N protein S183Y and S194L. In



Viruses 2022, 14, 2775 12 of 15

particular, ORF1b, Y1464C and P1427L, and ORF8 L84S emerged early as part of clade 19B
(Nextstrain.org designation) which includes the reference strain, but quickly disappeared as
this clade was replaced by other clades. Interestingly, a study by Zhang et al. [37] predicted
a deleterious effect of this cluster of mutations on protein function.

The iSNVs detected were queried for the presence of mutations that characterize the
emergence of various VOC and VOI. Variant genotypes such as Alpha and Beta were
detected approximately 4 months after the latest samples were collected for this study.
Although the collection timeframe may not have been optimal for detection of variant
genotype emergence, several mutations that were later associated with variant genotypes
were detected as iSNV in some of the samples. Most of these mutations are in the S or
N protein; however, E protein mutation P71L was detected in seven samples at average
frequency of 43% and is present in the Beta VOC genotype, and the ORF3a Q57H mutation
emerged later as part of the genotype of Beta VOC, Epsilon former VOC, and Mu VOI.
N protein mutations R203K and G204R were detected as co-occurring mutations and are
present in most VOC/VOI. The most prominent N protein mutations were located in the
linker region of the protein, and this region has been shown to be integral for RNA binding
and viral replication [23].

Several iSNV detected in the S protein are associated with VOC and VOI and may
impact viral phenotype and most of these were highly ranked (Table 2). Mutations P681H
which was detected at high frequencies in 11 samples (average frequency of 29.5%) and is
present in Alpha, Gamma, Theta, and Omicron variants. It is located near the furin cleavage
site, and may be important for antibody recognition [38]. The addition of a positive charged
residue may increase cleavage at the S1/S2 site and affect virus tropism [9,39–41]. Detection
of this mutation in 12.2% of the samples (11/90) distinguished this iSNV and served as an
indicator that this mutation was consistently generated and fit enough to consistently reach
relatively high levels within the intra-host population.

S protein H655Y, which was ranked 14 of spike mutations, is present in Gamma
and Omicron variants and was detected at high frequency from one sample from March
2020. This mutation was shown to escape monoclonal antibodies [28], enhance viral
replication, S protein cleavage, and transmission [29,30]. Spike V1104L was detected mostly
in later samples at an average frequency of 17.1% and later emerged in many Delta variant
sequences. Interestingly, S protein substitutions V1104L and H655Y have been associated
with cross-species transmission [32,38].

Three residues in or directly adjacent to the S protein furin cleavage site had high-
frequency mutations (P681H, R683Q, A684V); however, none of these mutations disrupt
the RXXR cleavage motif required for furin protease activity [42]. Additionally, residues
S680 through R683 directly contact the T-cell receptor [22] thus mutations at these sites may
impact immune response.

Bioinformatic analysis of nucleotide positions with very high coverage using the
LoFreq variant caller enabled detection of very low frequency iSNV that later emerged
as part of variant genotypes. In particular, deletions in residues 141–144 and 145 of the
N terminal domain of the S protein, was detected at frequencies below 1% in 12.5% and
28.4% of the samples, respectively. The prevalence of these deletions, even at less than
1% frequency indicates the propensity of this region to generate deletions early in the
pandemic. Importantly, mutations in this region of the S protein have been shown to impact
antibody binding [10,43].

Deep sequence analysis of these early pandemic samples did not detect many of the
signature mutations that later emerged months in VOC and VOI such as S protein mutations
N501Y, L452R, P681R or E484K. A limitation of this study is that only samples from the
first several months of the pandemic were analyzed and these samples were collected
from a limited geographical region. As the pandemic further progressed and spread
to a global population, opportunities for emergence of even rarely generated mutations
increased as did the selection pressure on the viral genome, in particular the spike gene, as
a greater proportion of the global population generated an immune response to the virus.
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For example, infections of immunocompromised patients may be more likely to generate
heavily mutated versions of the viral genome [44–46]. Future studies will include analysis
of deep sequencing data from samples collected later in the progression of the pandemic to
understand if signature mutations for VOC/VOI can be detected as rare variants prior to
detection in consensus sequence data.

5. Conclusions

Deep sequencing analysis of samples collected in the first several months of the pan-
demic detected mutations that later emerged in consensus sequences as part of variant
genotypes. The majority of the iSNVs detected in these early pandemic samples were also
present in consensus data but generally in a relatively low number of sequences. However,
most of the mutations were persistently detected over time indicating that they were gen-
erated consistently and are sufficiently fit to occasionally become dominant and transmit
between susceptible hosts. This indicates that deep sequencing can define reservoirs of
a subset of mutations present at various stages of a pandemic [47]. While the predictive
capacity of this information may be constrained by temporal and geographical limitations
associated with the samples analyzed, deep sequencing data may be useful for understand-
ing which residues and particular amino acid substitutions circulate continuously and
may be available to emerge in response to environmental changes such as host immune
response. Additionally, because intra-host deep sequencing datasets reveal which genome
regions are not observed to mutate, even at the subconsensus level, these data may be
predictive of regions that are conserved and unlikely to mutate in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v14122775/s1, Figure S1. SARS-CoV-2 genome structure; Figure S2.
Mappgene pipeline components and data processing.
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