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Abstract: In this paper, a mathematical analysis of the HIV/AIDS deterministic model studied in the
paper called Mathematical Model of HIV/AIDS Considering Sexual Preferences Under Antiretroviral
Therapy, a case study in the previous works preformed by Espitia is performed. The objective is to
gain insight into the qualitative dynamics of the model determining the conditions for the persistence
or effective control of the disease in the community through the study of basic properties such as
positiveness and boundedness; the calculus of the basic reproduction number; stationary points such
as disease-free equilibrium (DFE), boundary equilibrium (BE) and endemic equilibrium (EE); and
the local stability (LAS) of disease-free equilibrium. The findings allow us to conclude that the best
way to reduce contagion and consequently reach a DFE is thought to be the reduction in the rate
of homosexual partners, as they are the most affected population by the virus and are therefore the
most likely to become infected and spread it. Increasing the departure rate of infected individuals
leads to a decrease in untreated infected heterosexual men and untreated infected women.

Keywords: HIV/AIDS mathematical model; basic reproduction number; stationary points; local and
global stability analysis

1. Introduction

Epidemiological evidence shows that HIV is transmitted only through the exchange
of body fluids such as blood, semen, vaginal or anal secretions, and breast milk. As a result,
the highly common means of transmission are: unprotected sex, from mother to child
during pregnancy, childbirth or breast feeding, injecting drugs with a needle that has
come into contact with infected blood, and infected blood donation or organ transplant [1].
There are many myths and misconceptions about how a person can get HIV. It is not
transmitted through body fluids such as sweat, tears, or saliva, touching someone who has
HIV, mosquito bites, or other transmission methods.

The sexual transmission of HIV is usually considered to be carried out by heterosexual
or homosexual men through anal intercourse. Transmission between two women is almost
null; however, this form is possible by sharing toys such as sexual vibrators [2,3]. Female
homosexual contact has not been demonstrated to pose appreciable HIV transmission
risk, and such transmission appears to be rare [4,5]. According to communication with
the HIV/AIDS infectious disease specialist Dr. Alexandre Naime Barbosa, the sexual
transmission between men can occur through three mechanisms: exclusive homosex-
ual transmission, exclusive heterosexual transmission, or bisexual transmission, while
in women, the transmission is almost always heterosexual. The Center for Disease Control
and Prevention estimates that HIV rates in men who have sex with men (MSM) are higher
than the rates in heterosexual contacts. In part, these differences reflect the fact that an in-
dividual MSM can engage in both insertive and receptive sexual roles (versatility), while
exclusively heterosexual men and women each engage in only one of these roles [6,7].

When discussing transmission, the term “Discordant Couples” will be used to repre-
sent a couple in which one partner has a sexually transmitted disease while the other partner
does not. If two participants are infected, the transmission could imply co-infection, which

Viruses 2022, 14, 2749. https://doi.org/10.3390/v14122749 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v14122749
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0001-5500-0460
https://orcid.org/0000-0001-8002-7075
https://doi.org/10.3390/v14122749
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v14122749?type=check_update&version=1


Viruses 2022, 14, 2749 2 of 21

is not the objective in this investigation. However, if the two participants are susceptible,
then there is no contagion.

The risk of acquiring HIV is 22 times higher among men who have sex with men
(MSM), 22 times higher among individuals who are injectable drug users (IDU) and share
needles, 21 times higher for sex workers, and 12 times higher for transgender people com-
pared to the risk of transmission in heterosexual contact [8,9]. One form of measuring how
transmissible a disease is the “Basic Reproduction Number”, which describes secondary
infections from a first infection; this number depends on the contagion’s form. For exam-
ple, for HIV/AIDS transmission, the basic reproduction number is 4 in the homosexual
population in the United Kingdom, whereas the basic number is 11 for female prostitutes
in Kenya [10]. As a result of the variation in these statistics, we consider homosexual
transmission to be greater than heterosexual transmission.

In the triangle transmission model, it is assumed that the only way to transmit the
HIV virus is through sexual intercourse, and it is commonly considered that the conta-
gion form takes into account heterosexuals and homosexuals in the dynamic of infection.
However, can the population be split into heterosexuals and homosexuals and thus the
group of bisexuals be ignored? Moreover, what is the contribution of these group in the
transmission of HIV? To try to answer these questions, we propose a different mathematical
model considering HIV-infected bisexuals under ART. Several articles have also focused
on the whole population of constant size when considering force of infection, although
some studies such as [11,12] have stressed the importance of variable population size in epi-
demic dynamics. All these assumptions, such as sexual preference and variable population
in force of infection, are considered in our model.

With regard to sexual contact between homosexual men, heterosexual men and
women [13,14] say: “There exist individuals that change their sexual behavior depending
on the situation or at different stages in their life. A possibly common and transient example
of situational sexuality is the person who self-identifies as heterosexual, but will sexually
interact with a member of the same sex when lacking other opportunities. Less transient
but also possibly common, a person who self-identifies as gay or lesbian (either at the time,
or later) may sexually interact with a member of the opposite sex if a same-sex relationship
seems unfeasible”. Thus, in our model, we consider bisexual contact.

2. Materials and Methods

The epidemiological model under consideration was studied in [15]. The model
contains three population groups: the first being men with homosexual preference in men,
the second being men with heterosexual preference, and the third one for women who
may be homosexual or heterosexual but engage in sexual relations with homosexual
or heterosexual men. We supposed that, eventually, the homosexual men had sexual
contact with women and that the heterosexual men had sexual relation with homosexual
men. Consequently, we consider bisexual behavior among these groups because the
transmission from homosexuals to heterosexual men or women goes through the bisexuals.
Female homosexual transmission is not considered in the dynamic of infection. For more
information, see references [2,3].

The total population N(t) is divided into eight classes; Sh(t) represents susceptible
homosexual men, Ih(t) untreated infected homosexual men, Sw(t) susceptible women, Iw(t)
untreated infected women, Sm(t) susceptible heterosexual men, Im(t) untreated infected
heterosexual men, T(t) treated individuals on ART, and A(t) individuals living with AIDS.

Figure 1 represents the transmission dynamics between the three studied sexual prefe-
rences. Each vertex of the triangle represents one population, and the sides of the triangle
denote the different forms of transmission between the populations involved. To begin, the
exclusive transmission among homosexual men is illustrated by the upper circular dotted
arrow labeled as λh. Then, the transmission between homosexual and heterosexual men
and the transmission between homosexual men and women are represented by dashed
lines identified as λhm and λhw, respectively. Finally, heterosexual transmission between
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men and women is a continuous line represented by λm,w. The direction of the arrows
represents the sense of the analyzed contagion; nonetheless, contagions can biologically
occur in all directions. Consequently, the two following hypotheses are assumed: the only
form of contagion among homosexuals is among themselves, and heterosexual people
become infected due to the contact with homosexual men or heterosexual partners of the
opposite sex. Thus, dashed lines have only one direction, while the continuous line between
heterosexual men and women has two directions. The following assumed hypotheses in the
model were evaluated by HIV/AIDS specialist Dr. Alexandre Naime Barbosa from Stadual
University of Sao Paulo, UNESP, Botocatu, Brazil.

Figure 1. Triangle Transmission in Sexual Preferences: Homosexual Men and Heterosexual Men and
Women. Adapted from [15].

Assumed Hypotheses in the Model.

H1 Constant recruitment in all susceptible classes is assumed.
H2 Sexual transmission in discordant couples is considered.
H3 Homosexual individuals become infected among themselves. HIV transmission in the

susceptible female population happens through sexual relations with infected het-
erosexual men or with infected homosexual men. Susceptible heterosexual men can
become infected by infected women or infected homosexual men.

H4 There is no gender differentiation in either sexual preference in treated individuals
or individuals living with AIDS.

H5 Individuals living with AIDS could be treated or untreated, noting that an individual
that developed AIDS during a hospital treatment will be diagnosed and enrolled
in ART.

H6 It is considered both natural mortality in all classes and induced mortality in individu-
als living with AIDS.

Parameters in the Model
The constant recruitment in all susceptible classes is denoted by Ψ. The male pro-

portion is labeled by θ, 0 ≤ θ ≤ 1. The heterosexual proportion is represented by γ,
0 ≤ γ ≤ 1. The proportion of initially treated individuals is p, 0 ≤ p ≤ 1; conse-
quently, (1− p) denotes the proportion of untreated individuals. Natural mortality rate
is symbolized by µ. Induced mortality rate in individuals living with AIDS is d. AIDS
development rate in treated individuals is δ. Departure rate of infected individuals is α.
Subscripts s, h, hw, hm mean sexual contact between heterosexual men and women, among
homosexual men, between homosexual men and women, and, finally, between homo-
sexual men and heterosexual men, respectively; thus, βs,h,hw,hm represents the probability
of transmission and cs,h,hw,hm mean rate of sexual partners in the aforementioned contacts.
Bh = chβh, Bs = csβs, Bhm = chmβhm, Bhw = chwβhw rates will be considered for parameter
simplification. All parameters are non-negatives and are listed in Table 1.
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Table 1. Description of Parameters. Adapted from [15].

Parameter Description

Ψ Constant Recruitment
θ Male Proportion
γ Heterosexual Proportion
p Proportion of Initially Treated Individuals
µ Natural Mortality Rate
d Induced Disease Mortality Rate
δ AIDS Development Rate in Treated Individuals
α Departure Rate of infected individuals
βs,h,hw,hm Sexual Transmission Probability
cs,h,hw,hm Sexual Partners Rate

Initially treated individuals and individuals living with AIDS receiving ART are disre-
garded from the transmission because their viral load is negligible. In Figure 1, we assume
that susceptible homosexual men only become infected by infected homosexual men, and
susceptible women (or men) become infected by infected men (or women) or infected
homosexual men. This means that susceptible homosexual men select their partner ran-
domly from the infected homosexual population, while women or men select their partners
randomly from the infected heterosexual or infected homosexual population [15].

The force of infection or disease incidence function measures the susceptible person’s
risk of becoming infected. In some epidemic models, this function is assumed to be bilinear
in both the infected individuals and the susceptible individuals. In addition, a bilinear
force of infection or mass action law incidence may not yield appropriate results for several
reasons. In particular, this force of infection does not permit one to consider the difference
among infected individuals. Thus, we decided that since this function represents the contact
between an infected person and a susceptible one, the denominator would have to only be
formed by susceptible individuals and those who can transmit the disease. We excluded
both treated individuals and people living with AIDS under ART since their viral charge is
negligible; in addition, people living with AIDS are too sick, and their sexual life can be
considered as almost null. Therefore, the following infection forces by sexual contact are:

λh = Bh
Ih

Sh + Ih
Exclusive Homosexual Contact,

λhw = Bhw
Ih

Sm + Sh + Im + Ih
Contact between Homosexual Men and Women,

λhm = Bhm
Ih

Sm + Sh + Im + Ih
Contact between Homosexual Men and Heterosexual Men,

λm,w = Bs
Im,w

Sm,w + Im,w
Heterosexual Contact.

It is important to note that in exclusive homosexual contact, the fraction denotes
untreated infected homosexual men among susceptible and untreated infected homosexual
men. However, in the contact between homosexual men and women, the fraction denotes
untreated infected homosexual men among susceptible heterosexual men and untreated
homosexual men because this contact is considered bisexual behavior. The same reasoning
should be applied to the contact between homosexual men and heterosexual men. For
heterosexual contact, the fraction denotes untreated infected heterosexual men (women)
among susceptible heterosexual men (women) and untreated infected heterosexual men
(women). The compartmental model is presented in Figure 2. The dynamic is governed
by the system of nonlinear ordinary differential Equations (1)–(8), where a dot represents
differentiation with respect to t.
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Figure 2. Model Diagram. Adapted from [15].

Ṡh = Ψθ(1− γ)− Bh
Ih

Sh + Ih
Sh − µSh, (1)

İh = Bh
Ih

Sh + Ih
Sh − (α + µ)Ih, (2)

Ṡw = Ψ(1− θ)− Bs
Im

Sm + Im
Sw − Bhw

Ih
Sm + Sh + Im + Ih

Sw − µSw, (3)

˙Iw = Bs
Im

Sm + Im
Sw + Bhw

Ih
Sm + Sh + Im + Ih

Sw − (α + µ)Iw, (4)

˙Sm = Ψθγ− Bs
Iw

Sw + Iw
Sm − Bhm

Ih
Sm + Sh + Im + Ih

Sm − µSm, (5)

˙Im = Bs
Iw

Sw + Iw
Sm + Bhm

Ih
Sm + Sh + Im + Ih

Sm − (α + µ)Im, (6)

Ṫ = αp(Ih + Iw + Im)− (δ + µ)T, (7)

Ȧ = α(1− p)(Ih + Iw + Im) + δT − (d + µ)A. (8)

With initial conditions

Sh(0) > 0, Ih(0) ≥ 0 Sw(0) > 0, Iw(0) ≥ 0, Sm(0) > 0,

Im(0) ≥ 0, T(0) ≥ 0, A(0) ≥ 0.

Explanation of Equations
Susceptible individuals such as homosexual men, women, and heterosexual men Sh(t),

Sw(t), and Sm(t), grow in number with recruitment Ψθ(1− γ), Ψ(1− θ), and Ψθγ, respec-
tively, where Ψ is a constant recruitment, θ is the male proportion, and γ is the heterosexual
proportion; these susceptible populations decrease due to contagion with the virus in contact
rates λh, λm, and λw, respectively. Women and heterosexual men additionally acquire the
virus with rate λhw and λhm. Finally, they can die from natural causes with rate µ.

The number of infected individuals such as homosexual men, women, and heterosex-
ual men, Ih(t), Iw(t), and Im(t), grows with the rates of infection λh, λm, and λw. However,
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women and heterosexual men grow with rates λhw and λhm, respectively. This infected
population reduces because its individuals become treated or as a result of people living
with AIDS in rates α and α(1− p), respectively. Finally, they die from natural causes with
rate µ.

The number of treated individuals, T(t), grows because infected ones enroll in ART,
develop AIDS with a rate δ, or die from natural causes with rate µ.

The number of individuals living with AIDS, A(t), grows due of the entrance of in-
fected people with or without treatment whom develop AIDS; they die from natural causes
with rate µ and from induced disease death with rate d.

The correspondent mathematical analysis of this ordinary differential equations system
is developed as follows.

2.1. Positiveness and Boundedness

Theorem 1. Let the initial conditions be Sh(0) > 0, Ih(0) ≥ 0, Sw(0) ≥ 0, Iw(0) ≥ 0,
Sm(0) ≥ 0, Im(0) ≥ 0, T(0) ≥ 0, A(0) ≥ 0. Then, the solutions Sh(t), Ih(t), Sw(t),
Iw(t), Sm(t), Im(t), T(t), A(t) of the system (1) to (8) will be positive for all time t > 0.

Proof. Let t1 = sup{t > 0 : Sh(t) > 0, Ih(t) > 0, Sw(t) > 0, Iw(t) > 0, Sm(t) > 0, Im(t) > 0,
T(t) > 0, A(t) > 0}. From the first Equation (1), we have

dSh
dt

(t) = Ψθ(1− γ)− Bh
Ih(t)

Sh(t) + Ih(t)
Sh(t)− µSh(t) = Ψθ(1− γ)− (λh(t) + µ)Sh(t),

which can be re-written as:

d
dt

(
Sh(t) exp

[
µt +

∫ t

0
λh(τ)dτ

])
= Ψθ(1− γ) exp

[
µt +

∫ t

0
λh(τ)dτ

]
Sh(t1) exp

[
µt1 +

∫ t1

0
λh(τ)dτ

]
− Sh(0) = Ψθ(1− γ)

∫ t1

0
exp

[
µy +

∫ y

0
λh(τ)dτ

]
dy

Sh(t1) = Sh(0) exp
[
−µt1 −

∫ t1

0
λh(τ)dτ

]
+ exp

[
−µt1 −

∫ t1

0
λh(τ)dτ

]
Ψθ(1− γ)

∫ t1

0
exp

[
µy +

∫ y

0
λh(τ)dτ

]
dy ≥ 0.

Similarly, it can be shown that Ih(t), Sw(t), Iw(t), Sm(t), Im(t), T(t), A(t) are non-negatives
for all time t > 0. In this way, all solutions of the system remain positive for all non-negative
initial conditions.

Theorem 2. All the solutions of the system (1) to (8) are uniformly bounded. It means any
trajectory that starts in R+

8 remains in R+
8 for all time t ≥ 0.

Proof. Adding all eight equations from (1) to (8) gives:

dN
dt

= Ψ− µN − dA

≤ Ψ− µN.

Solving the differential in-equation, we have:

N(t) ≤
(

N(0)− Ψ
µ

)
exp(−µt) +

Ψ
µ

. (9)

Therefore, all solutions of the system will enter into the region:

ΩI I I =
{(

Sh(t), Ih(t), Sw(t), Iw(t), Sm(t), Im(t), T(t), A(t)
)
∈ R+

8 : N(t) ≤ Ψ
µ

}
. (10)
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In Equation (9), if N(0) ≤ Ψ
µ , then N(t) ≤ Ψ

µ ; if N(0) ≥ Ψ
µ then either the solution

enters in ΩI I I in finite time or N(t) approaches Ψ
µ asymptotically. Therefore, ΩI I I attracts

all solutions in R8
+.

The previous theorems allow us to conclude that the region ΩI I I is a positively
invariant set.

2.2. Basic Reproduction Number

The basic reproduction number, R0, determines the ability of the virus to develop and
persist in the population. It is the average number of individuals that a single infected
individual can infect during their life time when introduced into a wholly susceptible
population. If R0 < 1, then, on average, a few infected individuals brought into a fully
susceptible population will not be able to replace themselves and the disease will not spread.
If R0 > 1, then the number of infected individuals will increase with each generation and
the disease will spread.

In this research, we use the next generation matrix method as presented in [16]. This
method is as follows:

Let x = (x1, x2, . . . , xn)T be the number of individuals in each compartment, where the
first m < n compartments contain infected individuals. Consider these equations written
in the form:

ẋi = fi(x) = Fi(x)− Vi(x), for i = 1, . . . , m. (11)

In this splitting, Fi(x) is the rate of appearance of new infections in compartment
i and Vi(x) = V−i (x) − V+i (x), where V+i (x) is the rate of transfer of individuals into
compartment i by all others, and V−i (x) is the rate of transfer of individuals out of the
i compartment.

Note that Fi(x) includes only infections that are newly arising, but does not include
terms which describe the transfer of infectious individuals from one compartment to
another. Let Xs = {x ≥ 0 | xi = 0, i = 1, . . . , m} be the DFE. Assume that Fi and Vi satisfy
the following axioms outlined by [16]:

(A1) If x ≥ 0, then Fi, V+i , V−i ≥ 0 for i = 1, . . . , m.
(A2) If xi = 0, then V−i = 0. In particular, if x ∈ Xs, then V−i = 0 for i = 1, . . . , m.
(A3) Fi = 0 if i > m;
(A4) If x ∈ Xs, then Fi(x) = 0 and V+i = 0 for i = 1, . . . , m.
(A5) All eigenvalues of D f (x0) have negative real parts, where D f (x0) is the Jacobian

matrix evaluated at the disease free equilibrium x0.

Theorem 3 (Exposed in [16]). If x0 is the disease free equilibrium (DFE) and fi(x) satisfies
(A1)− (A5), then the derivatives DF (x0) and DV(x0) are partitioned as:

DF (x0) =

(
F 0
0 0

)
, DV(x0) =

(
V 0
J3 J4

)
.

where F and V are the m×m matrices defined by:

F =
[∂Fi

∂xj
(x0)

]
, V =

[∂Vi
∂xj

(x0)
]

with 1 ≤ i, j ≤ m.

Furthermore, F is non-negative, V is a non-singular M−matrix, and all eigenvalues of J4
have a positive real part.

According to [17], FV−1 is called the next generation matrix for model (11), and the
spectral radius (dominant eigenvalue) is the basic reproduction number:

R0 = ρ(FV−1). (12)
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Theorem 4 (Exposed in [16]). Consider the disease transmission model given by (11) with f (x)
satisfying conditions (A1) to (A5). If x0 is a DFE of the model, then x0 is locally asymptotically
stable if R0 < 1, but unstable if R0 > 1, where R0 is defined by Equation (12).

The basic reproduction number is defined as the spectral radius of the matrix FV−1

and denoted by:

R0 = max
{ Bs

α + µ
,

Bh
α + µ

}
= max{Rhet

0 , Rhom
0 }. (13)

Details are presented in Appendix A.

2.3. Stationary Points

To calculate stationary points, we solve the associated homogeneous system (14)–(21),
state variables with a star (*) superscript will be assumed to be an equilibrium value:

0 = Λh − Bh
I∗h

S∗h + I∗h
S∗h − µS∗h , (14)

0 = Bh
I∗h

S∗h + I∗h
S∗h − (α + µ)I∗h , (15)

0 = Λw − Bs
I∗m

S∗m + I∗m
S∗w − Bhw

I∗h
S∗m + S∗h + I∗m + I∗h

S∗w − µS∗w, (16)

0 = Bs
I∗m

S∗m + I∗m
S∗w + Bhw

I∗h
S∗m + S∗h + I∗m + I∗h

S∗w − (α + µ)I∗w, (17)

0 = Λm − Bs
I∗w

S∗w + I∗w
S∗m − Bhm

I∗h
S∗m + S∗h + I∗m + I∗h

S∗m − µS∗m, (18)

0 = Bs
I∗w

S∗w + I∗w
S∗m + Bhm

I∗h
S∗m + S∗h + I∗m + I∗h

S∗m − (α + µ)I∗m, (19)

0 = αp(I∗h + I∗w + I∗m)− (δ + µ)T∗, (20)

0 = α(1− p)(I∗h + I∗w + I∗m) + δT∗ − (d + µ)A∗. (21)

where

Λh = Ψθ(1− γ), Λw = Ψ(1− θ), Λm = Ψθγ, Bh = chβh, Bs = csβs,

Bhm = chmβhm, Bhw = chwβhw.

Thus, stationary points are:

• Disease-Free Equilibrium
This happens when I∗h = I∗w = I∗m = 0 and represents absence of infection. It is:

E0 =
(Λh

µ
, 0,

Λw

µ
, 0,

Λm

µ
, 0, 0, 0

)
. (22)

• Boundary Equilibrium
This occurs when I∗h = 0, the male homosexual population is null, and I∗w, I∗m are
non-zero. The subscript (N∗) means the boundary equilibrium coordinate, which is:

E1 =
(Λh

µ
, 0, S∗w, I∗w, S∗m, I∗m, T∗, A∗

)
, where
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S∗w =
Λw

Bs − α
, S∗m =

Λm

Bs − α
,

I∗w =
Λw

Bs − α

[
Rhet

0 − 1
]
, I∗m =

Λm

Bs − α

[
Rhet

0 − 1
]
,

T∗ =
Ψpα

[
1− θ(1− γ)

]
(Bs − α)(δ + µ)

[
Rhet

0 − 1
]
, A∗ =

Ψα
[
1− θ(1− γ)

][
δ + µ(1− p)

]
(Bs − α)(δ + µ)(d + µ)

[
Rhet

0 − 1
]
.

(23)

Note that the boundary equilibrium only exists when Rhet
0 > 1 (implying Bs > α).

• Endemic Equilibrium
This represents persistence of the infection, it is:

E2 =
(

S∗h , I∗h , S∗w, I∗w, S∗m, I∗m, T∗, A∗
)

, where (24)

S∗h =
Λh

Bh − α
, I∗h =

Λh
Bh − α

[
Rhom

0 − 1
]
,

S∗w =
Λw − (α + µ)I∗w

µ
, S∗m =

Λm − (α + µ)I∗m
µ

,

T∗ =
αp
[
Λh(Rhom

0 − 1) + (Bh − α)(I∗w + I∗m)
]

(Bh − α)(δ + µ)
,

A∗ =
α
(

δ + µ(1− p)
)[

Λh(Rhom
0 − 1) + (Bh − α)(I∗w + I∗m)

]
(Bh − α)(δ + µ)(d + µ)

.

(25)

I∗w =

Λw(αI∗m −Λm)

[
Bs I∗m(Bh − α) + BhwΛh(Rhom

0 − 1)
]
− BsΛhΛwµRhom

0 I∗m

(α + µ)

{
(αI∗m −Λm)

[
(Bh − α)

(
I∗m(Bs − α) + Λm

)
+ BhwΛh(Rhom

0 − 1)
]
−ΛhµRhom

0

(
I∗m(Bs − α) + Λm

)} . (26)

I∗m is given by the roots of fourth degree polynomial:

p(I∗m) = a4(I∗m)
4 + a3(I∗m)

3 + a2(I∗m)
2 + a1(I∗m) + a0. (27)

Coefficients a0, a1, a2, a3, and a4 are shown in Appendix B.
EE exists when Rhom

0 > 1. For infected males and females, the following inequali-
ties (28) must be satisfied. Otherwise, the populations of susceptible men S∗m and women
S∗w will be negatives:

0 < I∗m <
Λm

α + µ
and 0 < I∗w <

Λw

α + µ
. (28)

Figure 3 shows the existence of equilibrium points, such as Disease-Free Equilibrium
(DFE), Boundary Equilibrium (BE), and Endemic equilibrium (EE) in function of Rhet

0 and
Rhom

0 . The figure shows two important aspects. First, the DFE is the only stationary point
that exists when Rhom

0 or Rhet
0 are less than one; it gives an idea of how stability can be.

Second, for existence of EE, the Rhom
0 is more important that Rhet

0 because when Rhom
0 is

greater than 1 the EE exit, whereas when Rhet
0 is greater than 1 is necessary that Rhom

0 will
be greater than 1.



Viruses 2022, 14, 2749 10 of 21

Figure 3. Stationary Points Existence.

2.4. Local Stability of Disease-Free Equilibrium

Theorem 5. The DFE E0 =
(

Λh
µ , 0, Λw

µ , 0, Λm
µ , 0, 0, 0

)
is LAS if Rhom

0 < 1 and Rhet
0 < 1 and is

unstable when Rhom
0 > 1.

Proof. LAS will be demonstrated with the eigenvalues of the Jacobian matrix related to the
system (1) to (8) evaluated in E0, it is:

J(E0) =



−µ −Bh 0 0 0 0 0 0
0 Bh − (α + µ) 0 0 0 0 0 0
0 −Bhw

1−θ
θ −µ 0 0 −Bs

1−θ
θγ 0 0

0 Bhw
1−θ

θ 0 −(α + µ) 0 Bs
1−θ
θγ 0 0

0 −Bhmγ 0 −Bs
θγ

1−θ −µ 0 0 0
0 Bhmγ 0 Bs

θγ
1−θ 0 −(α + µ) 0 0

0 αp 0 αp 0 αp −(δ + µ) 0
0 α(1− p) 0 α(1− p) 0 α(1− p) δ −(d + µ)


(29)

The characteristic polynomial is

p(λ) = (λ + µ)3(λ + d + µ)(λ + δ + µ)(λ + α + µ− Bh)
[
(α + λ + µ)2 − B2

s

]
.

Eigenvalues are:

λ1 = −µ λ2 = −µ λ3 = −µ,

λ4 = −(d + µ), λ5 = −(δ + µ), λ6 = −(α + µ + Bs),

λ7 = −(α + µ)
[
1− Rhet

0

]
, λ8 = −(α + µ)

[
1− Rhom

0

]
.

(30)

R0 = max{Rhom
0 , Rhet

0 } < 1 imply Rhom
0 < 1 and Rhet

0 < 1; thus, if all eigenvalues are
negatives, it follows that E0 is LAS. On the other hand, if R0 > 1, then Rhom

0 > 1 or Rhet
0 > 1,

implying that λ7 or λ8, respectively, will be positive and in this case E0 is unstable.
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2.5. Global Sensitivity Analysis

A sensitivity analysis will help us better understand which of the parameters in the
model we should focus on estimating most precisely. We answer the following questions:
Which parameters contribute most to output variability? Which parameters require ad-
ditional research or are insignificant? These questions can be answered by performing
an analysis with Latin Hypercube Sampling (LHS) and Partial Rank Coefficient (PRCC).
We use Matlab to solve the system of ordinary differential equations and to implement
most of the SA functions described throughout the manuscript; the functions are available
at http://malthus.micro.med.umich.edu/lab/usanalysis.html (accessed on 20 April 2020).

LHS is a statistical sampling method that allows for an efficient analysis of parameter
variations across simultaneous uncertainty ranges in each parameter [18]. PRCC shows which
parameters have the largest influence on model outcomes [19]. To summarize, we can say that
LHS is a sample method, and PRCC conducts the statistical treatment of each sample.

The model contains 12 parameters; however, to perform sensitivity analysis, only
parameters related to HIV infection and related to a basic reproduction number are consi-
dered. They are: γ, p, µ, α, Bh, Bs, Bhw, Bhm. According to [20], a uniform distribution was
chosen over a Gaussian (normal) one because we have no evidence of the ends of the ranges
and we carry out multiple runs (NR = 300); parameters, baselines, ranges, and probability
density functions (PDF) are listed in Table 2. A Partial Rank Correlation Coefficient was
created for each infected population. In addition, scatterplots for each of the aforementioned
parameters are presented in Figures 4–6.

Table 2. Parameters used in Sensitivity Analysis through Latin Hypercube Sampling and Partial
Rank Correlation Coefficients (LHS/PRCC).

Parameter Baseline Range PDF Source

γ 0.9 [0.3678, 1] Uniform Assumed
p 0.85 [0.1353, 1] Uniform Assumed
µ 0.0140 [0.01, 0.02] Uniform [21]
α 0.3333 [0.1353, 1] Uniform [22]
Bh 2.64 [0.05, 3.95] Uniform Assumed
Bs 0.04 [0.0497, 0.5] Uniform [23]
Bhw 0.04 [0.0497, 0.5] Uniform Assumed
Bhm 0.3 [0.0497, 0.5] Uniform Assumed

http://malthus.micro.med.umich. edu/lab/usanalysis.html
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Figure 4. PRCC–Diagram and Scatterplot for each Parameter in Table 2 with respect to Untreated
Infected Homosexual Men, Ih.
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Figure 5. PRCC– Diagram and Scatterplot for each Parameter in Table 2 with respect to Untreated
Infected Women, Iw.
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Figure 6. PRCC– Diagram and Scatterplot for each Parameter in Table 2 with respect to Untreated
Infected Heterosexual Men, Im.
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3. Discussion

This analysis focuses on identifying the main parameters that play a dominant role
in three different response outputs such as Ih, untreated infected homosexual men; Iw,
untreated infected women; and Im, untreated infected heterosexual men. The more sensi-
tive parameters are: the departure rate of infected individuals, α, and the infection rates
in homosexuals and heterosexuals, Bh and Bs, respectively. Scatterplots show the variation
in the infected populations size with changes in parameters when examined, thus provid-
ing specific qualitative information on the relationship between an infected population
and a parameter. Parameters with positive PRCCs will increase Ih,w,m when their value is
increased, whereas parameters with negative PRCCs will decrease Ih,w,m when their value
is increased. PRCC values are represented in Figures 4–6.

It follows from Figure 4 that untreated infected homosexuals, Ih, have a negative
correlation with the α parameter; in fact, the PRCC =−0.98023, which allows us to conclude
that an increase in the α parameter means a decrease in the number of untreated infected
homosexual men. In Figure 5, the number of untreated infected women, Iw, has a positive
correlation with rate of infection in heterosexuals Bs. In fact, PRCC = 0.68725, thus an in-
crease in heterosexual contact implies an increase in women being infected; analogously,
this population has a negative correlation with the α parameter. Figure 6 allows us to
conclude that the γ parameter does not influence untreated infected heterosexual men, Im.
In fact, PRCC = −0.0063685, showing that an increase in this parameter has little influence
on the number of infected heterosexual men. In addition, infection rates such as Bs and
Bh have similar behavior in infected heterosexual men, Im, as for the infected women
population, Iw.

4. Conclusions

Models will be a tool for understanding the disease dynamics and for predicting
possible trends. Obviously, more accurate predictions require more complex models with
more classes and compartments. Although such models are relatively easy to formulate,
their mathematical analysis is difficult, and obtaining the necessary social and sexual
behavior data is more complicated. Several key features could be included to create more
realistic HIV/AIDS models in human populations, such as by looking infectious classes
or transmission among injectable drug users through needle sharing.

Sensitivity analysis for the eight parameters related to infection population allow us
to conclude that the most influential parameter in the HIV dynamic is the departure rate
for infected individuals, α, because it presents the highest PRCC coefficient. This behavior
can be explained because the α parameter is present in the basic reproduction number and
governs how those infected people are emerging from untreated status to obtain treatment
or to develop AIDS.

Bisexual parameters, such as those of the probability of infection via sexual contact
between homosexual men and heterosexual men, βhm, and between homosexual men and
women, βhw, allow us to conclude that higher values of βhm and βhw imply a high infection
rate in untreated infected women and heterosexual men.

Mathematics can provide information for the decision maker about how to promote
awareness campaigns aimed at specific populations. This research allowed us to conclude
that the best way to reduce contagion and consequently to reach a DFE is thought to be
the reduction in homosexual partners rate, as they are the population most affected by the
virus and are therefore the most likely to become infected and to spread it. Increasing the
departure rate of infected individuals leads to a decrease in untreated infected heterosexual
men and untreated infected women. However, it is not the only was to prevent and curb
the rate of contagion in San Juan de Pasto. Consequently, it is also necessary to increase
anti-retroviral treatment.

With the population parameters of San Juan de Pasto, several numerical simulations
were performed by modifying parameters that make the basic reproduction number greater
than or less than one. This seems to suggest that when Rhet

0 < 1 and Rhom
0 > 1, there is
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a general decline in the rate of HIV infection over the next few years, but the infection
persists. As a result, we can conclude that the most important observation from our
findings is that, in the population, there is a short-term rise in HIV infection in which there
exists a significant increase in new HIV infections, followed by a decline in the generation
of new infections.

The dynamic of the HIV/AIDS epidemic, to a large extent, depends on changes in
the basic reproduction number among homosexual men, Rhom

0 , which was also evidenced
by modifying several parameters in the scenarios above. In the background section, it
was mentioned that the probability of HIV infection in homosexual men is great than
in heterosexual people; thus, the basic reproduction number in heterosexual people, Rhet

0 ,
is less influential. In addition, investigations such as [24,25] permit us to conclude that
the rate of sexual partners in homosexual men is greater than the rate of sexual partners
in heterosexuals; thus, Rhom

0 > Rhet
0 . This suggests that HIV infection can be controlled

or eliminated from the community if control programs are directed towards reducing Rhom
0

to values less than one. The model shows the persistence of the disease when Rhom
0 > 1.

The dynamics of HIV/AIDS are, in general, too complex to allow for intuitive predic-
tions and require the support of mathematical modeling for qualitatively and quantitatively
assessing and understanding the functioning system. Furthermore, one of the most difficult
tasks of mathematical modeling is obtaining parameters for a chosen model. Moreover, by
using real parameter values to study and analyze the diverse sexual behavior in San Juan de
Pasto, the proposed HIV/AIDS model tries to be as approximate as possible to the current
situation of this infection. The emphasis was not on the accuracy of the scenarios, but on the
actions that can be taken as a result of comprehending the state of the epidemic in the
future. For example, scenario 5 shows that when the number of sexual partners is high, the
basic reproduction number is greater than 1 and the infection spreads more easily, implying
that more and more people are being treated with higher public health costs, and therefore,
it is better and more economically efficient to invest in educational campaigns. These
actions can involve, among other things, the prevention of new infections, the provision
and delivery of anti-retroviral therapy, and educational campaigns such as those that aim
to reduce the number of sexual partners or the use of condoms for self-protection.

This application in San Juan de Pasto shows the effects of modifying the parameters
related to infected populations. These variations imply huge social and economic expenses
which can and should be avoided through government actions such as educational
campaigns. In this way, this research aims to be a useful tool in the design of establishing
strategies for implementing valid public health policies and introducing efficient public
health campaigns.
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Appendix A. Calculus of the Basic Reproduction Number

According to Lemma 3, to find the basic reproduction number, it is necessary to know
the disease-free equilibrium (DFE) of the model. This point is calculated as the solution
of the homogeneous system of equations considering that the infected populations are null.
It is as follows:

E0 =

(
Ψθ(1− γ)

µ
, 0,

Ψ(1− θ)

µ
, 0,

Ψθγ

µ
, 0, 0, 0

)
. (A1)

Let x = (Ih, Iw, Im, T, A) be the vector of the infected population andF (x) be the vector
with new infections; V+(x) is the rate of transfer of individuals into a compartment, V−(x)
is the rate of transfer of individuals out of a compartment, and V(x) = V−(x)− V+(x) is
the transfer vector and regarding terms. Thus, if ẋ denotes the derivative of vector x, then
ẋ = fi(x) = F (x)− V(x), where:

F (x) =


Bh

Ih
Sh+Ih

Sh

Bs
Im

Sm+Im
Sw + Bhw

Ih
Sm+Sh+Im+Ih

Sw

Bs
Iw

Sw+Iw
Sm + Bhm

Ih
Sm+Sh+Im+Ih

Sm

0
0

, V−(x) =


(α + µ)Ih
(α + µ)Iw
(α + µ)Im
(δ + µ)T
(d + µ)A

 (A2)

V+(x) =


0
0
0

αp(Ih + Iw + Im)
δT + α(1− p)(Ih + Iw + Im)

, V(x) =


(α + µ)Ih
(α + µ)Iw
(α + µ)Im

(δ + µ)T − αp(Ih + Iw + Im)
(d + µ)A− δT − α(1− p)(Ih + Iw + Im)

 (A3)

Jacobian matrices for F (x) and V(x) evaluated in disease-free equilibrium, x0 = E0,
are given by:

DF (x0) = F(E0) =


Bh 0 0 0 0

Bhw
1−θ

θ 0 Bs
1−θ
θγ 0 0

chmβhmγ Bs
θγ

1−θ 0 0 0
0 0 0 0 0
0 0 0 0 0

, (A4)

DV(x0) = V(E0) =


α + µ 0 0 0 0

0 α + µ 0 0 0
0 0 α + µ 0 0
−αp −αp −αp δ + µ 0

−α(1− p) −α(1− p) −α(1− p) −δ d + µ

 (A5)

The following is the verification of the fulfillment of the assumptions (A1) to (A5):
From previous basic properties, we can conclude that F (x), V−(x), V+(x), and V(x) are
positives, meaning (A1) is true. Trivially, if x = 0, then V− = 0 follows (A2). Notice that
Fi = 0 if i > 3; thus, (A3) is true. If x ∈ Xs, then Fi(x) = 0, and V+i (x) = 0 if i = 1, 2, 3.
Then, (A4) is true. Finally, eigenvalues of D fi(x0) are calculated as:

If x = (Ih, Iw, Im, T, A), then:



Viruses 2022, 14, 2749 18 of 21

D f (xo) = D f (Eo) =


Bh − (α + µ) 0 0 0 0

Bhw
1−θ

θ −(α + µ) Bs
1−θ
θγ 0 0

Bhmγ Bs
θγ

1−θ −(α + µ) 0 0
αp αp αp −(δ + µ) 0

α(1− p) α(1− p) α(1− p) δ −(d + µ)

 (A6)

Its characteristic polynomial is:

p(λ) = (d + λ + µ)(δ + λ + µ)(−α + Bh− λ− µ)
[
(α + λ + µ)2 − Bs2

]
.

Its eigenvalues are:

λ1 = Bh − (α + µ), λ2 = Bs − (α + µ), λ3 = −(d + µ), λ4 = −Bs − (α + µ), λ5 = −(δ + µ). (A7)

Since Rhom
0 = Bh

α+µ < 1 and Rhet
0 = Bs

α+µ < 1, the above eigenvalues have a negative
real part.

These eigenvalues have negative real parts if R0 < 1, being fulfilled (A5). Thus,
(A1) to (A5) are satisfied, according to [16]. Therefore, we have:

FV−1 =



Bhw
α+µ 0 0 0 0

Bhw(1−θ)
θ(α+µ)

0 Bs(1−θ)
θγ(α+µ)

0 0
chm βhmγ

α+µ
Bsγθ

(1−θ)(α+µ)
0 0 0

0 0 0 0 0
0 0 0 0 0

 (A8)

The characteristic polynomial of FV−1 is:

p(λ) = λ5 − Bh
α + µ

λ4 − B2
s

(α + µ)2 λ3 +
BhB2

s
(α + µ)3 λ2. (A9)

The eigenvalues are:

λ1 = 0, λ2 = 0, λ3 =
Bh

α + µ
, λ4 =

Bs

α + µ
, λ5 = − Bs

α + µ
. (A10)

The basic reproduction number is defined as the spectral radius of the matrix FV−1

and denoted by:

R0 = max
{ Bs

α + µ
,

Bh
α + µ

}
= max{Rhet

0 , Rhom
0 }. (A11)

Appendix B. Endemic Equilibrium

I∗m is given by the roots of the fourth-degree polynomial:

p(I∗m) = a4(I∗m)
4 + a3(I∗m)

3 + a2(I∗m)
2 + a1(I∗m) + a0. (A12)

a4 = α2(α + µ)(Bh − α)2(Bs − α)(α + Bs + µ),

a3 = α(Bh − α)

{
(α + Bs + µ)

[
3αΛm(Bh − α)(α− Bs) + µ

(
Λm(α− Bh)(2Bs − 3α) + 2αΛhRhom

0 (α− Bs)

)
+ 2Λhµ2Rhom

0 (α− Bs)

]
+ BhmΛh(Rhom

0 − 1)(α + µ)

(
α(α + µ)− Bsµ

)
+ αBhwΛh(Rhom

0 − 1)(α + µ)(Bs + µ)

}
,
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a2 = 3αΛm(Bh − α)

[
Λm(α− Bh)(α

2 − B2
s )− αΛh(Rhom

0 − 1)(αBhm + BhwBs)

]
+ µ2

{
BhmΛh(Rhom

0 − 1)
[
(Bs − 2α)

(
Λm(Bh − α) + αΛhRhom

0

)
− αBhwΛh(Rhom

0 − 1)
]

+ 2ΛhΛm(Bh − α)

[
αBhw + Rhom

0

(
−α(4α + Bhw) + B2

s + αBs

)]
+ Λ2

m(Bh − α)2(Bs − 3α)

+ αΛ2
hRhom

0 (α + Bs)

(
Bhw(1− Rhom

0 ) + Rhom
0 (Bs − α)

)}
+ Λhµ3Rhom

0

[
2Λm(Bh − α)(Bs − 2α)

+ Λh

(
Bhm(Rhom

0 − 1)(Bs − α) + αBhw + Rhom
0 [−α(2α + Bhw) + B2

s + αBs]

)]
+ µ

{
αΛhΛm(Bh − α)

[
Bhm(Rhom

0 − 1)(2Bs − 5α) + 2(α + Bs)

(
Bhw(1− Rhom

0 ) + 2Rhom
0 (Bs − α)

)]
+ Λ2

m(Bh − α)2(3α + Bs)(Bs − 2α)− α2Λ2
h(Rhom

0 − 1)
(

BhmBhw(Rhom
0 − 1) + αBhmRhom

0 + BhwBsRhom
0

)}
+ Λ2

hµ4(Rhom
0 )2(Bs − α),

a1 = Λm

{
Λm(Bh − α)

[
Λm(Bh − α)(α2 − B2

s ) + 3αΛh(Rhom
0 − 1)(αBhm + BhwBs)

]
+ µ2

[
Λ2

m(Bh − α)2

+ ΛhΛm(Bh − α)

(
(Rhom

0 − 1)(Bhm + Bhw) + 4αRhom
0

)
+ Λ2

h

(
[Bhm(Rhom

0 − 1) + BsRhom
0 ](Bhw(Rhom

0 − 1)

− BsRhom
0 ) + α(Rhom

0 − 1)Rhom
0 (3Bhm + Bhw) + α2(Rhom

0 )2
)]

+ µ

[
2αΛ2

m(Bh − α)2

+ ΛhΛm(Bh − α)

(
(α + Bs)[Bhw(Rhom

0 − 1) + 2Rhom
0 (α− Bs)]− Bhm(Rhom

0 − 1)(Bs − 4α)

)
+ 2αΛ2

h(Rhom
0 − 1)

(
BhmBhw(Rhom

0 − 1) + αBhmRhom
0 + BhwBsRhom

0

)]
+ Λhµ3Rhom

0

[
2Λm(Bh − α)

+ Λh

(
(Rhom

0 − 1)(Bhm + Bhw) + 2αRhom
0

)]
+ Λ2

hµ4(Rhom
0 )2

}
,

a0 = −ΛhΛ2
m(Rhom

0 − 1)
{

Λm(Bh − α)

(
Bhm(α + µ) + BhwBs

)
+ BhwΛhµ

(
Bhm(Rhom

0 − 1) + Rhom
0 Bs

)
+ BhmΛhµBh

}
Using Descartes’ rule, we have the number of untreated infected heterosexual men

in equilibrium EE given by positive roots of polynomial p(I∗m) in Equation (27). This
equilibrium point exists when Rhom

0 > 1. Note that the a0 coefficient is negative when
Rhom

0 > 1, and the a4 coefficient depends on the term (Bs − α). The number of possible
positive roots in polynomial p(I∗m) depends on the signs of the coefficients a1−3. Our
purpose is to guarantee when the polynomial p(I∗m) has positive roots. Table A1 shows the
number of possible positive roots according to the coefficients’ signs. Note that if Rhom

0 > 1,
the infection rate in homosexual men is greater than the rate of no longer infected; it means
Bh > α. Analogously, if Rhet

0 > 1, the infection rate in heterosexual men is greater than the
rate no longer infected, Bs > α.
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Table A1. Number of possible positive roots of p(I∗m).

Case a0 a1 a2 a3 a4 Number of Sign Changes Possible
Positive Roots

a1 – + + + + 1 1
a2 – + + – + 3 1, 3
a3 – + – + + 3 1, 3
a4 – – + + + Bs > α 1 1
a5 – + – – + (Rhet

0 > 1) 3 1, 3
a6 – – – + + 1 1
a7 – – – – + 1 1
a8 – – + – + 3 1, 3

b1 – + + + – 2 0, 2
b2 – + + – – 2 0, 2
b3 – – – – – 0 0
b4 – + – – – Bs < α 2 0, 2
b5 – + – + – 4 0, 2, 4
b6 – – + + – 2 0, 2
b7 – – – + – 2 0, 2
b8 – – + – – 2 0, 2

Note that when Rhet
0 > 1, the existence of EE is always guaranteed.

The above table of the number of possible positive roots of p(I∗m) allows us to conclude
the following theorem.

Theorem A1. If Rhom
0 > 1, the triangle transmission model in Equations (1)–(8):

(i) Has a unique EE if Rhet
0 > 1 and whenever cases a1, a4, a6, and a7 of Table A1 hold;

(ii) Could have more than one EE if Rhet
0 > 1 and whenever cases a2, a3, a5, and a8 of

Table A1 hold;
(iii) Could have two or no EEs if Bs < α and whenever cases b1, b2, b4, b6, b7, and b8 of

Table A1 hold;
(iv) Could have a fourth EE if Rhet

0 < 1 and whenever case b5 of Table A1 holds;
(v) There is no EE if Rhet

0 < 1 and whenever case b3 of Table A1 holds.
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