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Abstract: An adenoviral (AdV)-based vector system is a promising platform for vaccine development
and gene therapy applications. Administration of an AdV vector elicits robust innate immunity,
leading to the development of humoral and cellular immune responses against the vector and the
transgene antigen, if applicable. The use of high doses (1011–1013 virus particles) of an AdV vector,
especially for gene therapy applications, could lead to vector toxicity due to excessive levels of innate
immune responses, vector interactions with blood factors, or high levels of vector transduction in the
liver and spleen. Additionally, the high prevalence of AdV infections in humans or the first inoculation
with the AdV vector result in the development of vector-specific immune responses, popularly known
as preexisting vector immunity. It significantly reduces the vector efficiency following the use of an
AdV vector that is prone to preexisting vector immunity. Several approaches have been developed
to overcome this problem. The utilization of rare human AdV types or nonhuman AdVs is the
primary strategy to evade preexisting vector immunity. The use of heterologous viral vectors, capsid
modification, and vector encapsulation are alternative methods to evade vector immunity. The
vectors can be optimized for clinical applications with comprehensive knowledge of AdV vector
immunity, toxicity, and circumvention strategies.

Keywords: adenoviral vector immunity; preexisting immunity; adenoviral immunity; circumvention
of preexisting vector immunity; adenovirus capsid; adenovirus tropism; adenoviral innate immunity;
hepatic toxicity; blood factor; adenoviral vector vaccine; adenoviral gene therapy

1. Introduction

Adenovirus (AdV) was first isolated in 1953 from human adenoids while searching
for the etiologic agent of acute respiratory infections [1,2], and it was later characterized
as human Ad (HAdV) type 5 (HAd5). Currently, more than 100 genotypes of HAdVs
are known [3,4]. Overall, AdV-based vectors can infect several types of rapidly dividing
or quiescent cells [5]. They can easily be propagated to high titers and purified in large
quantities and support the high-level expression of a foreign gene. Activation of innate
immunity following AdV vector inoculation leads to antigen-specific humoral and cell-
mediated immune responses. Therefore, AdV-based vectors provide an attractive platform
for recombinant vaccines and gene therapy.

Vaccines play a vital role in public health by significantly protecting humans and
animals from infectious diseases. Most of the currently licensed human vaccines are
conventional vaccines in the form of live-attenuated, inactivated, or subunit vaccines.
During the COVID-19 pandemic, second-generation vaccine platforms such as AdV vector-
based and mRNA-based vaccines were developed [6,7]. An AdV vector for gene therapy
can play different roles depending on the need, including the somatic cell expression
of a defective gene for correcting metabolic or neurologic disorders [8–12], the use of a
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tumor suppressor or apoptosis gene [12–14], immunomodulation of the host’s immune
system [15], induction of immune responses against cancer antigens [16], and selective cell
lysis with a conditional replication-competent vector [17]. Invariably, the vector dose for
a gene therapy application is many-fold higher than the vector for a vaccine. Therefore,
systemic delivery of high doses of AdV vectors for gene therapy can result in vector toxicity
in patients [18].

The high prevalence of AdV infections in humans results in preexisting AdV immunity,
which hinders the efficacy of many HAdV vectors [19]. Moreover, inoculation with an AdV
vector will also elicit anti-vector immunity, which may significantly inhibit its effectiveness
following the repeat administration of the same vector [20].

2. AdV Biology

AdVs are approximately 90–100 nm in diameter and are nonenveloped icosahedral
viruses belonging to the Adenoviridae family [21], consisting of double-stranded linearized
DNA genomes in a range of 25–48 kilobase pairs (Figure 1A). The genome has inverted
terminal repeat (ITR) sequences in the range of 26–721 bp [3], depending on the AdV type
and the species of origin, at the left and right ends of the genomes, which function as
the origins of DNA replication [22]. Next to the left ITR, the genome packaging signal is
essential for packaging the AdV genome [23]. The early regions (E1, E2, E3, and E4) encode
proteins critical for activating the transcription of other viral genes, preparing the host
cell for virus replication, or modulating host immune responses [24–26]. The late regions
(L1-L5) encode most structural proteins to produce progeny virions [22,24,25].
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Figure 1. Genome organization and structure of human adenovirus type 5. (A) Schematic representa-
tion of the adenoviral genome, transcription units, and major proteins. (B) Structural representation of
adenovirus and its components. E, early region (shown as red arrows); L, late region (shown as black
arrows); L’-ITR, left inverted terminal repeat; R’-ITR, right inverted terminal repeat; Ψ, packaging
signal; AdPol, adenovirus DNA polymerase; TP, terminal protein; DBP, DNA-binding protein.

The hexon (protein II), penton base (protein III), and fiber (protein IV) are the major
capsid proteins that create the capsid shell [27]. The 240 hexons form the facet of the
icosahedron (12 per facet) and 12 penton bases lie at each vertex of the icosahedron with ex-
tensions of 12 fibers [28]. The fiber protein comprises knob and stem domains, and the fiber
length varies among AdV types [29]. All major capsid proteins are the targets for neutraliz-
ing antibodies; however, the hexon serves as the dominant immunogen for type-specific
neutralizing antibodies [30,31]. Four minor proteins (protein IIIa, VI, VIII, IX), known as
cementing proteins, help to assemble and support the AdV virion structure at both the
inner and outer surfaces [32,33]. The VI and VI precursor proteins (pVI) play critical roles
in the endosome escape of AdV after endocytosis and activate the cleavage of several
precursor proteins [34]. Moreover, six core proteins (V, VII, IVa2, terminal protein, Mu,
and protease) are responsible for DNA replication and transcription, DNA condensation,
and viral assembly [33,35]. A schematic virion structure of HAdV5 consisting of at least
13 proteins is presented (Figure 1B). According to the phylogenetic classification, genome
organization, and biological features, AdVs are classified into six genera: Mastadenovirus,
Aviadenovirus, Atadenovirus, Siadenovirus, Ichtadenovirus, and Testadenovirus [3]. Further-
more, based on their hemagglutination properties, sequence correlation, and oncogenic
characteristics, HAdVs are categorized into seven species (A-G) [3,36,37].

3. AdV Receptors and Cell Entry

AdVs utilize the distal knob domain to bind to their respective primary cell receptors
with high affinity and initiate endocytosis (Figure 2) [38,39]. Many HAdVs recognize the
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Coxsackie and AdV Receptor (CAR) on the cell surface for attachment and internaliza-
tion [40]. CAR is a transmembrane glycoprotein consisting of two immunoglobulin-like
extracellular domains, a transmembrane domain, and a long cytoplasmic domain. The
immunoglobulin-like domain (D1) seems necessary for viral binding [41]. CAR is a com-
ponent at the tight junction of epithelial cells mediating cell–cell adhesion and is broadly
expressed in different tissues [40,42]. CAR expression on non-permissive cells increases
the repertoire of AdV-mediated gene transfer [43,44]. Meanwhile, type B HAdVs utilize
CD46, CD80/86, or receptor X as the cell receptor for attachment [45–50]. Moreover, some
AdVs use receptors other than CAR for cell entry, such as desmoglein-2 for HAdV3, 7, 11,
14 [51], glycans GD1a for HAdV37 [52], and sialic acid for HAdV37 and 52 [53,54]. AdVs of
different species, such as bovine, porcine, or ovine, use CAR-independent mechanisms for
cell attachment and internalization [55–58].
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Figure 2. Transportation of human adenovirus type 5 or its genome within a host cell. The adenovi-
ral knob domain binds to the CAR on the host cell surface. Following receptor binding, the fibers Figure 2. Transportation of human adenovirus type 5 or its genome within a host cell. The adenoviral

knob domain binds to the CAR on the host cell surface. Following receptor binding, the fibers start to
disassociate, exposing the RGD loop of the penton to interact with αv integrins, thereby initiating
endocytosis. The endosome’s acidic environment results in the dissociation of the penton base and
peripentonal hexon, followed by protein VI-mediated lysis of the endosome. The viral particle is
transported to the nuclear membrane by microtubule motors. Finally, the adenoviral genome is
transported to the nucleus through the nuclear pore complex. CAR, Coxsackievirus and adenovirus
receptor; RGD, arginine–glycine–aspartic acid; GTPase; guanosine triphosphate hydrolase.

Interaction between CAR and AdV fiber knobs displaces the fibers, thereby exposing
the penton base [42,59]. It allows the attachment of the RGD domain of a penton with αv
integrins, a heterodimeric transmembrane protein involved in cell adhesion, and stimulates
virus internalization by facilitating clathrin-coated endocytosis [60,61]. Subsequently, the
activation of several GTPases, such as dynamin, PI3K, Rac1, Cdc42, and Rab5, results in
virus internalization into the clathrin-coated endosome [39,62,63]. The acidic environment
in the endosome results in the dissociation of the penton base and peripentonal hexon
from the virion, followed by protein VI-mediated endosomal lysis [61,64]. The microtubule
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motors transport the uncoated viral particle to the nuclear membrane. Subsequently, the
viral genome is injected into the nucleus via the nuclear pore complex [65,66].

4. AdV Vector Construction

AdVs’ genome manipulation for vector generation for vaccine development and
gene therapy applications has evolved over the years [14,67]. Initially, the replication-
competent AdV vector was generated by deleting the E3 region, which is not essential for
virus replication [68]. The deletion of E1 and E3 was introduced into the AdV vector to
increase the size of the foreign gene cassette, and this type of replication-defective vector
is considered the first-generation AdV vector [69]. The E1- and E3-deleted vectors can
easily be propagated in cell lines that constitutively express E1 proteins, such as HEK
293 [70] and PER.C6 [71]. Several techniques have been developed to construct AdV
vectors. The investigators have used homologous recombination in bacteria [72], the Cre-
lox recombination system [73], and homologous recombination in the appropriate cell
lines [74] to generate AdV vectors. Due to the leaky expression of some of the AdV proteins,
the development of AdV-specific immune responses at high levels will eliminate the
transduced cells, thereby shortening the duration of transgene expression [75]. Therefore,
the second generation of AdV vectors was developed by extending deletions in the E2
and/or E4 regions, in addition to E1 and E3 deletions. These vectors have a foreign gene
insertion capacity of up to 14 kb, with improved vector survival in the host [76,77].

Nevertheless, the vector yield per cell is less than in the first-generation vectors because
of the reduced replication in the producer cell lines [67]. The third-generation AdV vectors,
known as helper-dependent or gutless AdV vectors, were generated by the deletion of the
viral genome except for the ITRs and packaging signal. A particular AdV helper virus is
used for generating helper-dependent AdV vectors having a larger insert capacity with
low toxicity [78–80]. Moreover, the conditional replication-competent AdV vectors or
oncolytic AdV vectors can be generated by controlling the E1 expression with an inducible
promoter [17]. The first-generation vectors are preferred for vaccine development, while
the second, third, and conditional replication-competent AdV vectors are better suited
for gene therapy. The implications of oncolytic AdV vectors have been reviewed in detail
elsewhere [81,82].

Several unique characteristics of AdV vectors have contributed to their potential as
vectors for gene delivery. The AdV genome can easily be manipulated, allowing the in-
sertion of a sizeable foreign gene cassette [67], which remains stable even after multiple
passages, and the vector system has an excellent safety record [83,84]. AdV vectors con-
tain various pathogen-associated molecular patterns (PAMPs) interacting with pathogen
recognition receptors (PRR), thereby stimulating robust innate immune responses leading
to enhanced adaptive immunity [36,85–87]. Moreover, AdV vectors can quickly be grown
and purified in large quantities and have broad host cell tropism [5,88]. Furthermore, AdV
vector vaccines can be administrated through the mucosal route, such as the oral and the
nasal routes [89]. AdV vector vaccines administered through the mucosal surfaces can
induce cellular and mucosal immunity [89]. Mucosal immunity can prevent the initial
entrance of pathogens, which is a great advantage against respiratory pathogens [90,91].

5. AdV-Mediated Activation of Innate Immunity

The host immune system can recognize PAMPs in microbial structures or products
through PRRs on the cell surface, resulting in an innate immunity cascade [87,92]. One of
the best-characterized types of PRRs is Toll-like receptors (TLRs), which are expressed on
antigen-presenting cells (dendritic cells and macrophages) as well as non-immune cells
such as fibroblasts and epithelial cells [93]. The presence of various PAMPs in AdVs results
in the activation of multiple innate immune pathways [36,86]. The innate immunity is
initiated by the sensing of AdV through interactions between viral proteins and cellular
receptors. The binding of viral fiber to CAR (with many AdVs) and/or interactions be-
tween the penton base and integrins induce the downstream signaling of nuclear factor
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kappa B (NF-κB), resulting in the increased expression of proinflammatory cytokines and
chemokines [94–96]. In addition, the binding of the blood coagulation factor X (FX) to
the AdV hexon is associated with the activation of TLR4 adaptor molecules such as differ-
entiation primary response 88 (MyD88), TNF receptor-associated factor 6 (TRAF6), and
TIR domain-containing adaptor-inducing interferon-β (TRIF), following the stimulation
of TLR4 [97]. Upregulation of NF-κB results in the enhanced expression of several proin-
flammatory cytokines and chemokines, such as IL1α, IL1β, IFNα, TNFα, IL2, IL6, IL8,
CCL2, CCL3, CCL4, CXCL1, CXCL2, CXCL10, GM-CSF, and others [97–99]. The levels
of cytokines’ and chemokines’ expression are dependent on the AdV vector dose and
the host. In a mouse model, the elevated cytokines’ and chemokines’ levels are detected
within 0.5–3 h, reaching the peak at 6–12 h and then declining to normal levels at 7–10 days
post-inoculation with an AdV vector [98]. Following the intravenous inoculation of an
AdV vector, tissue-resident macrophages, including Kupffer cells in the liver and CD169+

and MARCO+ macrophages in the spleen, secrete the proinflammatory cytokine IL1α
within 10 min [94]. The activation of IL1α triggers the expression of other proinflammatory
cytokines, including IL6 and TNFα, and chemokines CCL2, CXCL1, and CXCL2, within
30 min [100].

The AdV genome can be detected in the endosomes by TLR9, an endosomal sen-
sor that recognizes the double-stranded DNA containing unmethylated CpG motifs and
initiates cytokine secretion [101–104]. Moreover, the stimulation of innate immunity can
also be mediated by TLR-independent mechanisms through the DNA-sensing pathway,
which induces interferon (IFN) regulatory factor 3 (IRF3) and the NLR family pyrin domain
containing 3 (NLRP3) inflammasome, thereby initiating IFN type I production [87,105,106].
Furthermore, the induction of IRF7 occurs following vector escape from endosomes stim-
ulating IFNα/β production in splenic myeloid dendritic cells [107]. The expression of
type I IFN is detected within 4 to 6 h after the intravenous administration of HAdV2 [100].
Moreover, the intravenous administration of HAdV2 or HAdV5 results in the initiation
of complement pathways and a rapid increase in the complement fragment C3a within
10 min, reaching the peak at 30 min [108]. Complement activation by HAdV2 or HAdV5
does not need antibodies in vivo and they can be activated through both classical and
alternative pathways [108]. The natural route of AdV infection may induce a low level of
inflammatory response. In contrast, the intravenous administration of a higher number
of AdV particles results in robust innate immunity with a high level of several cytokines
and chemokines [98]. It may lead to cytokine storm syndrome, hepatotoxicity, dissem-
inated intravascular coagulates, and thrombocytopenia, leading to adverse effects and
even death [98,100]. The negative reaction occurs with significantly high vector doses,
especially for gene therapy applications [109]. The considerably high amount of vector
accumulation predominately in the liver and spleen will initiate an acute inflammatory
response due to the induction of high levels of chemokines and cytokines, followed by
the recruitment of neutrophils [110,111]. Systemic vector toxicity in the form of significant
hepatic necrosis and apoptosis was observed in mice following the intravenous adminis-
tration of the HAdV5 vector at a high dose (1 × 1010 PFU) [111]. Similarly, tissue damage
following the intraportal administration of a nonhuman AdV vector was also noticed in
primates [112]. Moreover, the induction of type I IFN following the inoculation of an AdV
vector could restrict the duration of transgene expression due to the activation of natural
killer (NK) cells [113]. The activated NK cells participate in the rapid elimination of AdV
vector-transduced cells, thereby shortening the duration of transgene expression [113,114].
Induction levels of inflammatory cytokines and chemokines may vary with the type of
AdV vector, resulting in variability in transgene-specific immunogenicity [115]. For AdV
vector-based vaccines, the quality of transgene-specific immune responses is more critical
than the duration of transgene expression. However, the level and duration of transgene
expression and vector survival are vital for many gene therapy applications.
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6. AdV Vector-Mediated Adaptive Immunity

AdV vector-induced innate immunity triggers adaptive immune responses against
the vector and the transgene. Following AdV vector inoculation, the APCs transport
the vector, vector proteins, or expressed transgene to the draining lymph nodes, where
the naïve T cells are primed and differentiate into CD4+ and CD8+ T cells [116]. With
the recognition of the viral or transgene epitopes with the MHC class I or II molecules,
cellular and humoral immunity is elicited; after this, vector-specific neutralizing antibodies
and CD8+ T cells eliminate the vector and vector-infected cells [116,117]. Nevertheless,
vector-specific adaptive immunity significantly affects the transgene expression while
removing the vector-infected cells, thus posing a challenge to the AdV vector-based gene
therapy [118].

The development of anti-AdV neutralizing antibodies (NAbs) contributes towards
the inhibition of the vector’s efficacy. The adoptive transfer of HAdV5-specific NAbs to
mice negatively impacted the development of transgene-specific immune responses after
the administration of an HAdV5 vector-based vaccine [119]. Meanwhile, the depletion of
antibodies against the hexon, penton, and fiber significantly improved the transduction
efficiency of an AdV vector [120]. The AdV major capsid proteins—hexon, penton, and
fiber—are the targets for NAbs against the vector, while the hexon has the predominant
reactive sites for NAbs [121]. In human blood samples from the U.S. and developing
countries, hexon-specific NAbs titers against HAdV5 were significantly higher than fiber-
specific NAbs [122]. The hexon-specific NAbs showed better inhibition of an HAdV5
vector-based vaccine than the fiber-specific NAbs [122]. There are seven hypervariable
regions (HVRs) in the flexible loops located at the outer surface of the hexon [123]. HVRs
are diverse among AdVs at the amino acid level and contain critical virus-neutralizing
epitopes [124]. Anti-fiber Abs can block primary cell receptor interactions, and anti-penton
Abs can hinder integrin-mediated internalization [125]. Moreover, the anti-penton Abs
showed a synergistic effect with anti-fiber Abs on AdV neutralizing activity and reduced
vector-mediated transduction [126,127]. Natural infections with HAdV5 elicit a higher
level of fiber-specific NAbs than vaccination with an HAdV5-based vaccine [128]. Different
circumstances may present distinct vector-neutralization mechanisms, while the hexon and
fiber play vital roles in vector neutralization [121,128]. Therefore, hexon or fiber modifi-
cations can circumvent AdV NAbs and serve as one of the strategies to enhance vector
efficacy [121,129]. Antibody-mediated AdV neutralization occurs due to virus aggregation,
blocking AdV attachment and entry into the host cells [130]. Other mechanisms, such
as AdV particle destabilization, abortive virus internalization, and interference of virus
uncoating, are also induced by NAbs [125,131,132]. Unique post-entry AdV neutralization
by blocking the microtubule-dependent virion translocation with hexon-specific NAbs was
also elucidated [125,133].

In addition to AdV NAbs, cell-mediated immunity plays a critical role in AdV clear-
ance [134]. AdV-specific NAbs play a dominant role in virus clearance compared to
AdV-specific CD8+ T cells [111]. The AdV-specific CD4+ and CD8+ T cells were detected
in healthy adults in peripheral blood mononuclear cells (PBMC) [135,136]. Unlike NAbs,
AdV-specific T cell responses are cross-reactive among different AdV types [137]. A CD4 T
cell epitope on hexon, H910–924, was identified as a conserved epitope among diverse AdV
types [137]. This conserved epitope induces robust T cell proliferation and is recognized
by 78% of healthy adults [137,138]. Moreover, four conserved CD8+ T cell epitopes on the
hexon can also induce cross-reactive T cell immunity [139].

The durability of humoral and cell-mediated immune responses is critical for the
efficacy of AdV vector-based gene delivery [140]. AdV-specific memory CD8 T cells are
vital for long-term cell-mediated immunity, which helps in the rapid expansion of these
cells in response to the production of antiviral cytokines and cytotoxic molecules following
AdV re-infection or vector inoculation [141]. Only a small proportion, around 5–10%, of the
activated T cells will become long-lived memory T cells [142]. AdV-specific CD4+ and CD8+

memory T cells are detected in healthy humans from a natural AdV infection [143]. Most
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AdV-specific CD4+ T cells displayed a central memory-like phenotype, whereas CD8+ T
cells exhibited an effector-like phenotype [143]. For AdV vector-based vaccine applications,
the immunogen-specific memory T cells were detected in vitro and in vivo [144,145]. These
memory T cells perform multiple functions, including degranulation and the production
of cytokines [144]. Interestingly, less prevalent HAdVs, such as HAdV26, HAdV35, and
HAdV48, showed better CD8+ T cell memory than HAdV5. Enhanced expansion of CD8+

T cells was elicited by using two AdV types for the prime–boost approach [145]. Using
more than one AdV vector type will confer better outcomes for vaccine and gene therapy
applications compared to multiple doses with the same vector.

7. AdV Tropism, Blood Factors, and Vector Toxicity

While CAR is widely distributed to multiple cell types, the systemic administration of
an AdV vector results in predominant tropism to the liver [146]. A biodistribution study in
mice inoculated intravenously with an AdV vector demonstrated that the highest amount
of transgene expression was detected in the liver [147]. This restricted tropism limits vector
distribution to other tissues and leads to liver damage and systemic toxicity [148,149].
The ablation of CAR-binding by modifying the AdV vector did not significantly inhibit
biodistribution and hepatotoxicity, implying that other factors besides CAR interaction are
vital for liver tropism and hepatotoxicity [150].

Interactions between an AdV vector and the host’s blood factors play a significant
role in AdV liver transduction [151]. The modification of the CAR-binding domain on
the AdV fiber inhibits the infection of hepatocytes in vitro, but the transfection efficacy
of hepatocytes remains unaffected in vivo [151]. This in vivo liver tropism is due to the
binding of the blood coagulation factor (F) IX (FIX) and complement factor C4BP to the
AdV vector, resulting in interactions with the hepatocellular receptors, including heparan
sulfate proteoglycan (HSPG) and low-density lipoprotein receptor-related protein (LRP) for
liver transduction [151,152]. The vitamin K-dependent coagulation factors FX, FVII, and
protein C can also enhance the hepatocyte transduction of AdVs [153]. In addition, the AdV
uptake by Kupffer cells is mediated via the blood factors [151], initiating the production
of proinflammatory cytokines such as TNF and IL6, followed by liver damage after the
systemic administration of 1 X 1010 transduction units of HAdV5 vector expressing human
α1-antitrypsin [154]. The γ-carboxyl glutamic acid (GLA) domain is common among
vitamin K-dependent coagulation factors [155]. Unlike the fiber interaction of FIX, the GLA
domain of FX can attach to the HVR5 and HVR7 of the hexon in the presence of calcium
ions, resulting in efficient transduction of the hepatocytes [97,156,157]. Apart from FX, other
coagulation factors showed weak affinity toward the hexon of HAdV5 [109]. This implied
that these factors might affect vector tropism through different mechanisms [109,156].

Interactions with coagulation factors may also vary with the AdV type. HAdV31,
belonging to species A, interacts with FIX but not with HAdV5, a species C AdV [158]. In
comparison, a species D AdV showed weak FX-binding affinity, leading to low hepatic
tropism due to a distinct hexon HVR [156]. Understanding receptor binding, coagulation
factors’ interactions with AdV, the availability of AdV types, and AdV capsid modifications
could help in AdV vector design to lower hepatic tropism and vector toxicity. The fiber
shortening or fiber exchange from another AdV type can alter the tropism and signifi-
cantly decrease the hepatic transduction and toxicity [148]. Mice immunized with an AdV
vector, having poly-lysine in the fiber’s knob domain, showed lower levels of IL6 and
aspartate aminotransferase (AST), indicating that vector attenuation led to decreased liver
toxicity [159]. Replacing the hexon HVR of an AdV vector from a non-FX-binding AdV
type can also abolish the coagulation factor-mediated liver transduction [157]. Moreover,
nanoparticle coating or polymer encapsulation of AdV vectors effectively decreased liver
tropism [160]. Furthermore, advanced AdV retargeting is required to target specific cell
types, especially for cancer therapy. A tissue-specific promoter in the E1 region to develop
conditional replication-competent AdV vectors, tissue-specific ligand insertion in the fiber
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knob, and bifunctional adapter molecules are some strategies for targeting specific tissues
with AdV vectors [160–162].

8. Preexisting Ad Vector Immunity and Its Implications

There is a high prevalence of HAdV infection due to exposure to one or more HAdV
types since childhood, due to the availability of over 85 types of HAdVs [163]. Serosurveil-
lance studies showed that 40–90% of humans have NAbs against HAdV5 [163], the most
studied HAdV. It seems that children and young adults usually have higher levels of NAbs
against AdV than the elderly [19,164]. The development of AdV-specific NAbs following
natural infection with one or more AdV types is known as preexisting AdV immunity or pre-
existing AdV vector immunity, which affects the efficacy of HAdV vectors (Figure 3) [115].
A clinical trial with an HAdV5-based Ebola vaccine showed that volunteers with preexist-
ing AdV vector immunity had a lower response to the vaccine than participants without
preexisting AdV immunity [165]. In a clinical trial with the HAdV5-based SARS-CoV-2
vaccine, vaccinees having high preexisting anti-HAdV5 immunity showed lower levels
of humoral immune responses compared to participants with low levels of preexisting
anti-HAdV5 immunity [166]. Preexisting AdV immunity negatively impacts the vector
uptake and development of immunogen-specific adaptive immune responses, thereby af-
fecting the Ad vector’s efficacy [167]. Furthermore, residents of sub-Saharan Africa showed
preexisting neutralizing antibodies against some chimpanzee AdVs (ChAdVs), which may
restrict the application of ChAdV as an alternative vaccine vector [168].
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Figure 3. Activation of innate and adaptive immune responses in response to an adenoviral (AdV)
vector. Following inoculation with an AdV vector, activation of innate immunity leads to the
expression of proinflammatory chemokines and cytokines. Following antigen expression, processing,
and presentation, humoral and cell-mediated immune responses develop. The resultant vector
immunity will eliminate the vector, leading to a reduced duration of transgene expression. The
development of vector-specific neutralizing antibodies (NAbs) and memory T cells provide long-
term vector immunity and suppress subsequent inoculation with the same AdV vector. PAMP,
pathogen-associated molecular patterns; TLRs, Toll-like receptors.
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In addition to preexisting AdV immunity, the first inoculation with an AdV vector will
also lead to vector-specific immune responses, impacting the subsequent administration of
the same vector [20]. To evaluate the durability of vector immunity and its effect on the
development of immunogen-specific immune responses, naïve or HAdV5-primed mice
were immunized with the HAdV-H5HA (HAdV5 vector expressing H5N1 hemagglutinin
(HA)) at 1, 3, 6, and 10 months after priming and challenged with an antigenically distinct
H5N1 influenza virus four weeks following vaccination [169]. With time, there was a con-
tinuous decline in vector immunity, with a constant improvement in HA-specific immune
responses and enhanced protection against a heterologous H5N1 virus [169]. The drop in
vector immunity at six months and onwards was sufficient for inducing the required level
of protective immunity. This study implies that vector immunity can inhibit vector efficacy
following repeated vaccination with the same vector. Moreover, annual immunization with
the same vector should be possible due to the decline in vector immunity to levels that may
not impact the vector’s efficacy significantly. The prime–boost approach, using different
AdV type vectors, is an excellent strategy to substantially improve the effectiveness of
the AdV vector platform by eluding the vector-specific immunity during the boosting
step [170]. This approach was used for the HAdV5/HAdV26-based prime–boost vaccine
for SARS-CoV-2 [171]. An HAdV11 vector, which showed better transduction efficiency in
smooth muscle cells, synoviocytes, dendritic cells, and cardiovascular tissues compared to
HAdV5, was not hampered by preexisting HAdV5-specific NAbs and was investigated as
a vector for gene therapy [74].

9. Strategies to Circumvent Preexisting Vector Immunity

HAdVs with low seroprevalence in humans, including HAdV11, 35, or 50 of species B,
and HAdV26, 48, or 49 of species D, are unaffected by preexisting AdV immunity [172–174].
In particular, the HAdV35 and HAdV26 vectors were evaluated in humans for their vaccine
efficacy against Mycobacterium tuberculosis, malaria, HIV, Ebola virus, and SARS-CoV-2 [175–180].
For gene therapy, a HAdV35 vector demonstrated better transduction capability towards
glioma cells, indicating its utility in treating malignant glioma [181]. However, six rare
HAdVs (HAdV11, HAdV26, HAdV35, HAdV48, HAdV49, and HAdV50) showed lower
immunogenicity than the HAdV5 vector [174]. HAdV35- or HAdV26-based Ebola vac-
cines induced lower immunogenicity and protection against the Ebola virus in nonhuman
primates compared to the HAdV5-based vaccine [115]. Since the AdV-specific cellular
immunity is comparatively cross-reactive, HAdV26-specific cellular immune responses at
a baseline were detected in humans without HAdV26-specific NAbs [182]. The HAdV35-
specific CD4+ T cells were detected in individuals without HAdV35-specific NAbs [135].
These studies suggest that AdV-specific T lymphocytes are cross-reactive among multiple
AdV types. On the other hand, HAdV35, HAdV26, and HAdV48 interact with CD46 as the
primary cellular receptor and induce enhanced innate immunity compared to HAdV5 [183].
The rare HAdVs offer attractive alternatives to avoid preexisting vector immunity for effi-
cient transgene expression. Several strategies that are utilized to circumvent the preexisting
vector immunity are outlined below (Figure 4).

Alternatively, nonhuman AdV vectors of simian, bovine, porcine, ovine, canine, or
avian origin were developed to evade the AdVs’ preexisting immunity since AdVs are
species-specific and do not naturally infect humans [184]. Cross-NAbs against ChAdV
are rarely detected in developed countries’ populations but showed higher prevalence in
sub-Saharan Africa [185]. Replication-defective ChAdV vectors can grow efficiently in the
cell lines that support the replication of HAdV5 vectors, e.g., the HEK 293 cell line [186]. In
addition, ChAd vectors can elicit high levels of humoral and cellular immune responses
against the immunogen, similar to the HAdV5 vector expressing the same immunogen,
and the immunogenicity is not significantly inhibited in the presence of preexisting HAdV
immunity [187,188]. However, there is variability in the resultant immunogenicity with
different ChAdV types [189]. ChAdV vector vaccines against SARS-CoV-2, Ebola virus,
malaria, HIV, and respiratory syncytial virus have been evaluated for their efficacy in hu-
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mans [190–193]. AstraZeneca’s SARS-CoV-2 vaccine based on the ChAdV vector platform
(ChAdOX1) was licensed in several countries [180]. The bovine Ad (BAdV) type 3 (BAdV3)
belonging to the Mastadenovirus genus was generated as a gene delivery vector [194] and
showed excellent potential in overcoming preexisting vector immunity [195]. Preexisting
HAdV NAbs do not cross-react with BAdV3 or hamper the transduction ability of the
BAdV3 vector [195]. The HAdV-specific cellular immunity showed minimal cross-reactivity
with the BAdV3 vector [196]. Moreover, the BAdV3 vector can efficiently transduce various
tissues, with relatively prolonged persistence compared to the HAdV5 vector [197]. Better
stimulation of innate immunity with higher expression of proinflammatory chemokines
and cytokines was also shown in mice inoculated with a BAdV vector compared to that
of a HAdV5 vector [198]. A BAdV3 vector-based influenza vaccine provided better im-
munogenicity and protection than the HAdV5 vector-based influenza vaccine [199]. Since
BAdV3 utilizes sialic acid as the receptor for virus entry [55], this vector platform is suitable
for nasal delivery [200]. It seems that there is enhanced antigen processing through the
autophagy pathway in mice immunized with a BAdV3 vector-based vaccine compared
to the HAdV5 vector-based vaccine [200]. Overall, the BAdV3 vectors circumvent the
preexisting vector immunity and confer robust immunogenicity. Other nonhuman AdV
vectors, such as porcine AdV, ovine AdV, canine AdV, and avian AdV, are also under
evaluation as alternative vectors for gene delivery [187].
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Figure 4. Circumventing strategies against preexisting vector immunity. (A) Inoculation with a rare
human adenoviral (HAdV) or nonhuman AdV can evade the preexisting vector immunity. (B) Since
most of the neutralizing antibodies (NAbs) target the capsid proteins, such as the fiber and hexon,
exchanging the capsid and/or fiber proteins with a different AdV type can elude the preexisting
vector immunity. (C) Chemical encapsulation can mask the AdV vector from antibody-mediated
neutralization. (D) The use of different routes of inoculation or different vector platforms (prime–
boost approach) can circumvent the preexisting vector immunity. ChAdV, chimpanzee adenovirus;
PEG, polyethylene glycol.
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Since the capsid proteins are the main targets of NAbs, modification of the capsid
proteins is a relevant strategy to overcome preexisting vector immunity. The HVR sequence
of the HAdV5 hexon was exchanged with the corresponding regions from HAdV48 to
design a hexon-chimeric AdV vector [201]. This vector showed robust immunogenicity in
the presence of high levels of preexisting anti-HAdV5 NAbs [201]. Similarly, fiber-chimeric
AdV vectors were generated by exchanging the knob domain of HAdV5 with the knob
region of HAdV3 [129]. This also enhanced its ability to circumvent preexisting HAdV5
immunity in mice pre-immunized with the unmodified HAdV5 vector [129]. There was
increased transduction efficiency of a chimeric HAdV5 vector with the HAdV35 fiber in
HAdV5-immunized mice [202]. The same strategy can also be extended to nonhuman
AdVs. A chimeric HAdV5 vector with the BAdV4 fiber demonstrated reduced innate
immunity and interactions with blood coagulation factors in mice compared with the
HAdV5 vector [203]. These modifications were also used for gene therapy applications to
redirect the AdV tropism to the targeted cells [204,205].

Chemical encapsulation can shield the antigenic epitopes on the AdV surface and
thus help to evade the AdV NAbs. PEGylation of the AdV vector can retain the virus
transduction capability but protect the vector from NAbs [206]. The transgene expression
with the PEG-conjugated AdV vector was higher than that with the untreated vector in
mice preimmunized with the unmodified AdV vector [207]. Moreover, the PEGylation of
AdV vectors reduces the levels of vector-induced innate immunity and thereby decreases
vector toxicity, such as thrombocytopenia or increased levels of ALT [207]. PEGylation
with PLGA encapsulation also enhanced vector stability and gene transfection efficiency
in vitro [208]. Moreover, encapsulation of AdV vectors with liposomes can also provide
resistance to AdV NAbs [209], enhancing the transduction efficiency with repeated vector
administration [210]. It can also reduce hepatic uptake and improve the transduction
of CAR-deficient cells [211,212]. PEGylation in liposome-encapsulated AdV vectors can
further reduce cytotoxicity, hemolytic activity, anti-vector immunity, and innate immu-
nity [213]. Moreover, the microencapsulation of AdVs into biodegradable sodium alginate
microspheres also eluded vector-specific immunity [20].

Sequential inoculations with different routes are an alternative strategy to conquer the
anti-vector immunity during repeat administration. It was demonstrated that the preexist-
ing immunity from the intramuscular injection of an AdV vector does not significantly affect
the immunogenicity of the same AdV-based vaccine when administrated intranasally [214].
Similarly, mice pre-immunized with HAdV5 intramuscularly or intranasally do not show
decreased humoral immunity to the transgene from subsequent HAdV vector oral adminis-
tration [215]. The intranasal administration of AdVs infects localized antigen-presenting
cells that carry the antigen into the local draining lymph node. This causes most activated
effector T cells to be localized in the respiratory system, and long-living memory T cells
remain retained within these tissues [91]. Parenteral administration usually circulates
the effector T cells into systemic lymphoid organs, with minimal memory T cells in the
respiratory tract [91].

10. Conclusions and Future Directions

AdV vectors have been at the forefront of promising gene delivery platforms for
vaccines and gene therapy. The emergency-use authorization of three AdV vector-based
SARS-CoV-2 vaccines is one of the AdV vector platform’s success stories. This platform has
extensively been utilized as a gene delivery system for vaccine or gene therapy applications
in several human clinical trials. With our advancing understanding of AdV biology, vector
design has versatility depending on the need. However, the preexisting vector immunity
and induction of enhanced innate immunity at higher vector doses are notable limitations
that could significantly affect the efficacy of the AdV vector platform. The development
of rare human and nonhuman AdVs as gene delivery platforms has helped to overcome
the preexisting vector immunity issue. The concept of a prime–boost approach with two
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different AdV vector types, or priming with an AdV vector followed by a boost with
another vector system, could significantly reduce the adverse impact of innate immunity.

Additional work is needed to design strategies for further controlling vector tropism to
enhance its effectiveness while significantly inhibiting hepatic toxicity, especially for gene
therapy applications. Activation of innate immunity by AdV vectors is a unique strength,
vital for the success of AdV vector-based vaccines, by eliciting enhanced immunogen-
specific immune responses. Therefore, the induction of innate immunity needs to be
better managed to avoid adverse effects without compromising its adjuvant impact. AdV
vectors for mucosal immunization require further exploration to provide better vaccine
efficacy against mucosal pathogens. Investigation of other rare human or nonhuman AdVs
for vector development should continue to expand the vector choices for various gene
therapy applications.

Further investigations to determine strategies to inhibit the AdV vector binding to
the blood factors will be critical for improving the vector’s versatility. The worth of the
same or different AdV vector for annual vaccination needs to be explored. New research
in nanoparticles and AdV capsid modifications will further boost the quality and efficacy
of AdV vector-based gene delivery applications. Additional work is necessary to further
enhance the durability of immunogen-specific immunity and the duration of transgene
expression when delivered through an AdV vector.
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