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Abstract: Epstein–Barr virus (EBV) is an oncogenic human herpesvirus infecting approximately
90% of the world’s population. The oral cavity serves a central role in the life cycle, transmission,
and pathogenesis of EBV. Transmitted to a new host via saliva, EBV circulates between cellular
compartments within oral lymphoid tissues. Epithelial cells primarily support productive viral
replication, while B lymphocytes support viral latency and reactivation. EBV infections are typically
asymptomatic and benign; however, the latent virus is associated with multiple lymphomas and
carcinomas arising in the oral cavity. EBV association with cancer is complex as histologically
similar cancers often test negative for the virus. However, the presence of EBV is associated with
distinct features in certain cancers. The intrinsic ability of EBV to immortalize B-lymphocytes,
via manipulation of survival and growth signaling, further implicates the virus as an oncogenic
cofactor. A distinct mutational profile and burden have been observed in EBV-positive compared to
EBV-negative tumors, suggesting that viral infection can drive alternative pathways that converge
on oncogenesis. Taken together, EBV is also an important prognostic biomarker that can direct
alternative therapeutic approaches. Here, we discuss the prevalence of EBV in oral malignancies and
the EBV-dependent mechanisms associated with tumorigenesis.

Keywords: Epstein–Barr virus (EBV); latency; viral-associated tumor; Burkitt’s lymphoma; diffuse
large B cell lymphoma; Hodgkin lymphoma; head and neck squamous cell carcinoma; oral squamous
cell carcinoma; oral hairy leukoplakia; salivary gland lymphoepitheliomas

1. Introduction

Epstein–Barr virus (EBV) is a ubiquitous human tumor virus that resides as a lifelong
infection in the oral epithelium and B lymphocytes that involves latency and productive
viral replication (Figure 1). B lymphocytes support the latent phase of the viral lifecycle
exemplified by a restricted viral gene expression program that supports viral evasion
of immune surveillance and long-term persistence [1]. Latently infected EBV-positive B
lymphocytes can be reactivated into the productive lifecycle, referred to as viral reactivation.

Epithelial cells also support the productive phase of the viral lifecycle following a
coordinated viral gene expression cascade resulting in amplification of the viral genome
and production of progeny virions [2]. Latency in epithelial cells is observed in carcinomas
and in basal tonsillar epithelial cells [3,4].

Infection with EBV is typically acquired asymptomatically in childhood. However,
delayed infection until adolescence often causes infectious mononucleosis, a self-limiting
lymphoproliferative response to primary EBV infection [5]. Although long-term carriage
of the virus is generally benign, EBV is a tumor virus associated with several epithelial
and lymphoid malignancies that reflect the tissue tropism of the virus. EBV linked ma-
lignancies occur more frequently in immunosuppressed individuals but also develop in
immunocompetent persons. EBV-associated cancers include nasopharyngeal carcinoma
(NPC), gastric carcinoma (GC), oral squamous carcinoma, Burkitt’s lymphoma, Hodgkin’s
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lymphoma, diffuse large B cell lymphoma, NK/T-cell lymphomas, and post-transplant
lymphoproliferative disease. This review will focus on oral lymphomas and carcinomas
associated with EBV infection.
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Figure 1. Life cycle of EBV within the oral cavity. EBV is transmitted via saliva and infects oral
epithelial cells. Epithelial cells support productive viral replication in the upper differentiated
layers of the epithelium. In B cells, EBV adopts various latency programs that support B cell
maturation/differentiation and promote B cell growth and survival. As long-lived cells, memory B
cells provide a life-long reservoir for EBV as a latent infection. Differentiation of memory B-cells to
plasma cells stimulates EBV reactivation to produce new progeny virions that infect the epithelium
for shed in saliva or re-infection of other naïve B-cells. Image was created with BioRender.

EBV is primarily transmitted through saliva. Early studies showed that infectious EBV
is secreted in saliva from patients with infectious mononucleosis and in healthy adults [6].
In healthy individuals, EBV can be detected intermittently over a period of 15 months,
with 25% of healthy adults secreting EBV at every sampled time point [7]. The level of
viral shedding tends to be stable for days to months and is quickly replaced within 2 min
after swallowing [8]. Patients recovering from infectious mononucleosis typically shed
higher viral loads for at least 6 months after convalescence [9]. HIV-infected individuals
shed higher EBV loads in saliva than HIV-negative individuals. Anti-retroviral therapy to
improve the immune status of HIV-infected individuals decreases EBV loads suggesting an
additional benefit of anti-retroviral therapy in limiting oral EBV transmission [10]. However,
HIV infected individuals on anti-retroviral therapy are at a higher risk of developing an
EBV-associated cancer compared to the general population [11].

Epithelial cells in the oral cavity are the major producers of EBV found in saliva [8].
EBV infects and replicates in various epithelial tissues in the oral cavity that include the
gingiva, tongue, and tonsillar epithelium [12]. EBV can directly infect an epithelial cell or be



Viruses 2022, 14, 2700 3 of 24

transcytosed through polarized oral epithelial cells [13]. Entry is mediated by direct fusion
at the plasma membrane or internalized by endocytosis [14]. Various binding interactions
between viral glycoproteins and cellular receptors allow for entry into epithelial cells
include binding of gH/gL to either integrins, ephrinA2 receptor, and non-muscle myosin
heavy chain IIA, viral gB with neuropilin 1. BMRF-2, a viral glycoprotein, can bind to αvβ1
integrins on basolateral surface of polarized epithelial cells, and viral gp350/220 can bind to
complement receptor 2 (CR2/CD21) in cases when CR2 is expressed on epithelial cells [15].
Following entry and nuclear delivery of the viral DNA, the linear EBV genome circularizes
by recombination of its terminal repeats and is maintained as an extrachromosomal DNA
that can be amplified through rolling circle replication [16]. The cell type that produces EBV
virions alters the tropism of the virus based on HLA class II interactions with gp42 [17].
Epithelial derived virions have higher levels of the gH/gL/gp42 complex than B cell
derived virions, which increases the efficiency of B cell infection [17].

The importance of epithelial cells in the lifecycle of EBV has proven difficult to study
due to challenges associated with in vitro epithelial infection. Infection of primary epithelial
cells in monolayer culture typically is not efficient and viral DNA is rapidly lost within
days [18]. In addition, a non-permissive EBV infection is observed with growth arrest of
infected primary nasopharyngeal epithelial cells [19]. In contrast, primary epithelial cells
grown in organotypic raft culture, which model the differentiated and stratified layers of
the epithelium, indicate that differentiated epithelial cells support robust EBV replication
and spread [20]. Differentiation-induced transcription factors (KLF4 and PRDM1) have
been identified in regulating the expression of EBV immediate early genes, BZLF1 and
BRLF1 [21]. BZLF1 and BRLF1 encode the Z and R transactivators, respectively, that
initiate the productive EBV replication cycle. Infection of carcinoma cell lines requires
selective pressure to retain the viral genome achieved by using EBV recombinants that
carry antibiotic resistance markers and typically results in a latent EBV infection. EBV-
positive carcinomas also exhibit a latent EBV infection, which is not typically observed
in normal oral epithelial and may reflect the poor differentiation state of tumors. Laser
capture microdissection of tonsillar basal epithelial cells detected latent EBV encoded
RNAs (EBERs) by quantitative reverse transcription PCR in the absence of EBV immediate
early transcripts, supporting the possibility of transient latency in tonsillar basal epithelial
cells [4].

EBV infection of circulating resting B lymphocytes in the oral cavity initiates a journey
for life-long persistence in the memory B cell compartment. It is also important to note that
EBV may directly infect germinal center or memory B cells [22]. Entry into B lymphocytes
is mediated by attachment of viral glycoprotein gp350/220 to the complement receptor 2
(CR2/CD21) and interaction of the tripartite glycoprotein complex of gH/gL/gp42 with
HLA class II [23]. Endocytosis is required for internalization and gB mediates membrane
fusion for viral escape from the acidified endosome. Following viral genome circularization,
the viral genome is maintained as an episome [24]. When B cells proliferate and divide,
the EBV episome is replicated once per cell cycle by DNA replication licensing at the
latent origin of DNA replication, OriP [25]. In the first week after infection, a pre-latent
phase is observed with expression of EBV nuclear antigens (EBNAs) and lytic genes [26].
The viral genome is epigenetically silenced using the host epigenetic machinery. DNA
methylation and repressive histone modifications deposited on the viral genome restrict
viral gene expression [27]. As the EBV-infected B lymphocyte navigates through the B cell
maturation/differentiation states, various latency programs are established that support B
cell growth and survival of the infected B cells, while avoiding immune surveillance [28].
Infected resting B cells exhibit the growth/latency III program characterized by expression
of all EBV nuclear antigens (EBNA-1, -2, -3A, -3B, -3C and -LP), the latent membrane
proteins (LMP1, -2A, -2B), and EBV non-coding RNAs: the EBV encoded RNAs (EBERs),
BamHI fragment A rightward long non-coding transcripts (BARTs) and BART microRNAs.
EBV-infected germinal center B cells express the default/latency II program restricted to
EBNA1, LMP1, LMP2, and non-coding RNAs. Infected memory B cells that are dividing
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express only EBNA1 and viral non-coding RNAs (latency 1), while non-viral gene products
are detected in non-dividing memory B cells (latency 0). The infected memory B cells
provide a long-lived cellular reservoir for EBV persistence and life-long infection. Terminal
differentiation of the memory B cell to a plasma cell in response to antigenic stimulation
reactivates the EBV productive lifecycle [29] Expression of differentiation-induced plasma
cell transcription factors (PRDM1 and XBP-1) activate the expression of EBV immediate
early genes BZLF1 and BRLF1 [30].

2. Mechanisms of EBV Oncogenesis

EBV infects over 90% of adults worldwide, and EBV is associated with 1% of all
cancers [31]. EBV immortalizes B lymphocytes into lymphoblastoid cell lines (LCLs) [32].
However, intrinsic and extrinsic tumor suppression protects the host from developing EBV-
associated cancers. Immunosurveillance, an extrinsic tumor suppressor activity, effectively
eliminates EBV-infected lymphoblasts, such that immunocompromised individuals are
more prone to developing EBV-associated cancers [33]. In contrast, primary epithelial
cells are not readily immortalized by EBV without prior genetic alterations [19]. Such
transformed epithelial cell become latently infected with EBV in vitro and acquire oncogenic
phenotypes similar to what is seen in EBV-associated carcinomas [34]. Thus, the cellular
context of genetic and epigenetic alterations can influence the oncogenic outcome in the
presence of EBV. EBV infection not only can initiate oncogenic processes as demonstrated by
B cell immortalization, but also could contribute to tumor progression and tumor evolution.
Thus, EBV likely exerts distinct oncogenic activities depending on the tumor context.

EBV latent infection is a shared feature among EBV-associated malignancies (Table 1).
The EBV latent genes have been shown to contribute to various oncogenic phenotypes
supported by LMP activation of signaling pathways and by EBNA transcriptional activation
that combined act to reprogram host gene expression [35]. In addition to promoting
growth, EBV infection and latent proteins contribute to resistance to apoptosis, attenuated
responsiveness to differentiation, and enhancement of cellular invasion [36]. Table 2
summarizes known functions encoded by EBV latent genes.

Table 1. EBV prevalence and viral latency program in associated oral cancers and lesions.

Cancer Cellular Origin % EBV Associated EBV Expression
Pattern

Latent Gene Products
Detected

Burkitt lymphoma
Endemic
Sporadic

HIV-related

Germinal center
centroblast

~100%
10–80%
30–40%

Latency I EBERs, EBNA1, BARTs

Hodgkin
lymphoma-Classic

variant
Nodular sclerosis
Mixed cellularity

HIV-related
Hodgkin

lymphoma-NLPHL
variant

Post-germinal center
centroblast

40–50%
10–40%
70–80%
>90%
rare

Latency II EBERs, EBNA1, LMP1,
LMP2, BARTs

DLBCL NOS
HIV-related,
centroblastic
HIV-related,

immunoblastic

Post-germinal center
centroblast

3–50% *
30%
90%

Latency II/III
Latency I/II/III
Latency I/II/III

Depends on latency
program

Oral Squamous Cell
Carcinoma Epithelial Cells 0–80% EBERs, EBNA2, LMP1
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Table 1. Cont.

Cancer Cellular Origin % EBV Associated EBV Expression
Pattern

Latent Gene Products
Detected

HPV-positive
oropharyngeal
squamous cell

carcinoma

Epithelial cells 5–25% EBERs

Oral Hairy Leukoplakia Epithelial Cells 100% Lytic All viral genes

Salivary Gland
Epithelioma Epithelial Cells EBERs, LMP1

* prevalence varies geographically, NLHPL—Nodular lymphocyte-predominant Hodgkin lymphoma, DLBCL—
Diffuse large B cell lymphoma, NOS—not otherwise specified, HIV—human immunodeficiency virus, EBNA—
EBV nuclear antigen, LMP—latent membrane protein, EBER—Epstein–Barr virus (EBV)—encoded small RNAs,
BARTs—BamHI A rightward transcripts.

Table 2. Overview of functions encoded by EBV latent genes.

EBV Latent Gene Product Function

EBNA1

Required for viral genome latent replication and
segregation

Promotes resistance to apoptosis by degradation of p53
Increases ROS production and genomic instability

EBNA2

Essential for B cell immortalization
Regulates viral and host gene expression by interacting

with host transcription factors and EBNALP
Regulates chromatin looping and accessibility

EBNA3A/C

Recruits polycomb repressor complex 2 for epigenetic
repression of cyclin dependent kinase inhibitors (CKIs)

and apoptotic factors
Induces AID expression (EBNA 3C)

Promotes bypasses cell cycle checkpoints that increase
proliferation and genomic instability

EBNA3B Tumor suppressor activity

EBNALP Transcriptional co-activator of EBNA2

LMP1

Mimics CD40 receptor signaling
Activates NF-kB/MAPK/JAK-STAT/PI3K signaling

Induces DNA methyltransferase activity
Promotes proliferation and survival

Induces AID expression
Immune modulation

LMP2A/B

Mimics host B cell receptor (BCR) signaling
Blocks tyrosine kinase signaling following antigen

activation of BCR
Inhibits viral reactivation

Induces DNA methyltransferase activity
Enhances cell migration

Inhibits epithelial differentiation

EBER1

Abundantly expressed viral RNA in EBV latency
Confers resistance to apoptosis

Retains cellular ribosomal factor L22 in the nucleoplasm
Blocks interferon inducible protein kinase R

(PKR)-mediated inhibition of protein synthesis

EBER2 Binds and recruits Pax5 to EBV terminal repeats

BART microRNAs Increases resistance to apoptosis
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High viral loads due to deregulated viral replication can also contribute to the tumori-
genic process. Individuals with infectious mononucleosis typically exhibit higher viral
loads in blood and saliva for months after diagnosis and are at an increased risk for devel-
oping Hodgkin’s lymphoma [37]. Furthermore, elevated EBV antibody titers frequently
precede tumor onset by a few years, a phenomenon observed in EBV-associated Burkitt’s
lymphoma, Hodgkin’s lymphoma, and nasopharyngeal carcinoma [38,39]. Although not
well understood, the elevated EBV antibody titer likely reflects increased viral loads and
viral reactivation. In the context of viral opportunism, higher EBV loads likely increase
the risk of infecting premalignant or malignant cells with the infection process inducing a
rapid tumor progression.

EBV infection has been shown to increase genomic instability by various mecha-
nisms [40]. EBNA-1 can induce the production of reactive oxygen species promoting DNA
damage. LMP-1 inhibits DNA damage responses and DNA repair. EBNA-3C interferes will
mitotic spindle checkpoint allowing DNA damage to propagate into the next generation
of cells [41]. In addition, EBV infection induces the activation-induced family of cytidine
deaminases/apolipoprotein B mRNA editing catalytic polypeptide-like (AID/APOBEC),
enzymes with mutagenic activities. AID is responsible for somatic hypermutation (SHM)
of B cell immunoglobulin genes undergoing class switch recombination in the germinal
center [42]. EBV induced AID activation has been implicated in the translocation of MYC
into the immunoglobulin heavy chain or light chain loci, resulting in the overexpression of
the c-Myc oncogene. APOBEC deaminates viral RNA/DNA to restrict viral replication but
can alter the host genome as well [43].

EBV induces epigenetic alterations that regulate the expression of tumor suppressor
expression and apoptotic responses. Nasopharyngeal carcinoma and EBV-associated gastric
carcinoma display CpG island hypermethylator phenotypes that silence tumor suppres-
sor gene expression. Common tumor suppressors silenced in NPC and EBV-associated
gastric cancer include: RASSF1, CDKN2A/p16, CDH1, and PTEN [44]. Importantly,
EBV-associated gastric carcinoma is classified as having an extremely high DNA hyper-
methylation epigenotype [45]. EBNA-3A and EBNA-3C epigenetically repress BIM, p14,
p15, p16, and p18 gene transcription by recruiting polycomb repressive complex 2 [46].
LMP-1 and LMP-2 signaling have been shown to activate the DNA methyltransferases 1,
3A, and 3B, that subsequently leads to tumor suppressor gene silencing [47]. Additionally,
LCLs, Burkitt’s lymphoma, and EBV infected B cells display similar tumor suppressor gene
silencing due to targeted promoter DNA hypermethylation, despite the observation of
global hypomethylation [48]. Alterations in histone modifications are also observed. The
repressive histone H3K27 trimethylation mark is elevated in NPC, but not in other EBV
associated cancers; while H3K27me3 and H4K20 trimethylation is reduced in EBV-positive
lymphoblastoid cells compared to activated EBV-negative B cells [49]. Unlike mutations,
epigenetic modification are reversible and identify a potential target for treatment of EBV-
associated cancer.

In this review, we will describe various molecular mechanisms utilized by EBV to pro-
mote oncogenesis. Specifically, we will direct our attention to EBV-associated lymphomas
and carcinomas affecting the tissues and organs of the oral compartment either directly or
indirectly. While many of the precise mechanisms remain unclear our goal is to present
a current summation of established links between EBV and cancer development and to
identify the questions that remain. EBV driven malignancy is a complex process that differs
between the various EBV-associated cancer types. It is important to understand both the
similarities and differences in the role of the virus across different cancers to prevent and
treat EBV-related neoplasms.

3. EBV-Associated Oral Lymphoma

Lymphoma is a disease of the lymphatic system characterized by malignant outgrowth
of lymphoid cells or lymphoid precursors [50]. Oral lymphomas can arise in the oral
cavity or in Waldeyer’s ring, a ring of lymphoid tissue surrounding the oropharynx and
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nasopharynx. Oral lymphomas are not common, constituting 3% of total lymphomas and
4% of those in patients with AIDS [51]. Although EBV is a potent growth transforming
agent of B cells, lymphomagenesis likely results from the complex interaction of viral
gene expression and host genetic alterations. The three major types of B cell lymphomas
etiologically linked with EBV infection are Burkitt’s lymphoma (BL), Hodgkin’s lymphoma
(HL) and diffuse large B cell lymphomas (DLBCL). DLBCL and BL are most commonly
observed in the oral compartment, but also frequently at other sites [51]. Manifestations
of EBV-associated non-Hodgkin lymphomas such as DLBCL and BL include swelling or
ulcerations of the gingiva, tonsils, buccal mucosa, tongue, palate, tooth mobility (alveolar
bone loss), and pain. These cancers are often misdiagnosed as symptoms can mimic
periapical abscesses/endodontic inflammation.

3.1. Burkitt’s Lymphoma

Burkitt Lymphoma (BL) is an aggressive non-Hodgkin B cell lymphoma currently
classified into three variants based on both clinical features and cancer epidemiology: En-
demic, sporadic and immunodeficiency-associated [52]. Dennis Burkitt initially described
endemic BL in equatorial Africa and Papua New Guinea which led to the discovery of EBV
as first human tumor virus [53]. Geographically, endemic BL is restricted to regions where
malarial transmission is year-round [54]. Endemic BL is a pediatric cancer accounting for
30–50% of all childhood cancers in these regions [55–57]. The peak incidence is between
6–9 years of age presenting twice more often in males than females [52]. Endemic BL
presents as an extranodal tumor at various anatomical sites that includes the jaw, abdomen,
thyroid, kidney, adrenal glands, breast, and ovaries and is almost always positive for the
Epstein–Barr virus [55]. Sporadic BL is a rare cancer that occurs throughout the world,
appearing 3 times more often in males than females across a wide age group. Sporadic BL
comprises 50% of pediatric lymphomas and less than 2% of adult lymphomas [52,58]. EBV
is less frequently detected in sporadic BL, with 10–30% of cases being EBV-positive [59].
Although, in some areas such as NE Brazil, EBV association can be as high as 80% [60].
Sporadic BL is three times higher in males than females and frequently manifests within
the abdominal region both in lymph nodes and extranodally [61]. Other affected sites
include the oropharynx, sinus tract, kidneys, and breast. The third variant of BL was
described in persons infected with the human immunodeficiency virus (HIV), and termed
immunodeficiency-associated BL. These tumors can present at various anatomical sites
as nodal or extranodal tumors [52]. Despite anti-retroviral therapy and maintenance of
normal CD4 T cells, immunodeficiency-associated BL constitutes 20–40% of lymphomas in
HIV-infected individuals with 30 to 40% of these being EBV-positive [62].

Common to all BL variants is translocation of MYC into the immunoglobulin heavy
chain or light chain loci. MYC is placed under the control of the immunoglobulin enhancer
resulting in overexpression of the MYC oncogene. Translocation of MYC on chromosome
8 into the immunoglobulin heavy chain locus on chromosome 14 is the most frequent,
occurring in 75% of cases [52]. The translocation event results from double strand breaks
induced by activation-induced cytidine deaminase (AID). AID deaminates cytosines to
uracil resulting in error prone DNA repair and formation of double strand breaks. AID
activity is involved in antibody class switch recombination or somatic hypermutation, a
process that occurs in germinal center B cells to promote diversity of the antibody pool [63].
Interestingly, EBV infection of resting B lymphocytes has been shown to induce AID,
and EBV LMP1 and EBNA3C independently can induce AID expression [42,64]. C-Myc
is a transcription factor that as an oncogene promotes proliferation but also apoptosis.
Alterations in MYC alone are not sufficient for lymphomagenesis [65]. Additional mutation
such as TP53 found in 40% of BL and EBV latency proteins have been suggested to counter
the apoptotic activities of c-Myc [66]. In addition, high levels of c-Myc block activation of
EBV lytic replication preventing chromatin looping interactions between the lytic origin of
replication and the BZLF1 promoter [67].
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EBV is detected in the majority of endemic BL cases carrying a clonal EBV genome in
tumor cells indicating that viral infection preceded cellular transformation [68]. How EBV
contributes to the BL lymphomagenesis is still being defined due to challenges posed by
studying a human pathogen in animal models. However, loss of the viral genome renders
many BL cell lines sensitive to apoptotic cell death [69]. EBNA1 and the EBV non-coding
RNA expressed in BL have been shown to mediate cell survival. EBNA1 interaction with the
deubiquitinase USP7, known to stabilize p53 and Mdm2, lowered p53 levels and protected
cells from p53-mediated apoptosis [70]. The transforming capacity of EBNA1 in promoting
lymphoma have yielded conflicting results in transgenic mice due to inherent differences
in the mouse strain and expression construct used [71]. Instead, pharmacological inhibition
of EBNA1 as a druggable target has shown growth inhibition in vitro and anti-tumor
activities in animal xenografts [72]. Reintroduction of EBER1 noncoding RNA into BL
lines that lost EBV restored apoptotic resistance by increasing BCL2 activity [73]. Similarly,
re-introduction of the EBV BART derived miRNAs protected BL cells that lost EBV from
apoptosis by directly interfering with CASP3 [74].

The malarial Plasmodium parasites have been epidemiologically linked to endemic BL.
The mechanistic interplay between malaria, EBV, and BL is complex and still unresolved.
Repeated malarial infections have been suggested to impair cytotoxic T cell responses
potentially affecting immune control of EBV [75]. Chronic malaria in children is associated
with increased EBV viral loads that can also promote tolerized/exhausted T cell responses
to EBV-infected B cells [76]. Loss of immune surveillance is also consistent with the
higher EBV-positivity in immune-associated BL. Another role of malaria in promoting BL
may involve B cell activation and aberrant activation of AID [77]. Plasmodium falciparum
infected mice exhibited abnormal expression of AID in B cells apart from the reactions
of the germinal center [78]. Extracts from P. falciparum infected red blood cells were also
shown to enhance AID transcription and protein levels in tonsillar B cells [79]. Importantly,
consecutive infections of p53 deficient mice with Plasmodium chabaudi induced mature B cell
lymphomas with AID-dependent translocations that included MYC/IgH [80]. Thus, EBV
and malarial infections are likely synergistic interactions that lead to the rapid progression
of BL in children. From these observations, the presence of EBV in BL is suggested to confer
resistance to apoptosis and enhance genomic instability through AID activation.

Whether EBV is essential for the development of BL has been questioned by the
prevalence of EBV-negative sporadic BL and immune-associated BL cases. However, two
recent studies identified EBER-negative cases that where EBV microRNAs were detected,
raising the possibility that EBV-negative BL may be derived from EBV-infected B cells [81].
An alternate possibility is that EBV is present early in lymphomagenesis but mutations
that complement EBV oncogenic activity allow for viral loss [82]. Such genetic changes
can be seen in EBV-negative BL having a higher frequency of mutations that interfere
with apoptosis (TP53 and USP7) and mutations in TCF3 and ID3 enhance B cell receptor
signaling [52]. However, differences in mutational landscape between EBV-positive and
-negative BL argues that these tumors may be distinct entities. EBV-positive BL show
increased AID expression, an AID mutational signature, higher mutation load, but few
driver mutations [83]. Mutations in chromatin modifiers such as Swi/Snf complex subunits
ARID1A and SMARCA 4 were more frequent in EBV-positive BL [84]. Together these
observations support EBV selecting for distinct genetic and epigenetic alterations that
contribute to lymphomagenesis. EBV also serves as an important biomarker to guide
prognostic outcome and future therapeutic approaches.

3.2. Diffuse Large B Cell Lymphoma

Diffuse large B cell lymphoma (DLBCL) is the most common non-Hodgkin’s lym-
phoma, accounting for 30% of all lymphoma cases [85]. DLBCL comprise a collection
of heterogeneous and aggressive cancers that present at extranodal sites at the time of
diagnosis. In the oral compartment, DLBCL manifests in Waldeyer’s ring and salivary
glands. Other anatomic sites involved include gastrointestinal tract, bone, spleen, testes,
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thyroid, liver, and the kidneys [86]. Molecular classification based on mutation and gene
expression profiles has grouped DLBCL into various subtypes based on features of the
cell of origin. Two main subtypes are the germinal center B cell (GCB) DLBCL and acti-
vated B-cell like (ABC) DLBCL [85]. GCB DLBCL has features of germinal center B cells,
while ABC DLBCL has features of post-germinal center, plasmablast B cells. In the DL-
BCL classification scheme, EBV-positive DLBCL not otherwise specified (NOS), previous
referred to as EBV- positive DLBCL of the elderly, has been classified as a separate clinical
subtype [87]. The “not otherwise specified (NOS)” is used to exclude the diagnosis of
other EBV-associated large B cell tumors such as primary effusion lymphoma, EBV-positive
plasmablastic lymphoma or EBV-positive mucocutaneous ulcer.

EBV-positive DLBCL (NOS) are rare malignancies that typically present in immuno-
competent individuals over 50 years of age, but this cancer can also affect children and
younger adults. EBV-positive DLBCL (NOS) accounts from 3–15% of DLBCL cases, be-
ing more prevalent in Asia and Latin America [88]. EBV-positive DLBCL (NOS) has two
subtypes: monomorphic and polymorphic subtypes. The monomorphic subtype is more
frequently associated with advanced age and carries a poor prognosis [86]. EBV-positive
DLBCL (NOS) tumors are derived from a clonal B cell expansion as noted by a clonal
immunoglobulin rearrangement in up to 60% of cases [89]. EBV positivity is based on
EBER detection by in situ hybridization methods in greater than 80% of the malignant cells.
However, various studies have used different thresholds for EBER positivity with cut-off
values as low as 10% to define EBV-positive DLBCL (NOS). The significance of partial
EBV association is not well understood and could suggest a “hit-and-run” mechanism
where genetic changes and viral epigenetic reprogramming compensate for loss of the viral
genome. Alternatively, malignant EBV-positive cells may support oncogenic phenotypes of
EBV-negative cells through cell communication or by establishing an immunosuppressive
tumor environment. In the infected tumor cells, EBV exhibits a type II/III latency expres-
sion pattern, with latency III being more frequently detected [90]. Other EBV positive
lymphomas that arise due to immunodeficiency (e.g., post-transplant lymphoproliferative
disease) also display a type III latency pattern, suggesting that diminished T cell surveil-
lance may fail to control the EBV-infected B cells. Indeed, PDL1 and PDL2 ligands are
increased in EBV-positive DLBCL (NOS) as a mechanism that can inhibit T cell anti-tumor
responses [91].

EBV-positive DLBCL (NOS) display unique molecular features compared to EBV-
negative DLBCL. Overall, EBV-positive DLBCL (NOS) have a lower mutational burden
suggesting that EBV can replace mutations otherwise required to drive the oncogenic
phenotype [92]. Consistent with this, EBV-positive DLBCL (NOS) display fewer MYC,
BLC2, and BL6 rearrangements [93]. The recurrent mutations detected in EBV-positive
DLBCL (NOS) affected NF-kB, IL6/JAK/STAT, and WNT signaling pathways, known
to be activated by expression of EBV latency proteins [94]. Loss of function mutations
in MYD88, CD79B, and CKDN2A are also frequently observed in EBV-negative DLBCL
but not present in EBV-positive DLBCL (NOS). Moreover, EBV-positive DLBCL have a
higher frequency of mutations involving chromatin regulators (ARID1A, KMT2A, KMT2D,
TET2, and DNMT3A), indicating genome-wide alterations in epigenetic regulation of gene
expression [92,95]. Deletions at chromosome 6q, which encompasses regions that encode
PRDM1 required for plasma cell differentiation and the anti-inflammatory TNF induced
protein 3 (A20) also occurred in EBV-positive DLBCL (NOS). PRDM1 is a differentiation-
dependent transcription factor that is required for transcriptional activation of the EBV
immediate early genes, BZLF1 and BRLF1 [96]. The loss of PRDM1 not only disrupts B
cell terminal differentiation into plasma cells but may also help maintain EBV in a latent
state. Altogether, the distinct mutation landscape in EBV-positive DLBCL (NOS) enforces
the notion that EBV guides the etiology of this unique DLCBL entity. Understanding
the molecular features in various age groups and geographical regions will identify novel
therapeutic approaches to improve the poor prognosis associated with EBV-positive DLBDL
(NOS).
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3.3. Hodgkin Lymphoma

Hodgkin lymphoma is a B cell malignancy characterized by the presence of few malig-
nant cells surrounded by many non-neoplastic inflammatory cells. Based on histological
and immunophenotype presentation, Hodgkin’s lymphoma (HL) is classified into two
major types: known as classical HL and nodular lymphocyte predominant HL. In classical
HL, the malignant cell is the Hodgkin and Reed/Sternberg cell (HRS). In nodular lym-
phocyte predominant HL, the malignant cell is the lymphocyte predominant cell (LP) [97].
As nodular lymphocyte predominant HL is rarely associated with EBV, this review will
discuss only the classic HL type.

Classical HL account for 90% of all HL. The HRS malignant cell is derived from a
germinal center B cell that has undergone somatic hypermutation of immunoglobulin
genes and clonal expansion [98]. The HRS cell is described as large (>50 micron diameter),
multinucleated cells containing an eosinophilic cytoplasm and infected by EBV [99]. HL
tumors typically affect the lymph nodes but can also occur at extranodal sites. Oral
manifestations occur at the tonsils, tongue, Waldeyer’s ring, and palate [100] HL accounts
for approximately 10% of all lymphoma cases diagnosed. HL is more common in males
and the most prevalent cancer among 15- to 19-year-old adolescents [101].

EBV is associated with approximately 20 to 50% of classical HL cases. The presence of
the virus in HRS cells is typically identified via in situ hybridization (ISH) to EBV DNA
or EBV EBER RNA. Among the classical HL subgroups, EBV is common in the nodular
sclerosis and mix cellularity classical HL subtypes, with rare detection in lymphocyte
rich or depleted types [102]. An EBV latency II pattern is observed in HRS tumor cells.
An increased risk for EBV-positive HL has been observed following infectious mononu-
cleosis [103]. HL incidence is significantly elevated in HIV-infected individuals despite
anti-retroviral therapy, and most cases are EBV-positive [104]. These observations suggest
a causal link between EBV and escape from immune surveillance in the development of
classical HL.

Although the HRS cells originate from germinal center B cells carrying clonal im-
munoglobulin rearrangements [98], these HRS tumor cells have lost several B cell markers
and B cell receptor signaling. Crippling mutations are detected in the immunoglobulin
genes that rendered the B cell receptor (BCR) nonfunctional [105]. All cases with crippling
BCR mutations are EBV-positive, suggesting that EBV may rescue HRS cells with non-
functional BCR mutations [106]. Loss of BCR activity also can result from transcriptional
silencing of BCR expression, downregulation of B cell specific transcription factors (OCT2,
BOB1, and PU1), and upregulation of repressors of B cell genes [107]. A functional BCR is
required for B cell survival and to escape elimination following somatic hypermutation
in the germinal center. Thus, a pivotal event in classical HL oncogenesis is the acquisition
of mechanisms that counter the loss of BCR signaling. As such, HRS tumor cells have
various mutations that promote constitutive activation of JAK/STAT signaling and NF-kB
signaling.

EBV latency factors has been suggested to compensate for the loss of BCR and support
tumor growth and survival. High levels of LMP1 are detected in classical HL. LMP1
mimics CD40 signaling and activates JAK/STAT, PI3K, and NF-kB signaling pathways [108].
Forced expression of LMP1 in germinal center B cells transcriptionally reprogrammed gene
expression similar to that of HRS tumor cells [109]. LMP1 was also shown to disrupt B
cell terminal differentiation into plasma cells by downregulating PRDMI/BLIMP1 [110].
LMP2 mimics BCR signaling and can directly substitute for the loss of BCR in HRS tumor
cell [111,112]. However, LMP2 requires many of the downstream BCR signaling factors
that are absent in HRS tumor cells. Thus, LMP2 may act independently of BCR signaling
by activating PI3K signaling and reprogram B cells to support cell growth and survival.
In addition, EBV latent gene products can also alter immune cell activities and promote
tumor microenvironments conducive to oncogenesis. LMP1 suppresses cytotoxic T cell
responses via the induction of PD-L1 expression [113]. EBV BART microRNAs as well
as other EBV gene products can be packaged and released by cellular exosomes to affect
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distant cells [114]. Exosomes derived from EBV-positive classical HL were reported to alter
TNF-α and IL-10 cytokine profiles of host macrophages [115].

The tumor microenvironment in classical HL is composed of inflammatory cell in-
filtrates suggested to create an immunosuppressive environment for HRS cells to escape
immune surveillance and/or support the growth and survival of HRS cells [116]. T cells are
a major component. Activated CD4-positive T helpers cells (Th1 and Th2) and regulatory T
(Tregs) cells are present without detection of CD8-positive cytotoxic T cells or NK cells [117].
Activated Th1 cells displaying CD40L and CD30L markers were suggested to support
growth and survival of HRS cells, while Th2 and Tregs cells maintained an immunosup-
pressive environment. Compared to EBV-negative classical HL, EBV-positive cases display
increased number of regulatory T cells, and tumor associated macrophages likely medi-
ating a more immunosuppressive tumor environment that prevents immune-mediated
elimination of the tumor cells [118].

Although EBV has been implicated in supporting HRS and development of HL, the
presence of EBV-negative HL has suggested multiple avenues that can lead to lymphoma.
EBV may substitute for mutations and promote oncogenic phenotypes that support growth,
survival, and immune evasion. EBV-positive classical HL display distinct genetic alterations
from EBV-negative classical HL, similar to what is observed in EBV-positive DLBCL [119].
Whether EBV-negative classical HL has a distinct etiology from EBV-positive cases is
possible. However, detection of traces of EBV in EBER-negative cases or loss of the viral
genome following epigenetic reprogramming suggest a role for EBV in the early stages of
HL lymphomagenesis [120].

4. EBV-Associated Oral Carcinomas

Over 90% of oral cancers are squamous cell carcinomas [121]. Oral squamous cell
carcinoma (OSCC) is a type of head and neck squamous cell carcinoma (HNSCC) that arises
from the epithelial mucosa lining the oral cavity and oropharynx. In the oral compartment,
EBV is associated with lymphoepitheliomas of the salivary glands and is the causative agent
in the benign hyperplastic lesion known as oral hairy leukoplakia. Although EBV is often
detected in carcinomas from the oral cavity and oropharyngeal tract, incomplete association
of EBV in histologically similar tumors has questioned the viral contribution in OSCC.
The following section will describe EBV in oral carcinomas, oropharyngeal carcinomas,
lymphoepitheliomas of the salivary gland and oral hairy leukoplakia.

4.1. Oral Squamous Cell Carcinoma

Oral squamous cell carcinomas (OSCC) comprise a heterogenous group of carcinomas
that arise at various anatomical sites in the oral cavity. Oral cavity squamous cell carcinoma
(OCSCC) arises from lips, anterior tongue, roof and floor of mouth, gingiva, and buccal
mucosa. Oropharyngeal squamous cell carcinoma (OPSCC) involves the tonsils, posterior
third of tongue, and soft palate. OPSCC due to infection with human papillomavirus has
rapidly emerged as a distinct entity and will be discussed separately.

OSCC accounts for an estimated 2.5% of all cancers worldwide [122]. Based on
various epidemiological studies, various carcinogenic factors have been implicated in the
development of OSCC that include chewing and smoking tobacco, alcohol consumption,
chewing betel quid, environmental pollution, poor oral hygiene, sun exposure in lip cancer,
and infection with human papillomavirus [123]. OSCC occurs more frequently in males
than females and individuals over the age of 60. Immune competency is an important factor
in OSCC as HIV-infected individuals develop OSCC earlier in life [124]. Diagnosis of OSCC
occurs often at advanced stages of disease with evidence of regional or distant metastasis. In
the United States, the relative 5-year survival is estimated at 68%, but improved survival up
to 86% is observed in patients with localized tumors [125]. However, treatment modalities
(surgery, radiation and chemotherapy) often leave patients with severe morbidities affecting
their appearance and ability to eat, drink, and speak [126]. Thus, identifying biomarkers
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for early detection and new therapeutic approaches are needed to reduce the morbidity
and mortality of OSCC worldwide.

EBV has been detected at higher levels in OSCC compared to healthy tissues with
many studies detecting EBV DNA, RNA and protein in tumor cells [127,128]. However,
an etiological role for EBV in OSCC is still debated due to an incomplete viral association.
The oncogenic process in OSCC is complex involving various cofactors and alternative
genetic pathways that combined increase the risk for cancer. As OSCC is comprised of a
heterogenous assortment of cancers, the molecular features and subtypes are still being
defined [129]. Studies comparing the genomic landscape in EBV-positive and -negative
OSCC are needed to provide a better understanding of the drivers in these cancers.

The viral gene expression program in EBV-positive OSCC is not well established.
Various studies have detected EBER expression in OSCC tumor cells [130,131]. Although
detection of EBERs is the standard for assigning EBV positivity, it is unclear if EBERs are
a reliable marker in OSCC. EBER expression pattern in OSCC can be patchy and weak
with a mixture of nuclear and cytoplasmic signals. Epithelial differentiation may influence
EBER expression with reduced levels noted in more differentiated areas of NPC tissue [132].
Whether EBERs are a reliable marker in OSCC warrants further evaluation. In support
of an association, other EBV markers such as EBNA2 and LMP1 protein levels have been
detected in OSCC at higher levels than normal tissues. LMP1 positivity was also detected
at higher levels in dysplastic tissue than in OSCC, implicating EBV in the early stages of
tumor progression [130,133].

In the oral cavity, the microbiome can influence the prevalence of herpesviruses (EBV,
HCMV, HSV) as well as the degree of inflammation [134]. In chronic periodontitis, a
significant increase in EBV-infected gingival epithelium was observed compared to healthy
gingival tissue [12]. Mechanistically, presence of bacteria such as Porphyromonas gingivalis
and Porphyromona endodalis have been shown to produce butyric acid, an HDAC inhibitor
that can reactivate latent EBV [135]. Such microbial interactions may increase EBV viral
loads and promote a pro-inflammatory environment. High EBV viral loads provide EBV
the opportunity to infect hyperplastic/dysplastic cells and contribute to the progression to
carcinoma.

Although EBV infection is not sufficient to immortalize epithelial cells in culture, viral
infection can confer oncogenic features to already immortalized/transformed cells lines
similar to what is observed in EBV-associated NPC and gastric carcinoma. EBV infection
of hTERT-immortalized gingival epithelial cells induced a DNA hypermethylator pheno-
type [136], which is also observed in NPC and EBV-associated gastric carcinoma tumors.
Both LMP1 and LMP2A can induce DNA methyltransferases (DNMTs) and subsequent si-
lencing of tumor suppressor genes [130]. Expression of LMP2A is sufficient to interfere with
epithelial differentiation in spontaneously transformed HaCaT cells [137]. Moreover, EBV-
infected epithelial cells displayed an attenuated response to differentiation [136,138]. In
addition, EBV-infected epithelial cells acquire an invasive cellular phenotype that correlates
with the metastatic nature of NPC [34,139]. LMP1 expression is sufficient to enhance cellular
motility and migration via activation of PI3K, NF-kB and ERK-MAPK signaling pathways
in NPC [140–143]. These EBV-induced oncogenic phenotypes are retained following loss of
the viral genome suggesting a role for EBV-induced viral epigenetic modifications in these
processes [34,136,139].

4.2. HPV-Positive Oropharyngeal Squamous Cell Carcinoma

Reductions in smoking and alcohol consumption has decreased OSCC incidence
worldwide. Nonetheless, the past thirty years has seen the emergence of OPSCC associated
with human papillomavirus (HPV) infection in developed countries [144–146]. HPV is the
leading cause of cervical carcinoma worldwide and a causal agent for various anogenital
carcinomas. However, the cases of HPV-positive OPSCC have equaled and will surpass
cases of cervical carcinoma in developed nations [147–149]. Ninety percent of HPV-positive
OPSCC are due to HPV16 [150,151]. HPV infection is rarely detected in OCSCC [152].
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A shift in the demographics of HPV-positive OPSCC have also been observed. Histori-
cally HPV-positive OPSCC appeared more frequently in white males in their late 50s and
60s [153]. However, in the past decade, HPV-positive OPSCC includes older age groups
(> 70 years of age) with marked increases observed in females and racial groups [146].
HIV-infected individuals show an increased risk for HPV-positive OPSCC with higher
frequency of recurrence and worse outcomes despite anti-retroviral therapy.

The majority of HPV-positive OPSCC occur at the tonsils or base of tongue, lymphoid
rich regions where EBV also resides. Moreover, HPV-positive OPSCC has distinct clinical
features not evident in other HPV associated cancers [151]. HPV-positive cervical cancer
results in a slower progression to carcinoma with early HPV productive lesions detected.
In contrast, HPV-positive OPSCC lack these typical premalignant lesions and appear to
progress rapidly such that patients are often diagnosed at advanced stages. Despite the
advanced staging of the tumor, HPV-positive OPSCC have better outcomes than HPV-
negative cases. These features have classified HPV-positive OPSCC as a distinct entity and
suggest a role for additional cofactors in tumor development.

As a potential cofactor, EBV is detected in 5–20% of HPV-positive OPSCC [154–157].
Specific capture of tumor cells devoid of lymphocytic infiltrates detected EBV EBER tran-
scripts by reverse-transcription PCR in 25% of tonsillar and 80% of HPV-positive base of
tongue tumors [158]. Using EBER in situ hybridization in the same patient cohorts proved
less sensitive but identified 20% of base of tongue tumors as being co-infected [158]. As
a correlate to HPV-positive OPSCC, EBV has also been detected in HPV16 and HPV18-
positive cervical carcinomas (ranging between 12–80% EBV positive) being more often
detected in cervical carcinoma than in low grade intraepithelial lesions [159–161]. EBV
was also more frequently found in cervical carcinomas with integrated HPV [160,162].
Interaction of EBV and HPV in the epithelium may have unintended effects on each viral
lifecycle that combined may accelerate tumor development.

Although the contribution of EBV to HPV-positive OPSCC carcinogenesis still needs
to be defined, similar mechanisms suggested for EBV driven NPC carcinogenesis may
be involved. EBV is a well-established etiological agent in nasopharyngeal carcinoma
(NPC), a HNSCC occurring in the nasopharynx. The proximity to the oropharynx and
presence of a lymphoid infiltrate in NPC tumors provide EBV access to nasopharyngeal
epithelial cells [163]. Early genetic changes can predispose dysplastic cells to latent EBV
infection rather than the productive lytic replication that typically occurs in the epithelium.
Loss of CDKN2A and overexpression of cyclin D1 have been shown to facilitate stable,
latent EBV infection of nasopharyngeal epithelial cells [19]. EBV-positive carcinomas
generally exhibit a latency II viral gene expression program (EBNA1, LMP1, LMP2, BARF1,
EBERs, BART miRNAs and long noncoding RNAs). Evidence of clonal expansion is also
observed based on EBV episomes having unique number of terminal repeats as a maker of
clonality, where the length of the terminal repeats inversely correlates to LMP1 and LMP2
expression [164–166].

HPV-immortalization of epithelial cells may create an environment that favors latent
EBV infection rather than productive replication. Epithelial interactions between EBV and
HPV have been studied in epithelial organotypic raft culture, a physiologically relevant
culture producing stratified and differentiated epidermal layers that support HPV and EBV
productive lifecycle. HPV-immortalized keratinocytes grown in organotypic rafts inhibited
EBV replication following de novo infection [167]. An abortive pattern of infection was
observed where the immediate early transactivator BZLF1 was expressed in the absence
of replicative factors. A slight increase in EBER levels was also noted [167]. The HPV16
oncogene E7 was sufficient to block EBV replication [167]. One of the functions of E7 is to
facilitate the proteasomal degradation of the retinoblastoma pocket proteins (pRb, p107,
and p130) [168]. Recent studies show that EBV replication within differentiated epithelium
requires pRb (Myers et al., submitted). pRb is a tumor suppressor that inhibits cell cycle
progression at the S-phase checkpoint, and deregulation of these pathways may enhance
the oncogenic potential of EBV. A separate study indicated a different outcome when
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EBV infection preceded HPV immortalization. In this case, HPV appeared to increase the
maintenance of EBV latent genomes and enhanced EBV lytic reactivation in organotypic
rafts [169]. The different outcomes between the studies suggest that the outcome of EBV
infection may depend on the order of infection, the physical and epigenetic state of the
viral genome, and/or EBV-induced epigenetic alterations that support viral replication.
Such EBV-induced epigenetic reprogramming of epithelial cells was shown to attenuate
epithelial differentiation and enhance cellular invasiveness [136,138,139].

At the molecular level, HPV-positive OPSCC display distinct genetic changes com-
pared to HPV-negative OSCC [170]. HPV16-positive OPSCC typically have high levels
of p16, which is often used as a surrogate marker for HPV-positivity in OPSCC [171–173].
p16 is an inhibitor of cell cycle progression that prevents cyclin-dependent kinases 4 and 6
(CDK) phosphorylation of the retinoblastoma pocket protein, pRb. HPV16 E7 directly inac-
tivates retinoblastoma pocket protein family bypassing the regulatory p16 checkpoint [174].
In addition, HPV-positive OPSCC typically have wildtype TP53 that is functionally inacti-
vated by HPV E6. When TP53 mutations occur in HPV-positive OSCC, these tumors carry a
poorer prognosis. TP53 is frequently mutated in HPV-negative OPSCC [175]. HPV-positive
OPSCC also exhibit an apolipoprotein B mRNA editing enzyme catalytic polypeptide
(APOBEC) mutational signature. The APOBEC cytosine deaminase is an innate antiviral
response to viral infection that is elevated in HPV-infected cells [176]. Other less frequent
mutations in HPV-positive OSCC include PIKCA, ZNF750, CASZ1, PTEN < CYLD, and
DDX3X, while mutations in FAT1, CDKN2A, NOTCH1, CASP8, and HRAS are associated
with HPV-negative OSCC [175]. The distinct genomic landscape of HPV-positive and
HPV-negative OSCC likely influences the outcome of EBV infection supporting the virus as
a cofactor in the progression of these cancers.

4.3. Oral Hairy Leukoplakia

Oral hairy leukoplakia (OHL) are benign oral lesions that presents as elevated white
patches on the dorsum and lateral borders of the tongue, and in rare cases the soft palate,
pharynx, or esophagus are involved [177]. Other features include hyperkeratosis, epithelial
hyperplasia, ballooning degeneration, acanthosis, and mild or moderate inflammatory
infiltrate [178]. OHL affects individuals with severe immunodeficiency such as acquired
immunodeficiency syndrome (AIDS) due to HIV infection, organ transplant recipients, and
following chemotherapy. Treatment for OHL is important as these lesions can be precursors
to squamous cell carcinomas [179]. OHL can occur in up to 50% of individuals presenting
with AIDS and occurs more frequently in males than females [180]. Some rare cases of
OHL have been reported in HIV-negative individuals on long term steroid treatments [181].
Diagnosis is based on histopathological findings and the presence of EBV using in situ
hybridization (EBER-ISH) [182]. However, EBER RNAs are not typically expressed in OHL,
with EBER-ISH detecting the high viral DNA content in the lesions [183].

OHL is a result of productive EBV replication within oral epithelial cells. EBV infects
oral squamous epithelial cells and replicates in the absence of cell-mediated immunity.
Manifestation of OHL is one of the earliest signs of AIDS, and OHL is strongly correlated
with decreased CD4+ counts [184]. A deficiency of Langerhans cells has been reported in
OHL tissues that may allow escape from immune surveillance [185]. Langerhans cells are
antigen-presenting immune cells required for mounting an immune response against viral
infection in the epithelium. Furthermore, circulating EBV-positive monocytes have been
detected in HIV-positive individuals [186]. These infected monocytes have been shown
to enter the epithelium and allow for infection of keratinocytes [186]. Antiviral treatment
with nucleoside analogs (acyclovir, valacylovir, and famicyclovir) resolves these lesions
in several weeks [187]. HIV-positive individuals receiving treatment to improve immune
function and antiretroviral treatment reduces OHL as well, but recurrence is common

Although OHL is associated with lytic EBV replication, several latently associated
factors (except the EBERs) are expressed simultaneously with lytic genes [188]. EBNA2 is
expressed in almost all OHL cases [189]. LMP1 and the viral Bcl2 homolog, BHRF1, are also
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expressed to promote cell survival and stimulation of epithelial proliferation. LMP1 induces
anti-apoptotic genes such as A20 and activates NF-kB, MAPK, and JNK signaling, while
BHRF1 plays a role in delaying epithelial differentiation as well as inhibiting apoptosis [190].
Altogether these transforming genes extend the life of infected cells and promote the unique
characteristics of OHL. A distinct attribute of OHL is co-infection with multiple different
EBV types and strain variants [191]. EBV type 1 and type 2 are identified by sequence
variations in EBNA2. Sequence differences at LMP1 has identified several variant strains.
Based on LMP1 genotyping, OHL lesions can be infected with multiple variant strains [192].
Superinfection of multiple EBV strains has been suggested to be due to transcription of
EBNA2 which upregulates expression of EBV receptor, CR2/CD21 [193].

Although EBV growth promotion is frequently associated with latent gene products,
OHL epithelial hyperplasia implicates replicative gene products in promoting carcinogene-
sis. This is supported by B cell immortalization being less efficient in the absence of BZFL1.
Presence of BZLF1 also enhanced lymphoma development in humanized mice models [194].
Several paracrine factors, such as VEGF growth factor, IL6, and IL10 cytokines, are pro-
duced in cells undergoing lytic replication to modulate the tumor microenvironment to
support the growth of the tumor cells [195].

4.4. Lymphoepitheliomas of the Salivary/Parotid Gland

Lymphoepitheliomas are undifferentiated carcinomas associated with a dense lym-
phoid infiltrate that occur at various anatomical sites being associated with EBV. These
epitheliomas resemble undifferentiated NPC also having a lymphoid infiltrate. Salivary
gland lymphoepitheliomas involving the parotid gland are rare oral tumors that are associ-
ated with EBV. A high incidence is observed among native people in Greenland, Alaska,
and some Asian populations [196]. In these endemic areas, all tumors are associated
with EBV, while tumors arising in nonendemic areas are sporadically associated with
EBV [197]. Histological and pathological characteristics are comparable to undifferentiated
nasopharyngeal carcinoma and association of EBV is described as a latent infection [198].

EBV EBERs are detected strictly in malignant epithelial cells and not significantly
detected in the infiltrating lymphocytes or surrounding benign tissues [196]. Detection of
EBV in salivary tumors is determined by EBER expression in tumor cells and detection of
the viral DNA by PCR [199]. LMP1 protein has been detected in a subset of salivary gland
epitheliomas and LMP1 sequence variants are often found in the endemic population [200].

5. Conclusions

In the more than 55 years since its discovery, EBV has been shown to play a complex
role in the pathogenesis of several human malignancies. Though EBV associated oral
cancers are rare, the oral cavity is central to the life cycle of the virus within its human
host. The oral anatomy provides proximity between the B lymphocytes and epithelial cells
in which the virus completes its life cycle. The persistence of EBV within the tissues of
the oral cavity is a risk factor for cancers in the oral compartment and at other anatomical
sites. The current understanding of EBV mediated oncogenesis is summarized in Figure 2.
EBV can directly alter apoptosis, proliferation, and other major signaling pathways (NF-kB,
JAK-STAT). However, a commonality observed among the EBV-associated cancers is the
existence of additional oncogenic co-factors. Examples include host genetic alterations or
the presence of additional pathogens (HPV, HIV, Malaria). EBV-mediated perturbation of
the host may complement the effect of these co-factors, or EBV may provide an alternate
route to the evolution of the tumor cell. EBV is not always present in histologically similar
tumors, but genetic and epigenetic alterations are different when comparing EBV-positive
and negative states. As potent epigenetic modifier, EBV manipulation of the host epigenome
provides another oncogenic mechanism through reprogramming of host gene expression.
Such epigenetic changes can be retained following loss of the viral genome as a viral
mechanism for “hit-and-run” oncogenesis. In addition, EBV has a demonstrated ability to
alter the tumor microenvironment and interfere with host immune surveillance. Future
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studies will continue to elucidate and define the role of EBV in tumorigenesis and establish
EBV as prognostic factor in cancer. Better control or elimination of EBV infection with
vaccination will likely reduce the burden of EBV-associated cancers.
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Figure 2. Models summarizing the contribution of EBV in oral cancers. (A) EBV Infected B cells
circulate to secondary lymphoid tissues where viral latent gene products promote clonal expansion
and germinal center survival and differentiation into centroblasts. Tumors may arise from cells
participating in GC (BL) reactions or post-GC selection (cHL, DLBCL NOS). The viral latency pro-
gram complements acquired host mutations and influences the outgrowth of the tumor cell. In
BL, EBV infection can induce AID which can increase genomic instability. AID overexpression can
induce MYC chromosomal translocations into the immunoglobulin enhancer region leading to MYC
overexpression. EBNA 1 has been suggested to interfere with p53 to prevent MYC induced apoptosis.
In DLBCL, EBV-positive tumors tend to have a lower frequency of mutations that EBV-negative
types. Recurrent mutations activate NF-kB/JAK-STAT/Wnt signaling pathways. In HL, EBV may
support growth and survival following loss of B cell receptor signaling (BCR), with constitutive
activation of NF-kB, and JAK/STAT signaling pathways conferring resistance to apoptosis. EBV
LMP1 induces pathways activated in HL and EBV + DLBCL. (B) The oral epithelium supports
the EBV productive lifecycle. Genetic changes that interrupt EBV productive replication and/or
facilitate EBV latent infection have been linked to development of OSCC. In oral cavity squamous
cell carcinomas (OCSCC), mutations in TP53 and CDKN2A are drivers of OCSCC tumor progression.
EBV infection likely occurs at a later stage where additional genetic and epigenetic alterations allow
for long term latent infection. EBV infection and expression of latent gene products can influence cell
growth, survival, migration, and differentiation. The majority of oropharyngeal squamous cell are
due to HPV infection. Expression of the HPV oncogenes E6 and E7 facilitates the degradation of p53
and the retinoblastoma family of pocket proteins, respectively. Presence of HPV induces APOBEC
and genomic instability that contributes to the evolution of the tumor cells. HPV-immortalization due
to E7 expression interferes with EBV productive replication that result in abortive or latent infections.
Increased persistence of EBV and expression of EBV gene products in HPV-immortalized cells may
contribute to the rapid progression observed for HPV-positive OPSCC. Image was created with
BioRender.
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