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Abstract: In nature, viral coinfection is as widespread as viral infection alone. Viral coinfections often
cause altered viral pathogenicity, disrupted host defense, and mixed-up clinical symptoms, all of
which result in more difficult diagnosis and treatment of a disease. There are three major virus–virus
interactions in coinfection cases: viral interference, viral synergy, and viral noninterference. We
analyzed virus–virus interactions in both aspects of viruses and hosts and elucidated their possible
mechanisms. Finally, we summarized the protocol of viral coinfection studies and key points in the
process of virus separation and purification.

Keywords: viral coinfection; viral interaction; mechanism; research technique

1. Introduction

In nature, it is common for multiple pathogens (viruses, bacteria, fungi, and protozoa)
to infect the same host simultaneously or successively. This phenomenon is defined as
coinfection [1]. Typically, coinfection complicates the symptoms and diagnosis of a disease.
In this article, we only focus on viral coinfection in clinics while focusing on virus–virus
interactions.

A virus–virus interaction can be observed in five patterns: interference, synergy,
noninterference, dependence assistance, and host–parasite relation. The most common
virus–virus interaction in coinfection is interference, in which one virus competes to sup-
press the replication of another [2]. SARS-CoV-2 can extensively inhibit the replication of
multiple respiratory viruses [3,4]. A persistent infection of the Old World arenavirus [5], in-
fluenza A virus (IAV) [6], or classical swine fever virus (CSFV) [7,8] eliminates the secondary
viral infection; this is known as superinfection exclusion [6].

In contrast to interference, coinfection with certain viruses may enhance the replication
of other viruses [9], which we define as synergy. For instance, West Nile virus (WNV)
and IAV infection each enhance the replication of Culex flavivirus (CxFV) [10] and human
parainfluenza virus type 2 (hPIV2) [9], respectively.

If coinfection has no effect on virus replication, it is defined as non-interference [11–13].
Noninterference is usually found between viruses with different tissue tropisms. In human
or animal viral infections, we can often detect a “passenger virus” that does not cause any
symptoms or disease. The relation between a “causative virus” and a “passenger virus”
is independent.

Dependence assistance and host–parasite relations are two specific viral relationships.
Viruses with an incomplete genome, such as adeno-associated virus, with defective inter-
fering particles, cannot complicate a replication cycle by themselves; instead, they require
the assistance of a “helper virus”, such as adeno virus, herpes virus, or another intact
virus, in order to finish their life cycle. These represent dependence assistance in viral
interactions [14–16].
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A host–parasite relation exists between virophages and giant viruses [17]. Virophages,
such as Sputnik, are parasites of Mimivirus and Mamavirus. Additionally, Sputnik can-
not replicate in Acanthamoeba castellanii but grows rapidly in the giant virus producer
found in amoebae coinfected with Mimivirus, and Sputnik growth impacts and reduces
Mimivirus replication.

Interference, synergy, and noninterference interactions are commonly identified in
clinical viral coinfection cases. In this review, we focus on these three viral interactions and
summarize their outcomes, mechanisms, and relative studies.

2. Virus–Virus Interaction in Coinfections

Interactions in viral coinfections are primarily caused by changes in virus replication
cycles (virus factors) and the replication environment (host factors), as shown in Figure 1.

Figure 1. Two factors leading to the outcomes of viral coinfection. The outcomes of viral coinfection
can be mainly attributed to two factors, namely virus factors and host factors. The figure takes IAV
coinfection as an example. Host factors in coinfection change the environment of the body, thereby
affecting the transmission and pathogenicity of viruses. Virus factors are coinfection changes that
affect the intracellular environment and directly or indirectly affect the viral life cycle.

2.1. Viral Interference

The causes of viral interference can be divided into two categories: interferon-mediated
and non-interferon-mediated (Figure 2).

Interferon (IFN)-mediated innate immunity is the most common reason for viral
interference [18,19]. In vivo studies of coinfection of IAV, respiratory syncytial virus (RSV),
and rhinovirus (RV) show that IAV and RSV can interfere with RV replication through type
I and type III IFN [20]. In clinical HCV and HIV coinfection, HIV-induced IFNα can reduce
the level of HCV viremia [21]. Mouse hepatitis virus strain 1 (MHV-1) inhibits replication
of IAV by upregulating IFN-β [22].
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IFN induces multiple interferon-stimulating genes (ISGs) and activates multiple innate
immunity signaling pathways [23–33]. GB virus C (GBV-C) inhibiting the proliferation
of HIV is a typical IFN-mediated viral interference phenomenon. GBV-C promotes the
activation of IFN-γ and downstream ISGs expression, as well as the activation/maturation
of circulating pDC, which further increases IFN-γ [34]. Additionally, regarding coinfection
of RV and IAV/pneumonia virus of mice (PVM), RV significantly inhibits the replication of
IAV or PVM. RV induces an increase in Muc5ac gene expression, leading to an increase in
IFN-β through the aromatic hydrocarbon receptor (AhR) signal transduction [35,36].
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Non-interferon-mediated viral interference, also known as intrinsic interference, is
the resistance of viral-infected cells to subsequent viral infections. This is particularly
noticeable in foot-and-mouth disease virus (FMDV) coinfection cases, in which the attenu-
ated A24 Cruzeiro strain interferes with the proliferation of homologous and heterologous
strains [37]. Another typical intrinsic interference is in the case of Sindbis virus coinfection
in viral infected vertebrate cells; the first virus translates non-structural genes to estab-
lish homologous exclusion and the genome of the second virus translates only without
replication [38,39]. Adam et al. conducted further research based on these findings, and
they found that a unipartite non-structural precursor called P123 is necessary to produce
viral negative-strand RNA templates. The P123 of the latter virus is rapidly cleaved by the
protease of the former virus, resulting in the latter virus being unable to synthesize the
negative strand. This explains the phenomenon of intrinsic interference, at least to some
extent [40].

The intrinsic interference between unrelated viruses can be found in the case of
Newcastle disease virus (NDV) coinfection. Rubella virus can induce an interference
state in infected host cells to avoid infection of NDV [41]. There is competition between
the coinfected viruses for metabolites, replication sites [42], or a host’s viral replication-
required proteins [12,40,43–54]. There are some host proteins that play a key role in
the life cycle of various viruses, such as tetraspanins. Tetraspanins are transmembrane
glycoproteins that are associated with the pathogenesis of non-enveloped viruses (human
papillomavirus [HPV]) and enveloped viruses (HIV, Zika virus, IAV and coronavirus) [55].
When coinfections occur among these viruses, tetraspanins serve as the main host protein
being explored.
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In addition to the contest for host proteins, there are several other interference me-
diators, including defective interfering particles (DI particles) [56], RNA interferences
(RNAi) [57–61], trans-acting viral proteins [62–64], and non-specific dsRNAs [65,66].

Virus interference can occur at each step of the virus-replication process, including
virus attachment [67–78] and entry [54,79–82], viral genome replication [40,54,83–88], viral
protein translation and assembly, and progeny virus budding [89]. At the stage of viral
attachment, simian immunodeficiency virus (SIV) can significantly inhibit the expression
of CD4 glycoprotein on the cell surface, which causes cell resistance to HIV-1 superinfec-
tion [78]. At the stage of entry, vesicular stomatitis virus (VSV) inhibits the formation rate of
endocytic vesicles and reduces the internalization rate of receptor-binding ligands in order
to restrain other viruses from taking over the coated pits [81]. In the viral gene-replication
step, the expression of the Borna disease virus (BDV) P, N or X protein makes human cells
resistant to superinfection with BDV by selectively blocking the polymerase activity of
viruses [84]. In the viral protein translation step, the coinfection of VSV and IAV inhibits the
translation of IAV mRNA, which is related to the inhibition of protein synthesis after VSV
infection [90]. In the viral assembly and budding stages, Alphabaculovirus-induced actin
recombination blocks the assembly and budding of other viruses [89]. Inhibition could
happen at multiple steps, as Semliki Forest virus (SFV) infection inhibits the attachment,
entry, and budding of subsequent viruses [54].

Viral interference is also often found in persistent infections. Unlike acute infections, in
which virus particles are eventually cleared by the immune system or host, viruses stay in
infected cells for a long time in persistent infections [1]. Viruses in persistent infections usu-
ally reduce their replication level [91–99] to keep the infected cell alive. Therefore, the virus
in a persistent infection state can resist the influence of other viruses and exist in infected
cells for a long time. A good example is the persistent infection of mosquitos by densovirus
(DNV) [100]. DNV-infected cells are resistant to dengue virus (DENV) attack, and no CPE
appears in these cases [101,102]. Studies on flock house virus (FHV) have shown that host
and viral factors are involved in maintaining viral persistence [103–105]. Regarding the
establishment of persistent infection in vitro, mutations in the viral genome begin to accu-
mulate after several continuous passages [103], indicating that the cellular environment,
rather than the virus itself, is essential for the establishment of sustained infection. The
continuous replication of viruses could be accomplished by blocking the RNAi response of
infected cells. Goic et al. reported that the persistence of FHV in Drosophila melanogaster
could be accomplished by regulating RNAi and reverse transcriptase activity [106]. Frag-
ments of different RNA viruses are reversely transcribed at early infection, which results in
DNA forms embedded in the retrotransposon sequences. These virus-retrotransposon DNA
chimeras trigger cellular RNAi mechanisms that inhibit viral replication. The inhibition of
reverse transcriptase by FHV can hinder the emergence of chimeric DNA, thus closing the
cell RNAi mechanism and making FHV persist in the cell.

2.2. Viral Synergy

The causes of viral synergy can be divided into two categories: interferon-mediated
and non-interferon-mediated (as shown in Figure 2). Interferon-mediated viral promotion
is primarily manifested as one virus causing host immunodeficiency; this, in turn, promotes
the proliferation of the other viruses. In mouse L cells, coinfection with Vaccinia virus
(VV) protects the VSV from IFN inhibition. This is related to the inhibition of IFN-induced
dsRNA-dependent protein kinase activity by VV [107]. In coinfections of Hepatitis B virus
(HBV) and Hepatitis C virus (HCV), the reduced liver IFN response after HCV clearance can
cause HBV reactivation [108]. Another good example of this mechanism is the coinfection
between canine parvovirus type 2 (CPV-2) and canine circovirus (CCV); CCV inhibits the
activation of the IFN-I promoter by inducing Rep protein expression, thus blocking the
subsequent expression of ISGs to promote CPV-2 replication [109]. Additionally, in the coin-
fection of paramyxovirus 5 wild-type (SV5-WT) and SV5 P/V mutant (rSV5-P/V-CPI−),
rSV5-WT can block IFN signaling by inhibiting IRF-3 translocation into the nucleus and
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degrading STAT1 [110], thus blocking host cytokines involved in antiviral response and
those involved in IFN synthesis [111].

Non-interferon-mediated viral synergy could be related to the effect of the host protein
or the replication of other viruses. Coinfection between Marek’s disease virus (MDV) and
reticuloendotheliosis virus (REV) increases the replication of both viruses in cells [112].
Further studies have shown that host proteins such as IRF7, MX1, TIMP3, and AKT1 may
be related to the synergy of MDV and REV. In the coinfection of the Avian leukosis virus
subgroup J (ALV-J) and REV, host protein TRIM62 increases replication of the two viruses
by regulating the actin cytoskeleton [113].

The effect of coinfection on virus replication cycles is more intuitive and effective. A
study by Goto et al. found that hPIV2 infection enhances IAV replication [9] by promoting
the fusion of the infected cell’s membrane.

2.3. Viral Noninterference

Noninterference is usually found between viruses with different tissue tropisms. For
example, influenza viruses mainly infect the upper respiratory tract and lower respiratory
tract, and occasionally infect extrapulmonary tissues, such as the eyes and intestines [114].
HPV infection, however, is mainly distributed on the skin, mouth, nasal cavity and geni-
tals [115]. The tissue tropisms of these two viruses have almost no intersection; therefore,
when coinfections between IAV and HPV occur, we generally assume that their relationship
is one of noninterference.

A host could be actively and continuously infected by multiple viruses without any ob-
vious signs of disease. This is called viral accommodation. Viral accommodation is usually
observed in arthropods [12] and shrimps [102,116,117]. There is little evidence that shrimps
or other arthropods have an immune system [118], but exposure to inactivated virions or
envelope proteins allows them to acquire short-term resistance to viral attacks [119,120].
In shrimp, viral diseases are the result of virus-induced apoptosis, which is not mediated
by the immune system [102,121–123]. In viral accommodation, multiple viruses can exist
independently and stably in the same cell, and the possibility of gene exchange between
them depends on the similarity between the coinfected viruses.

3. Outcome of Viral Coinfections on Host

The outcomes of viral coinfection attributed to the host can be divided into two
categories: effects on viral transmission and viral pathogenicity (as shown in Figure 2).

3.1. Effects on Virus Transmission

Inhibition and promotion of virus transmission can both be found in viral coinfection.
Coinfection with DENV2 and DENV4 produces a competitive inhibitory effect that reduces
the spread of the viruses [124–126]. Natural coinfections of RV and IAV occur frequently in
humans. RV interferes with IAV transmission by reducing IAV aerosols [127]. Regarding
the promotion of virus transmission, one study found that coinfections of CxFV and WNV
promoted WNV transmission [10]. Coinfections of Chikungunya virus and Zika virus in
mosquitoes leads to an enhancement in transmission of the Zika virus [128]. Therefore,
in order to fully understand the effects of viral coinfection on virus transmission, further
studies in natural populations are needed.

3.2. Effects on Viral Pathogenicity

Increased pathogenicity of viruses is another common result of viral coinfection. For
example, FMDV does not generally kill adult sheep and goats [129]. However, when FMDV
is coinfected with peste des petits ruminants virus (PPRV), the mortality rate increases to
50% [130]. The admission rate of coinfection in intensive care units was higher than that
of single infection in human viral coinfection cases [131–133]. HBV and HCV coinfection
causes more severe fibrosis and cirrhosis, as well as higher liver-related mortality, than
single infection [134]. Coinfections of guinea pig reovirus and SARS-CoV cause rapid
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animal death in vivo [135]. Mice coinfected with Autochthonous Group 1 and 2 Brazilian
VV showed more severe disease than mice infected with one virus alone [136].

However, not all viral coinfections will aggravate viral pathogenicity, and viral coinfec-
tion may not change or even alleviate the symptoms of a disease. Lanjuan Li et al. analyzed
the impact of SARS-CoV-2 and IAV on the risk of disease severity in 9498 patients and
found no significant association between SARS-CoV-2 and IAV coinfection mortality [137].
Additionally, Xiang et al. suggest that HBV infection does not increase the severity and
outcome of COVID-19 [138].

Alleviation of symptoms is mainly reflected in the coinfection of respiratory viruses.
RV can reduce the severity of IAV due to a faster reduction in the pulmonary inflammatory
response and faster clearance of IAV [22]. Martinez-Roig, A et al. investigated coinfection
of respiratory viruses in children and found that the number of viruses detected in nasopha-
ryngeal aspirates was inversely proportional to the number of days of aerobic therapy and
hospital stay [139].

Therefore, whether the virulence of a virus in coinfection changes seems to be related
to the virus involved in the coinfection.

4. Study of Viral Coinfection

We summarized the study process of virus coinfection, as shown in Figure 3. The
detailed methods are described below.

Figure 3. Flow chart of viral coinfection research. For the study of viral coinfection, it is necessary to
correctly identify the occurrence of coinfections, establish a corresponding coinfection virus isolation
and detection system, and determine the type of viral coinfection and its effect on a host. Finally, the
mechanism of viral coinfection can be explored.

4.1. Identification

The diagnosis of coinfection and the separation of viruses in coinfection samples are the
bottlenecks in studies of coinfection [140–142]. The identification of coinfections is traceable,
and is often accompanied by increased or decreased clinical symptoms [143] and abnormal
clinical symptoms (higher mortality, neurological symptoms, immunosuppression, etc.);
these cannot be explained by single-pathogen infection [135,141]. Coinfections tend to
have similar means of transmission (respiratory tract [144], vector [141], blood [140], etc.)
and a similar host tropism. On the other hand, viruses in coinfections are often highly
contagious and cross-represented in epidemic areas [142,145]. Therefore, suspected cases
of coinfections can be identified from the above aspects.

The diagnosis of viruses is based on serological evidence and viral isolation. However,
the sensitivity of serological methods is low and different viruses sometimes cause similar
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serological responses [146,147]. Virus isolation requires a suitable cell line or animal
model, and the presence of multiple viruses may interfere with the replication of the target
virus [148,149].

The development and application of PCR, qPCR and ELISA make the diagnosis of
coinfection much simpler. PCR technology enhances the sensitivity of viral identification.
However, PCR primers require the sequence information of the target virus, so PCR cannot
identify novel viruses or unknown virus subspecies. The application of qPCR and ELISA
technology makes up for the deficiency of PCR. By selecting genes or amino acid sites
with high degeneracy, the versatility of detection is greatly improved and insufficient
information regarding the unknown virus may be found. Novel coinfection identification
methods are summarized as follows:

(i) The application of multiplex reverse-transcription quantitative real-time PCR
(MRT-qPCR) [150–152], an improved version of qRT-PCR, makes coinfection detection
more convenient and rapid. Its disadvantage is that building a new system takes a
lot of time.

(ii) Application of digital droplet PCR (ddPCR) makes it possible to identify two highly
similar viruses [153]. This method improves the accuracy and sensitivity of coinfection
detection.

(iii) The transmission electron microscopy detection method of a gold nanoparticle gene
probe also has applications in coinfection detection [154]. This method makes detec-
tion more convenient, which is conducive to clinical detection.

(iv) Fayyadh et al. used multicolor imaging with self-assembled quantum dot probes to
image and successfully detect H1N1, H3N2, and H9N2 influenza viruses in coinfected
cells [155]. This method provides a basis for in vitro detection of coinfection, which is
more direct and easier to operate than traditional detection.

(v) Srisomwat et al. developed a point-of-care testing (POCT) device for HIV/HCV DNA
detection [156]. Enhanced electroluminescence was observed in the presence of the
target DNA by increasing proton conductivity [156]. This method has high specificity
and a low cross-reaction for coinfection detection.

Although the identification of co-infections has been improved, the ability to detect
target pathogens remains limited. The application of a next-generation sequencing (NGS)
platform has improved virus diagnosis and the discovery of new viruses. NGS does not
require prior sequence information about the target genome and can detect most potential
genomes in clinical samples [157–159].

4.2. Viral Separation and Purification

Viral purification is extremely difficult in viral coinfection. In bacterial coinfection,
different bacteria could be rapidly purified from a mixed culture by colony purification.
On the other hand, multiple viruses cannot be easily purified directly from clinical samples.
The isolation methods of viral coinfection mainly include CPE [130], organic solvent treat-
ment (enveloped virus) [160], hemadsorption (separation of hemagglutination virus) [161],
endpoint dilution assay [162], antibody (Ab) neutralization [163], acid/alkali treatment
(PH-sensitive virus) [164], and reverse genetic system rescue [130]. The advantages and
disadvantages of these methods are summarized below:

(i) The purification of viruses by CPE is a mainstream method for virus isolation in
coinfection, but it requires the selection of suitable cell lines, where one virus can
produce obvious CPE while the other virus does not produce obvious CPE. The
disadvantage of this method is whether or not some traditional virus isolation cell
lines are sensitive to another virus, and coinfection may affect the formation of CPE.
At present, it is feasible to separate snakehead retrovirus (SnRV) from grouper nervous
necrosis virus (GNNV) by SGF-1 [165]; FMDV from PPRV [130] or single serotype
FMDV from multiple serotypes ofFMDV [142] by BHK21; IAV from respiratory viruses
by suspended MDCK cells (MDCK-S) and adherent MDCK cells (MDCK-A) [166];
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porcine epidemic diarrhea (PEDV) from porcine kobuvirus 1 (PKV) by Vero cells [157];
Hepatitis E virus (HEV) from porcine sapelovirus (PSV) by N1380 cells [167]; and
porcine circovirus 2 (PCV2) from porcine parvovirus (PPV) by PK-15 [168].

(ii) An endpoint dilution assay is used to isolate two viruses with a highly similar host
range/orientation but different replication rates. However, the separation success rate
is usually low. It needs subsequent molecular-level detection and multi-generation
blind passages for verification. Beperet et al. successfully isolated two different
subtypes of alphabaculoviruses from coinfection samples by an endpoint dilution
assay [162]. Dormitorio et al. successfully detected avian influenza virus (AIV) from
suspicious allantoine fluid samples using this method [169].

(iii) The Ab neutralization method is suitable for different serotype viruses or two viruses
with a distant genetic relationship. This method has a high success rate, but it needs
to be verified by subsequent multi-generation blind passages. For the coinfection
of multiple serotypes of the same virus, the serotype is generally determined first,
and then the 2-dimensional microneutralization test (2D-MNT) corresponding to the
serotype is carried out. Mahajan used 2D-MNT to isolate and purify multiple serotype
viruses from coinfection samples of FMDV [142].

For coinfection, corresponding antibodies should be used, such as neutralizing PPRV
in the coinfection of FMDV and PPRV [130], neutralizing NDV in coinfection of AIV and
NDV [170], neutralizing CSFV from CSFV, and porcine astrovirus 5 (PAstV5) coinfection
samples [171].

(iv) The organic solvent treatment method has certain limitations. Whether an organic
solvent can kill one virus without affecting another virus needs to be verified. The
choice of organic solvent is crucial. At present, it is feasible to remove PPRV with an
organic solvent in coinfection of FMDV and PPRV [130]. The use of 5% H2O2 can com-
pletely inactivate the infectious laryngotracheitis virus, while the infectivity of NDV,
infectious bronchitis virus, and AIV is reduced without being fully inactivated [172].

(v) Hemadsorption is suitable for virus isolation from non-hemagglutinating viruses.
The integrity of this method for virus isolation is uncertain and the virus needs to
be transferred to susceptible cell lines for amplification. At present, it is feasible to
remove PPRV in coinfections of FMDV and PPRV [130]. Hemadsorption is useful
for viruses such as IAV, parainfluenza virus, and mumps virus, which express their
hemagglutinin proteins on the plasma membrane of infected cells [161].

(vi) Acid/alkali treatment is suitable for the separation of one PH-sensitive virus and
another non-PH-sensitive virus. However, due to the difference in PH sensitivity of
the isolated virus and the misdetection of molecular detection methods, this method
has some notable limitations. Acidic environments (PH < 6.6) can effectively inhibit
AIV replication [173]. The optimum survival range of the plague virus is from pH 6
to pH 11, while that of NDV is from pH 2 to pH 11 [174]. Thus, we can isolate viruses
from coinfection samples by acid/alkali treatment.

(vii) Reverse genetic system rescues viruses. Some viruses have a mature reverse genetics
system. We can isolate the complete genome fragments of the virus from the positive
samples and then obtain complete or defective viruses. The disadvantage of this
method is that constructing the system necessitates a considerable workload, and it is
not suitable for the separation of two related viruses.

The successful isolation of viruses also depends on the cells used for virus purification.
Sometimes, a single type of cell is not enough to isolate the virus [130,175,176]. Co-culture
cells, i.e., a culture of multiple cell types together in a single layer, can solve the problem of
isolating multiple viruses [161,177]. The mixture of MRC-5 and A549 cells can be used to
detect cytomegalovirus (CMV), herpes simplex virus (HSV), and adenovirus in the same
sample [177]. Mink lung and human adenocarcinoma cells (R-Mix) can be used for the
rapid isolation of respiratory viruses (parainfluenza 1,2 and 3, influenza A and B, RSV,
adenovirus, HSV, CMV and enterovirus) [178–182]. R-Mix cells also help in isolating highly
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pathogenic respiratory viruses, such as severe acute respiratory syndrome coronavirus
(SARS-CoV). Another method currently being used is R-Mi Too cell line (composed of
MDCK and A549 cells), which does not support SARS-CoV infection [183] but is more
sensitive than R-Mix cells in the detection of influenza B virus and adenovirus [184]. Both
R-Mix and R-Mix Too cells promote the growth of different influenza virus strains [185,186].
In addition, a mixture of MRC-5 and CV1 cells contributes to multiple detections of HSV-1,
HSV-2, and varicella-zoster virus (VZV) [187,188]. Finally, Vero/BHK-21 co-culture cells
could simultaneously isolate PPRV and FMDV [130]. However, the cost of co-culture cells
is usually much higher than that of a single cell culture.

5. Conclusions

Viral coinfection is common but complicated. Studies of coinfection and virus–virus
interactions represent an emerging field in virology. Due to coinfections, one virus infection
could impact the outcome of another virus. A faster viral coinfection detection and virus
separation system should be established for further study. In the future, viral coinfection
studies will improve diagnoses, the development of vaccines, and antiviral therapy.

To make it easier to study coinfections, we have outlined some of the literature on
viral coinfections so that individuals can better select particular viruses of interest (Table 1).

Table 1. Summary of viral coinfection *.

Coinfecting
Viruses Outcome Method(s) of

Detection
Method(s) of
Purification Cause Mechanisms Effect on Host Reference

(Published Year)

HIV and HBV NA liver biopsies NA NA

Occurrence of
complications and

increased incidence
of nonalcoholic

fatty liver disease
(NALFD)

[189]
(2021)

COVID-19 and CoV
229E/OC43, AdV,

HRV, FluA
Independence MRT-qPCR NA NA No obvious trend

change
[190]

(2021)

HPIV and HRV,
RSV, AdV, HCoV,

HboV, FluB,
HMPV, FluA

NA multiplex PCR NA NA
Alleviation of

clinical symptoms
in coinfection hosts

[191]
(2019)

HBV and HCV

Noninterference
(in vitro)

coinfection
interfered HBV

(in vivo)

PCR, serologic
profiles NA

MiRNA 122
mediated by HCV

core protein inhibits
HBV replication.

A faster progression
and high incidence
of hepatocellular

carcinoma

[192]
(2018)

DENV, CHIKV,
and ZIKV NA MRT-qPCR NA NA

Mean viraemia was
significantly lower

in coinfections
compared to

monoinfections.
ZIKV- DENV

coinfection did not
significantly differ

from reported ZIKV
monoinfections.
Coinfection by

ZIKV–CHIKV could
affect foetal death

[141]
(2019)

FluA and hPIV2 coinfection
enhanced FluA

Virus titration and
Immunofluorescent

staining

Cell fusion induced
by hPIV2 infection

promotes FluA
replication.

NA [9]
(2016)

FluA and FluB Noninterference RT-PCR
Using

Embryonating
Chicken Eggs

NA

Patients presented
typical

influenza-like
disease symptoms

including
fever > 39◦C,

myalgia,
pharyngitis,
and cough.

[193]
(2013)

HBV, HCV,
and HDV

Interference
(HCV to HBV)

Noninterference
(HDV to HBV)

hepatitis B surface
antigen loss rates NA NA NA [194]

(2011)
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Table 1. Cont.

Coinfecting
Viruses Outcome Method(s) of

Detection
Method(s) of
Purification Cause Mechanisms Effect on Host Reference

(Published Year)

RV and FluA coinfection
interfered FluA Virus titration NA

RV inhibits FluA
replication by

activating innate
immune defense.

Reduced mortality
in mice

[22]
(2018)

SARS-CoV-2
and FluA NA Virus titration NA

Coinfections caused
severe lymphopenia
in peripheral blood,
resulting in reduced

total IgG,
neutralizing

antibody titers, and
CD4+ T cell

responses against
each virus.

The coinfection of
SARS-CoV-2 with

IAV enhanced
disease severity.

[195]
(2022)

Leprosy virus
and HIV Noninterference

clinical form and
type of leprosy

reaction
NA

HIV coinfected
patients and
patients with
leprosy alone

expressed similar
levels of IL-1β

and IL-6.

No change in tissue
immunological

behavior in patients
coinfected with HIV

and leprosy.

[196]
(2017)

MDV and REV Synergy
Confocal imaging,
Western blotting,

and qRT-PCR

Using the pfu and
TCID50 methods

Two virus
synergistic

replication in vitro
is related to innate
immune pathway,
Akt pathway, and
cell adhesion and

migration pathway.

Coinfection with
Marek’s disease

virus (MDV) and
reticuloendothelio-

sis virus (REV)
causes synergistic
pathogenic effects
and serious losses

to the poultry
industry.

[112]
(2022)

DNV and CHIKV Noninterference RT-qPCR NA NA

The viruses could
stably co-exist both
in the cell lines and
adult mosquitoes.

[100]
(2010)

DNV and DENV Interference
(DNV to DENV)

Immunostaining for
flow cytometry

Cell inoculated
virus NA NA [102]

(2004)

DENV, DNV
and JEV Noninterference Flow cytometry

and IFA
Cell inoculated

virus NA

Triple co-infections
of viruses can be
easily established
without signs of
disease in C6/36
mosquito cells by
sequential viral

challenge followed
by serial split

passage of
whole cells.

[197]
(2010)

IBV and APV Interference
(IBV to APV) RT-PCR NA NA NA [198]

(2001)

IBV and NDV Interference
(IBV to NDV) qRT-PCR NA NA NA [199]

(2007)

HPAIV and NDV Interference
(NDV to HPAIV) Virus titration NA

This viral
interference is titer

dependent.

HPAIV replication
was affected and an
increase in survival

was found in all
coinfected groups
when compared to

the HPAIV
single-inoculated

group.

[148]
(2016)

SINV and LACV

BHK cell:
Enhancement(both
SINV and LACV)

C6/36 cell:
coinfection don’t

affect LACV;
enhanced SINV

qRT-PCR CPE NA NA [149]
(2014)

Sindbis Virus and
other alphaviruses Interference Plaque assays NA

This interference
depends on a

central role for the
alphavirus

trans-acting
protease that
processes the
nonstructural

proteins.

Mosquito cells
persistently infected
with Sindbis virus
are broadly able to

exclude other
alphaviruses

[40]
(1997)
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Table 1. Cont.

Coinfecting
Viruses Outcome Method(s) of

Detection
Method(s) of
Purification Cause Mechanisms Effect on Host Reference

(Published Year)

WNV and CxFV

Noninterference
(in vitro)

Coinfection
enhanced WNV

(in vivo)

Plaque assays,
qRT-PCR, and IFA NA

The WNV titer in
CxFV Izabal (+)

C6/36 cells did not
reach the maximum

titer observed in
CxFV Izabal (−)

cells due to death of
cells caused by
CxFV Izabal.

NA [10]
(2010)

AIV and NDV Interference RT-PCR and
serology NA NA

Coinfection with
LPAIV had no

impact on clinical
signs; ducks

coinfected with
HPAIV survived for

shorter duration.

[200]
(2015)

HSV and VZV
Interference

(superinfection
exclusion, SE)

Laser confocal Fluorescent virus
rescue

The
downregulation of

heparan sulfate
proteoglycan 2
(HSPG2) that

alphaherpesvirus
receptor may

partially account for
the exclusion.

NA [201]
(2014)

HMPV and HRSV NA ELISA and RT-PCR NA NA Increased
hospitalization rates

[144]
(2005)

HCV and TTV NA PCR-HMA NA

A generic method
based upon PCR
and heteroduplex
mobility analysis

(HMA) can be used
to rapidly
determine

coinfection with
two strains of the

homologous virus.

NA [202]
(2000)

GaHV-1 and FWPV NA PCR

Using
Embryonating

Chicken Eggs and
CPE

NA NA [203]
(2010)

WSSV and IHHNV NA PCR and
histopathology NA NA

Except for typical
clinical symptoms
of WSSV infection,
coinfected shrimps
did not have any

other external
deformities.

[204]
(2014)

lvCIAV and iIBDV Synergy PCR, RT-PCR and
ELISA NA

LvCIAV infection
attenuated

subsequent iIBDV
infection-induced T
cell recruitment and

subsequent B cell
depletion in the

bursa.

Without occurrence
of clinical signs

[205]
(2013)

Multiple
coronaviruses Noninterference RT-PCR NA

Bats are natural
hosts of coronavirus

and potential
zoonotic sources of

viral pathogens.

NA [206]
(2016)

HAdV, HEV, RSV
and HRV Noninterference xTAG RVP Fast v2

and qRT-PCR NA NA

Lower frequency of
lower respiratory
tract infections,
lower wheezing
rates and higher

hospitalization rates

[207]
(2016)

HIV and FluA Synergy NA NA NA Higher risk of
influenza infection

[208]
(2016)
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Table 1. Cont.

Coinfecting
Viruses Outcome Method(s) of

Detection
Method(s) of
Purification Cause Mechanisms Effect on Host Reference

(Published Year)

PCV2 and CSFV NA proteomic profiling NA

Mitochondrial
dysfunction,

nuclear factor
erythroid 2-related

factor 2
(Nrf2)-mediated
oxidative stress
response and

apoptosis signaling
pathways might be
the specifical targets
during PCV2-CSFV

coinfection.

NA [209]
(2017)

PPRV and FMDV Interference qPT-PCR

Plaque assays,
neutralization with
antibodies and Viral

RNA transfection

NA NA [130]
(2016)

RSV and FluA Interference Virus titration
and IFA NA

FluA blocks the
growth of RSV by
competing with
RSV for protein
synthesis and

selective budding.

NA [210]
(2000)

Two different FluA Interference
Virus titration,
RT-PCR and

qRT-PCR
Plaque assays

H3N2 and H1N1
have different

abilities to inhibit
the replication and

transmission of
their respective

drug-resistant virus
mutants.

NA [211]
(2010)

PRRSV and SIV Interference IFA and qRT-PCR Plaque assays and
cell inoculated virus

PRRSV and SIV
demonstrate

additive effects on
the expression of
several types of
virally induced

transcripts.

NA [212]
(2014)

Two different VACV
Synergy (lung)

Interference
(spleen)

qPCR NA NA NA [136]
(2018)

Two different WNV Interference Virus titration NA

This interference
depends on
blocking the

transmission of
superinfecting

virus.

NA [213]
(1969)

SLEV and WNV Interference qRT-PCR NA

This interference
depends on
blocking the

transmission of
superinfecting

virus.

NA [214]
(2009)

DENV1 and
DENV3 Interference IFA NA

This interference
depends on
blocking the

transmission of
superinfecting

virus.

NA [215]
(1982)

* Abbreviations: MRT-qPCR, multiplex reverse-transcription quantitative real-time PCR; HIV, Human immunode-
ficiency virus; HBV, Hepatitis B virus; HCV, Hepatitis C virus; HDV, Hepatitis D virus; HBoV human bocavirus;
COVID-19, CoV 229E/OC43, SARS-CoV-2, HCoV, human coronavirus; AdV, human mastadenovirus A; HRV,
Human rhinovirus B; FluA, Influenza A virus; FluB, influenza B virus; HPIV, human parainfluenza virus; RSV,
respiratory syncytial virus; HMPV, human metapneumovirus; DENV, dengue virus; CHIKV, chikungunya virus;
ZIKV, zika virus; hPIV2, human parainfluenza virus type 2; RV, Rhinovirus; MDV, Marek’s disease virus; REV,
reticuloendotheliosis virus; DNV, densonucleosis viruses; CHIKV, Chikungunya fever virus; JEV, Japanese en-
cephalitis virus; IBV, infectious bronchitis virus; APV, avian pneumovirus; NDV, Newcastle disease virus; AIV,
Avian Influenza Virus; HPAIV, highly pathogenic AIV; SINV, Sindbis virus; LACV, La Crosse virus; WNV, West
Nile virus; CxFV, Culex flavivirus; HSV, herpes simplex virus; VZV, Varicella-zoster virus; HRSV, human respira-
tory syncytial virus; TTV, Torque teno sus virus; GaHV-1, gallid herpesvirus 1; FWPV, fowlpox virus; WSSV, white
spot syndrome virus; IHHNV, infectious hypodermal and hematopoietic necrosis virus; lvCIAV, low virulent
T-lymphotropic chicken infectious anemia virus; iIBDV, intermediate B-lymphotropic infectious bursal disease
virus; HAdV, human adenoviruses; HEV, human enterovirus; PCV2. porcine circovirus type 2; CSFV, classical
swine fever virus; PPRV, peste des petits ruminants virus; FMDV, foot-and-mouth disease virus; PRRSV, porcine
reproductive and respiratory syndrome virus; SIV, swine influenza virus; VACV, vaccinia virus; SLEV, St. Louis
encephalitis virus.
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