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Abstract: While the aetiology of asthma is unclear, the onset and/or exacerbation of asthma may be as-
sociated with respiratory infections. Virus-induced asthma is also known as virus-associated/triggered
asthma, and the reported main causative agent is rhinovirus (RV). Understanding the relationship
between viral infections and asthma may overcome the gaps in deferential immunity between viral
infections and allergies. Moreover, understanding the complicated cytokine networks involved in RV
infection may be necessary. Therefore, the complexity of RV-induced asthma is not only owing to the
response of airway and immune cells against viral infection, but also to allergic immune responses
caused by the wide variety of cytokines produced by these cells. To better understand RV-induced
asthma, it is necessary to elucidate the nature RV infections and the corresponding host defence
mechanisms. In this review, we attempt to organise the complexity of RV-induced asthma to make it
easily understandable for readers.
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1. Introduction

Although the pathophysiology of asthma associated with viral infections is not fully
understood, epidemiological findings have suggested that respiratory infections may
be involved in the onset and/or exacerbation of asthma [1,2]. Asthma associated with
viral infections is termed virus-induced asthma [3]. Several respiratory viruses can be
involved, including human rhinovirus (RV), respiratory syncytial virus (RSV), and human
parainfluenza virus; these viruses are causative agents in the onset and/or exacerbation of
asthma. In particular, RV has been found to be associated with >60% of cases of asthma
exacerbation in children [4].

The airway system consists of airway epithelial and connective tissues and smooth
muscles [5]. These tissues contain blood vessels, microlymphoid tissues, and immune cells
with various functions [5]. Therefore, the composition of the airway system is complex.

In all studies to date, the maintenance and homeostasis of the airway system have
been proposed to be orchestrated by/associated with various immunological mediators,
such as cytokines, from various cells in the airway system [6]. Virus-induced asthma has
been suggested to disturb maintenance/homeostasis [7]. However, pleiotropy and the
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redundancy of cytokines are major obstacles in understanding virus-induced asthma [7]. In
this review, to better understand the pathophysiology of RV-induced asthma, we describe
the disease based on multifaceted findings related to RV virology and biological defence
systems.

2. Pathophysiology of Asthma

The pathophysiology of asthma is characterised by airway inflammation and remod-
elling [8,9]. In asthmatics, airway inflammation is present persistently, not only during
attacks [8]. Airway epithelial cells play a pivotal role in airway inflammation in asthma
by acting as a barrier to the outside world and producing cytokines and chemokines [10].
Moreover, remodelling, i.e., simultaneous cell death and regeneration with smooth muscle
thickening and fibrous tissue, results in hyperplasia. Thus, extensive remodelling may lead
to airway stiffening and lumen narrowing, resulting in respiratory disorders [9].

3. Major Processes of Airway Tissue Remodelling in Virus-Induced Asthma

As shown in Figure 1, the major processes of tissue remodelling in virus-induced
asthma are as follows: (1) epithelial inflammatory responses, including cytokine and
inflammatory factor production, against viral infection; (2) the activation of leukocytes
(lymphocytes, neutrophils, eosinophils, mast cells, and monocytes/macrophages) and
the production of cytokines/inflammatory factors from them; and (3) the proliferation of
fibroblasts and smooth muscle cells triggered by the processes in (1) and (2). Therefore, to
better understand airway remodelling induced by an RV infection, understanding RV’s
virology and biological defence system, which involves various immunological responders
such as chemokines/cytokines and cellular immunity against RV, is necessary [11].
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4. RV Virology

RV is a non-enveloped virus that belongs to the family Picornaviridae and the genus
Enterovirus and causes various respiratory symptoms and diseases, including rhinitis, sore
throat, cough, bronchitis, and pneumonia [12]. RVs are classified into the following species:
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A (RV-A), B (RV-B), and C (RV-C) [13]. Previous genetic studies have further classified
RV-A, RV-B, and RV-C into over 100, 30, and 50 genotypes, respectively [14]. The major
viral antigen is viral protein 1 (VP 1), and the amino acid sequences of this protein show
wide divergence, which accounts for the wide antigenicity of RVs and other enteroviruses,
such as echoviruses [15,16]. The cellular receptors for RV-associated VP1 are intercellular
adhesion molecule type-1 (ICAM-I: CD54), cadherin-related family member 3 (CDHR3), or
low-density lipoprotein receptor (LDLR) [17]. These receptors are commonly expressed in
airway epithelial cells [17]. Notably, a recent study suggested that RV-C induces not only
the release of Th1 cytokines but also Th2 cytokines, including interleukin (IL)-4, -5, and -6,
in virus-infected airway epithelial cells [18].

5. Obstacles to Understanding Cytokines in Virus-Induced Asthma

For a better understanding of asthma pathophysiology, cytokines have been classified
into two major groups: Th1 and Th2. Th1 cytokines, such as IL-1β, tumour necrosis factor
(TNF)-α, and interferon (IFN)-γ, are cytokines produced by Th1 lymphocytes. Similarly,
cytokines that are produced by Th2 lymphocytes are called Th2 cytokines, which include
IL-4, -5, and -13.

Most viral infections induce a dominant production of Th1 cytokines, such as IL-1β
and IFNs. These cytokines may induce the production of antiviral antibodies, including
IgM and IgG, by activating Th1 and B cells [19,20]. IL-12 and IFN-γ may induce naïve
CD4+ T cells’ differentiation into Th1 cells and activate them [21]. Moreover, activated Th1
cells secrete IL-12 and IFN-γ, which activate macrophages and enhance their capacity for
digestion and the presentation of antigens [22]. In contrast, allergens, such as food proteins
from eggs and meat, may sometimes induce the production of Th2 cytokines [23,24].
These cytokines can activate allergic cells, such as eosinophils and mast cells, and induce
IgE (reagin) production [25,26]. IgE binds to allergens, and this allergen–reagin complex
activates mast cells and induces histamine release, thereby leading to anaphylaxis [27,28].

To better understand the pathophysiology and phenotypes of asthma, the Th1/Th2
balance paradigm has been widely used [29]. In this paradigm, eosinophilic asthma
develops when Th2 cytokines and Th2 lymphocytes are predominant over Th1 cytokines
and Th1 lymphocytes. In contrast, it is thought that Th1 predominance causes neutrophilic
asthma and autoimmune diseases such as Crohn’s disease and rheumatoid arthritis [30].
However, this paradigm cannot fully explain virus-induced asthma because viral infection
leads to Th1 dominance. Recently, it has been discovered that there are cytokines and
lymphocytes that do not fit into this classical paradigm.

The function of group 2 innate lymphoid cells (ILC2s) in asthma has attracted much
interest. ILC2s are innate immune cells with no antigen specificity that produce large
quantities of Th2 cytokines [31]. ILC2s are activated by IL-33 that is released from injured
airway epithelial cells and are associated with steroid resistance in asthmatics [31,32]. Thus,
ILC2s play an essential role in eosinophilic asthma. Inflammation caused by ILC2s and Th2
lymphocytes is called type 2 inflammation and has been studied intensively [31].

Th17 cells have also attracted attention in recent years and are thought to be a new
player in the pathophysiology of various inflammatory diseases [33]. Th17 lymphocytes
produce IL-17, which can recruit neutrophils and, like Th1 lymphocytes, is involved in the
onset and exacerbation of Crohn’s disease [30]. In the context of the pathophysiology of
asthma, an in vivo study suggested that IL-17 may lead to steroid-resistant asthma [34].
Interestingly, Beale et al. reported that IL-25, a family member of IL-17, is necessary for
rhinovirus-exacerbated allergic pulmonary inflammation [35].

In general, most cytokines show pleiotropy and redundancy [36]. Moreover, cytokines
are aggregates with these characteristics and constitute a network. Therefore, understand-
ing the relationship between cytokines and virus-induced asthma may be difficult. Typical
representative examples of such cytokines are IFNs.

IFNs are classified into three groups in humans. Type I IFNs include IFN-α and -β, type
II IFNs include IFN-γ, and type III IFNs include IFN-λ [37,38]. Type I IFNs can have an anti-
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viral effect by suppressing viral replication and activating natural killer cells to eliminate
virus-infected cells. Type I IFNs also induce the release of various cytokines [39,40]. CCL5
release is induced by type I IFNs via the Janus kinase/signal transducer and activator
of transcription (JAK/STAT) pathways and the activation of interferon-stimulated genes
(ISGs) [41]. CCL5 is a crucial chemokine in the migration of CD8 T cells to the lungs and is
associated with the typical IFN-γ-dominant Th1 response and anti-viral immunity [42,43].
On the other hand, CCL5 simultaneously induces strong chemotaxis in eosinophils [43–45].
Type III IFNs also have an anti-viral effect and regulate various cytokines [46]. When the
lung tissue is infected with virus, type III IFNs are released and suppress viral replication
without inducing inflammation [47]. Moreover, previous reports suggested that Th2
cytokine levels, including IL-4, IL-5, and IL-33, were decreased by type III IFNs [48,49].
Thus, IFNs activate not only Th1 inflammation but also type 2 inflammation.

In this review, we have tried to avoid this complication by explicating the relationships
between the cytokines shown in Table 1 [50–76] and their biological activities. Moreover,
we simply classify cytokines into Th1, Th2, and others [77,78].

Table 1. Relationships among various cytokines, origins, and functions.

Cytokines Origin Function Ref. No.

Th1

IFN-γ Activated T cell Macrophage activation [55,74]
IFN-λ Activated T cell Dendritic cell activation [75]
TNF-α Activated T cell, Monocyte/Macrophage Promotes inflammatory cytokines [50,76]

IL-2 Activated T cell T cell/NK cell activation [51]

GM-CSF Activated T cell
Monocyte/Macrophage, Fibroblast Neutrophil/Macrophage activation [52]

Th2

IL-4 Activated T cell B cell/T cell activation
IgE isotype switch [53,58]

IL-5 Activated T cell
Eosinophil, Mast cell Eosinophil proliferation/differentiation [54,55]

IL-6 Activated T cell Induce B cells into antibody-producing cells
T-cell differentiation [56]

IL-13 Activated T cell
Mast cell

Macrophage activation
IgE isotype switch [57,58]

Others

IL-1 Monocyte/MΦ T cell activation [59]

IL-33 Activated T cell
Endothelial/Epithelial cell Promoting Th2-associated cytokines [60,61]

CXCL1
GROα Epithelial cells, Macrophage, Neutrophil Neutrophil migration [62]

CXCL3
GROγ

MIP-2β
Monocyte, Fibroblast Neutrophil migration/adhesion [63]

CXCL5
ENA-78 Eosinophil Neutrophil migration/activation [64]

CXCL8
IL-8 Monocyte/Macrophage, Fibroblast Neutrophil migration [62,65]

CXCL10
IP-10 Monocyte, Fibroblast T cell/NK cell activation [66]

CCL2
MCP-1 Monocyte/Macrophage, Fibroblast Monocyte migration [67]

CCL3
MIP-1α Monocyte/Macrophage, Activated T cell

Monocyte migration/infiltration
Eosinophil/mast cell/Dendritic cell

migration
[68]

CCL4
MIP-1β Monocyte/Macrophage, Activated T cell Monocyte/T cell migration [68]

CCL5
RANTES Monocyte/Macrophage, Fibroblast Monocyte/lymphocyte/Eosinophil/mast

cell migration [69,70]

CCL11
Eotaxin Airway Epithelial Cells, Fibroblast Eosinophil migration/degranulation

Mast cell activation/migration [71]

CCL20
MIP-3α Neutrophil, Natural Killer Cell Dendritic cell activation/migration

T cell/B cell migration [72]

CCL24
Eotaxin-2 Monocyte/Macrophage Eosinophil migration [71]

TSLP Epithelial cells Promoting Th2-associated cytokines
B cell activation [73]



Viruses 2022, 14, 2616 5 of 11

6. Relationships between RV-Infection-Induced Cytokine Responses in Airway
Epithelial Cells, Fibroblasts, and Myofibroblasts

The injured airway epithelial cells produce and release various cytokines, chemokines,
and damage-associated molecular patterns (DAMPs) that can activate innate immune
systems. For example, polyinosinic-polycytidylic acid [poly (I:C)], which is structurally
similar to double-stranded RNA and is used instead of an RNA virus infection in vitro
and in vivo, can induce the release of IFN-γ, TNF-α, IL-8, and CCL5 in bronchial epithelial
cells [79–81]. Nakamoto et al. reported that flagellin, derived from Pseudomonas aeruginosa,
induces the release of IL-6 and IL-8 in airway epithelial cells [82]. Thus, airway epithe-
lial cells are not only barriers to environmental stimulations but also act as triggers for
inflammation and the release of various signalling molecules. Moreover, the cytokines,
chemokines, and DAMPs released from airway epithelial cells may induce the release
of other cytokines or chemokines from fibroblasts, myofibroblasts, and leukocytes. For
example, transforming growth factor β (TGF-β) derived from epithelial cells is important in
the development of airway remodelling in refractory asthma and it induces IL-6 production
in fibroblasts [83,84]. In this manner, the injury of airway epithelial cells by environmental
factors can lead to cascades of cytokine and chemokine production.

Viral infection is one of the major causes of injury to airway epithelial cells. Airway
epithelial cells perceive viral infection and virus-induced injury and activate immune
responses. One of these responses is the activation of the innate immune system through
pattern-recognition receptors (PRRs) [85]. Toll-like receptors (TLRs) are one of the most
representative PRRs. TLR3 recognises viral double-stranded RNA, and previous reports
have shown that cytokines and chemokines are produced in bronchial epithelial cells via
TLR3 activation during viral infection [86,87]. TLR7/8 recognises single-stranded RNA.
Several reports have suggested that various cytokines are produced in bronchial epithelial
cells via TLR7/8 activation at the time of viral infection [88,89]. Other RNA-sensing PRRs
include retinoic acid-inducible gene-I (RIG-I), MDA5 (melanoma differentiation-associated
gene 5), and protein kinase R (PKR) [90]. The recognition of viral RNA by these molecules
can also induce the release of various cytokines. A response other than cytokine production
that can occur as a result of viral infection is the production of reactive oxygen species
(ROS) in airway epithelial cells. ROS can induce apoptosis in airway cells [91]. Comstock
et al. reported that viral infection and poly (I:C) stimulation promote ROS production in
bronchial epithelial cells [92]. Thus, viral infection leads to various immune responses and
promotes cascades of cytokine and chemokine production.

Among the viruses that can damage airway epithelial tissue, RV is a major pathogen,
and is one that exacerbates asthma, as described above. As shown in Figure 1, RV can infect
airway epithelial cells, leading to a cascade of cytokine and chemokine production [93–95].
Indeed, RV-infected epithelial cells can produce various T1 cytokines, including granulocyte
colony-stimulating factor, IFN-γ, and TNF-α, and type2 cytokines including IL-4, IL-5, and
IL-13 [96–98]. These cytokines may further induce the production of various cytokines in
fibroblasts and myofibroblasts, irrespective of RV infection [99,100]. Moreover, fibroblasts
and myofibroblasts infected with RV may also induce the release of cytokines, although
this has been confirmed only in an in vitro study [94,98].

As mentioned above, RV infection may induce the production of various cytokines
in airway component cells including epithelial cells, fibroblasts, and myofibroblasts [101].
These cytokines also activate leukocytes. Among them, MCP-1 (CCL2), MIP-1α (CCL3),
and IP-10 (CXCL10) may activate lymphocytes; MCP-1 (CCL2), MIP-1α (CCL3), and
RANTES (CCL5) may activate monocytes/macrophages; GROα (CXCL1), GROγ (CXCL3),
ENA-78 (CXCL5), and IL-8 (CXCL8) may activate neutrophils; MIP-1α (CCL3), RANTES
(CCL5), eotaxin (CCL11), and eotaxin-2 (CCL24) may activate eosinophils; RANTES
(CCL5) and eotaxin (CCL11) may activate mast cells; and MIP-3α (CCL20) activates
dendritic cells (DCs) [69,102,103]. Moreover, various chemokines act as chemoattrac-
tant proteins that induce the migration and recruitment of neutrophils, eosinophils, and
monocytes/macrophages from adjacent vascular tissue to the RV infection foci [104,105].
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7. Effector Functions of Leukocytes

Leukocytes are also associated with the pathophysiology of asthma. The effector
functions of various leukocytes, such as neutrophils, monocytes/macrophages, eosinophils,
and mast cells, are involved in degranulation, the generation of ROS, and phagocytosis [106].
These effector functions are triggered and enhanced by Th1 and/or Th2 cytokines and/or
stimulation by various substances, such as platelet-activating factor derived from RV-
infected cells [96]. Leukocytes interact with each other through such effector functions and
the release of cytokines. Thus, leukocytes form a network among themselves.

DCs are activated by cytokines released from airway epithelial cells, take up allergens,
and migrate to local lymph nodes. DCs present antigens via major histocompatibility gene
complex class II molecules, and CD40-mediated stimulation can induce CD4 T cells to
differentiate into Th1, Th2, or Th17 cells [107].

Th1 lymphocytes produce Th1 cytokines such as IFN-γ and TNF-α and activate
monocytes/macrophages and lymphocytes (cytotoxic T cells) in order to kill virus-infected
cells [88,89]. Alveolar macrophages play specific roles in the phagocytosis of various
particles such as dust, bacteria, and viruses and have strong effector functions including
ROS generation and the degranulation of myeloperoxidase [108]. Therefore, in the acute
phase of airway infection by RVs, these effector functions of macrophages may be partly
responsible for exacerbating virus-induced asthma [109,110]. In addition, Th1 cytokines
activate neutrophils. In an in vivo study, activated neutrophils increased the expression
of the high-affinity IgE receptor (FcεRI) on lung-conventional DCs [111]. Therefore, Th1
lymphocytes may contribute to accelerating type 2 inflammation.

Moreover, Th2 lymphocytes produce IL-4, IL-5, IL-13, and IL-33 and activate eosinophils
and mast cells, leading to allergic reactions, including virus-induced asthma [112,113]. Mast
cells release histamine and matrix metalloproteinases (MMPs), and they cause increased
vascular permeability and bronchial smooth muscle contractions. Eosinophils contain toxic
granules (i.e., major basic protein (MBP), eosinophil cationic protein (ECP), eosinophil-
derived neurotoxin (EDN), and eosinophil peroxidase) and efficiently produce ROS upon
various stimulations, such as that effected by cytokines, and enhanced effector functions by
eosinophils can cause tissue injury and airway remodelling in RV-induced asthma [114,115].

Since the leukocyte network is complicated, the relationship between individual leuko-
cytes is not fully understood. Therefore, it may be necessary to investigate the mechanism
by which Th1 lymphocytes accelerate type 2 inflammation, which is unconsidered by the
classical Th1/Th2 balance paradigm.

8. Differences between Asthmatics and Non-Asthmatics in Viral Infection

The production of cytokines and chemokines in the airway compartment and by
various immune cells may occur in both asthmatics and non-asthmatics. It remains un-
clear what causes asthmatic airway inflammation. However, several theories have been
considered in this respect.

First, a type 2 dominant environment in the airway accelerates type 2 inflammation in
airway components. In airway epithelial cells, poly (I:C) stimulation induces greater CCL5
production with IL-4 and IL-13 pre-treatments than without [116]. In addition, sputum
IL-13 levels in patients with poorly controlled asthma are higher than those in patients with
well-controlled asthma. Thus, a Th2-predominant environment creates type 2 inflammation
and may form a spiral that leads to asthma exacerbation in asthmatic patients.

Second, there are low levels of IFN-β in the bronchial epithelial cells of asthmatics [116].
Since IFNs play an essential role in viral elimination, asthmatics with low levels of IFN-β
fail to eliminate viruses and develop worse asthma exacerbation. From this perspective, a
clinical trial using nebulised IFN-β therapy was conducted and reported some efficacy [117].

Third, there are persistent viral infections in asthmatics. As described above, bronchial
epithelial cells and airway macrophages in asthmatics have low levels of IFNs and fail to
mount an effective innate immune response in the airway. Thus, viral clearance may be
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incomplete in the airways of asthmatics. Indeed, Wos et al. reported that RV was detected
in the lower airway tissue of asthmatics more often than in non-asthmatics [118].

These points are controversial. The first point is very useful for understanding the
pathophysiology of eosinophilic asthma. On the other hand, a multifaceted approach is
important to understand the pathophysiology of asthma because it has variously different
phenotypes. Thus, the differences between asthma and non-asthma phenotypes need to be
more closely scrutinised.

9. Perspective

Although inhaled corticosteroid therapy improves the progression of asthma, it is
still a major disease burden globally [119]. An RV infection is a common cause of asthma
exacerbation. Thus, understanding the pathophysiology of virus-induced asthma, espe-
cially RV-related asthma, is essential for developing new treatment agents. As described
in this review, the relationships between viral infection and the production of cytokines
in the airway compartment have been clarified to some extent, such as those concerning
IFN production and the cytokines induced by IFNs. However, the differences between a
normal airway and an asthmatic airway are still unclear. Therefore, further studies may be
needed to elucidate the differences between asthmatics and non-asthmatics with respect to
viral infection.
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