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Abstract: Porcine reproductive and respiratory syndrome (PRRS) is an important viral disease,
causing significant economic losses to the swine industry worldwide. Atypical cases caused by highly
pathogenic PRRS virus (HP-PRRSV) emerged in 2006 in China. The vaccine strain HuN4-F112 has
been developed from the wild-type HP-PRRSV HuN4 through repeated passages on MARC-145 cells.
However, the mechanisms of attenuation have yet to be defined. Previous studies have shown that
the vaccine strain HuN4-F112 could not effectively replicate in porcine alveolar macrophages (PAMs).
In the present study, a series of chimeric and mutant PRRSVs were constructed to investigate regions
associated with the virus attenuation. Firstly, the corresponding genome regions (ORF1a, ORF1b
and ORFs 2-7) were exchanged between two infectious clones of HuN4 and HuN4-F112, and then
the influence of small regions in ORF1a and ORF2-7 was evaluated, then influence of specific amino
acids on NSP2 was tested. NSP2 was determined to be the key gene that regulated infection efficiency
on PAMs, and amino acids at 893 and 979 of NSP2 were the key amino acids. The results of in vivo
study indicated that NSP2 was not only important for infection efficiency in vitro, but also influenced
the virulence, which was indicated by the results of survival rate, temperature, viremia, lung score
and tissue score.

Keywords: PRRSV; infection efficiency; PAM; virulence

1. Introduction

Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating
viral disease that has caused significant loss for the swine industry worldwide [1]. The
causative agent of this disease, PRRS virus (PRRSV), was first recognized in the early 1990s
in both Europe and North America [2–4]. PRRSV is an enveloped positive stranded RNA
virus that belongs to the family Arteriviridae, genus Betaarterivirus. Characterized by its
genetic and antigenic heterogeneity, PRRSV can be divided into two major genotypes:
genotype 1 (Europe) and genotype 2 (North American). These two genotypes typically
share ~60% nucleotide similarity over the entire genomes and can be distinguished serolog-
ically [5–8].

The PRRSV genome is approximately 15 kb in length and consists of at least 10 open
reading frames (ORFs) including ORF1a, ORF1b, ORF2, ORF2a, ORF3, ORF4, ORF5, ORF5a,
ORF6 and ORF7 [9,10]. ORF1a and ORF1b are replicase-associated genes that encode the
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polyproteins pp1a and pp1ab, respectively [11,12]. The pp1a was proteolytically processed
into nine nonstructural proteins (NSPs), including three important virus proteases NSP1
(papain-like cysteine protease), NSP2 (chymotrypsin-like cysteine protease) and NSP4 (3C-
like serine protease), and proteolytic cleavage of pp1ab results in the following products:
NSP9 (viral RNA-dependent RNA polymerase, RdRP), NSP10 (RNA helicase), NSP11
(endoribonuclease) and NSP12 [12–15]. Structural proteins were encoded by ORF2 to ORF7,
including GP2, E, GP3, GP4, GP5, ORF5a, M and N [16]. Recently, NSP2 had been reported
as a novel structural component of PRRSV particle, and another two open reading frames,
nsp2TF and nsp2N, translated with novel programmed -2/-1 ribosomal frame shifting,
were discovered [17].

The PRRSV had a highly restricted cell tropism showing a preference for cells of
the monocyte/macrophage in vivo, and PAMs are considered to be the primary target
cells of PRRSV. PRRSV can also sustained by MA-104 cell line and its derived cell line,
MARC-145 [18–20]. Different PRRSV strains show different abilities of infection on PAM,
especially between high virulence PRRSV and low virulence PRRSV, and this was also
found between HP-PRRSV and its attenuated strain [21]. In the study provided, chimeric
viruses were generated by interchanging the 5′UTR + ORF1a, ORF1b, and ORF2-7 + 3′UTR
regions between HuN4-F5 and HuN4-F112. ORF1a and ORF2-7 contributed to virus
replication [21]. In this study, numbers of chimeric viruses were generated by reciprocally
exchanging different regions of PRRSV ORF1a and ORF2-7 between HP-PRRSV HuN4 and
HuN4-F112, and the influence of efficiency on PAM cells was tested.

2. Materials and Methods
2.1. Cells, Viruses, Plasmids and Antibodies

BHK-21 and MARC-145 cells were stored in our lab. Cells were grown at 37 ◦C in Dul-
becco’s modified Eagle’s medium (DMEM, Gibico, Grand Island, NY, USA) supplemented
with 10% fetal bovine serum in a humidified 5% CO2. Pulmonary alveolar macrophages
(PAM) were obtained from 30-day-old piglets that were confirmed to be free of infection
with PRRSV, as described previously. The isolated PAMs were cultured in RPMI-1640
medium (Invitrogen, Carlsbad, CA, USA) with 10% heat-inactivated FBS, 100 U/mL peni-
cillin and 10 µg/mL streptomycin in a 37 ◦C/5% CO2 incubator for future studies.

The rescued viruses rHuN4-F5-ORF1a, rHuN4-F5-ORF1b, rHuN4-F5-ORF2-7, rHun4-
F112-ORF1a, rHun4-F112-ORF1b, rHun4-F112-ORF2-7, rHuN4-F5 and rHuN4-F112 were
used in this study. Two monoclonal antibodies (MAbs) specific to PRRSV M or GP3 protein
were prepared and stored by our group, and were used in flow cytometry and Western
blotting, respectively.

2.2. Construction of Full-Length Chimeric cDNA Clones

Full-length HuN4-F5 and HuN4-F112 infectious clones were utilized as backbones
and NSP1-2, NSP2, NSP3-8, ORF2-4 and ORF5-6 were exchanged between rHuN4-F5 and
rHuN4-F112, using different strategies (Figure 1). The mutant viruses were first made via
site mutation on plasmid NSP1-2 using specific primers (Table 1), and then using the same
strategy of p112-NSP1-2H to construct full-length infection clone and rescued viruses.

Table 1. Information of primers and chimeric viruses.

Primers Sequences (5′-3′) Information Chimeric Viruses

Q-RT401F
Q-RT401L

CTATGGTCGCTCGTCACGCTTC
TGGACGAAGCGTGACGAGCGAC

Primers used for mutated NSP2 401aa
from rHuN4-F5 to rHuN4-F112

rHuN4-F5-401/477
Q-RT477F
Q-RT477L

GATCTTGTGAACATCATCCAAA
CTGAGGATTTGGATGATGTTCA

Primers used for mutated NSP2 477aa
from rHuN4-F5 to rHuN4-F112
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Table 1. Cont.

Primers Sequences (5′-3′) Information Chimeric Viruses

Q-RT799F
Q-RT799L

GGCTGAGCAGGTCAATTTGAAAGCT
ACCCAAGCTTTCAAATTGACCTGCT

Primers used for mutated NSP2 799aa
from rHuN4-F5to rHuN4-F112 rHuN4-F5-799

Q-RT893F
Q-RT893L

TCGCGACGTGCCCCCAAGCTGATGA
AAGGTGTCATCAGCTTGGGGGCACG

Primers used for mutated NSP2 893aa
from rHuN4-F5 to rHuN4-F112

rHuN4-F5-893 and
rHuN4-F5-893/979

Q-RT979F
Q-RT979L

CTGTGTCATCAAGCAGCCCCTTGTC
CTTAATACTTGACAAGGGGCTGCTT

Primers used for mutated NSP2 979aa
from rHuN4-F5 to rHuN4-F112

rHuN4-F5-979 and
rHuN4-F5-893/979

Q-RT1060F
Q-RT1060L

CGTTTCGCATCTTAAGTGGCAGGTT
AAACTCAAACCTGCCACTTAAGATG

Primers used for mutated NSP2
1060aa from rHuN4-F5 to

rHuN4-F112
rHuN4-F5-1060/1136

Q-RT1136F
Q-RT1136L

CTCTAAGGGAGAACCGGTCAGTGAC
GGCAGGTTGGTCACTGACCGGTTCT

Primers used for mutated NSP2
1136aa from rHuN4-F5 to

rHuN4-F112

R-QN401U
R-QN401L

CTATGGTCGCTCATCACGCTTC
AGCGGACGAAGCGTGATGAGCG

Primers used for mutated NSP2 401aa
from rHuN4-F112 to rHuN4-F5

rHuN4-F112-401/477
R-QN477F
R-QN477L

GATCTTGTGAACACCATCCAAA
GAGGATTTGGATGGTGTTCACA

Primers used for mutated NSP2 477aa
from rHuN4-F112 to rHuN4-F5

R-QN799F
R-QN799L

TGGGCGGCTGAGCAGGTCGATTTAA
CCAAGCTTTTAAATCGACCTGCTCA

Primers used for mutated NSP2 799aa
from rHuN4-F112 to rHuN4-F5 rHuN4-F112-799

R-QN893F
R-QN893L

GTCGCGACGTGTCCCCAAGCTGATG
GTCATCAGCTTGGGGACACGTCGCG

Primers used for mutated NSP2 893aa
from rHuN4-F112 to rHuN4-F5

rHuN4-F112-893 and
rHuN4-F112-893/979

R-QN979F
R-QN979L

GTGTCATCAAGCAGCCCCTTGTCAA
ATCTTAATACTTGACAAGGGGCTGC

Primers used for mutated NSP2 979aa
from rHuN4-F112 to rHuN4-F5

rHuN4-F112-979 and
rHuN4-F112-893/979

R-QN1060F
R-QN1060L

GTTTCGCATCTTAAATGGCAGGTTT
AACTCAAACCTGCCATTTAAGATGC

Primers used for mutated NSP2
1060aa from rHuN4-F112 to

rHuN4-F5
rHuN4-F112-1060/1136

R-QN1136F
R-QN1136L

CAAGGGAGAACCGGTCTGTGACCAA
TTGGCAGGTTGGTCACAGACCGGTT

Primers used for mutated NSP2
1136aa from rHuN4-F112 to

rHuN4-F5Viruses 2022, 14, x FOR PEER REVIEW 3 of 14 
 

 

 
Figure 1. Construction of chimeric PRRS viruses. The PRRSV genome structure of rHuN4-F5 (dark 
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cloning were set in italics. The full infection clone plasmids were shown on the left and the desig-
nation of each chimeric viruses were shown on the right. 
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Figure 1. Construction of chimeric PRRS viruses. The PRRSV genome structure of rHuN4-F5 (dark
gray) and rHuN4-F112 (light gray) were shown at the top of the figure. Restriction sites used
for cloning were set in italics. The full infection clone plasmids were shown on the left and the
designation of each chimeric viruses were shown on the right.
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2.3. In Vitro Transcription and Virus Recovery

Virus rescue was performed as previously described. Briefly, all the full-length recom-
binant cDNA clones were linearized and transcribed to generate capped RNA transcripts
using the mMessage High-yield Capped RNA Transcription kit (Ambion, Austin, TX,
USA) according to the manufacturer’s instructions. The resulting RNA transcripts were
purified with a MEGA Clear kit (Ambion, Austin, TX, USA) and a total of 1 µg RNA was
subsequently transfected into BHK-21 cells with DMRIE-C reagent (Invitrogen, Carlsbad,
CA, USA). After 24 h, the transfected cells were frozen at −20 ◦C and thawed. The super-
natant samples were collected and passaged on MARC-145 cells. The rescued viruses were
confirmed via sequencing, and the 4th passage (on MARC-145 cells) viruses were used in
the flowing studies.

2.4. Virus Infection Efficiency Test on PAMs

PAMs were initially seeded at a density of 106 cells/well in 6-well plates 4 h prior to
infection. These cells were then infected with rHuN4-F5, rHuN4-F112 and other chimeric
viruses at a multiplicity of infection (moi) of 2. After 1 h, PAMs were washed with PBS
3 times, cultured in RPMI-1640 medium for another 24 h, and then fixed with 2% formalde-
hyde for 15 min and permeabilized with 1% saponin for 10 min. The fixed cells were
washed 3 times and stained with PRRSV anti m MAb and FITC-conjugated goat anti-
mouse IgG for 30 min at 37 ◦C. Cells were then analyzed using a FACSCalibur cytometer
(BD Biosciences, Franklin Lakes, NJ, USA). The infection efficiency was expressed as the
percentage of PRRSV positive cells under flow cytometry.

2.5. Animal and Experimental Design

Thirty-five 40-day-old PRRSV, PCV2 and CSFV antigen-free and PRRSV antibody-free
piglets were selected and randomly divided into nine groups of five piglets each. Piglets in
group 1 to 6 were infected with rHuN4-F5, rHuN4-F112, rHuN4-F5-NSP2, rHun4-F112-
NSP2, rHuN4-F5-893/979 and rHuN4-F112-893/979 at a dose of 105 TCID50 per piglet,
intramuscularly. Piglets from group 7 were inoculated with DMEM and served as control.
Sera samples were collected at 0, 3, 7 and 14 days post infection (dpi). Rectal temperature
was recorded daily and clinical features were observed. Persistent high fever was defined
as rectal temperature equal or higher than 40.5 ◦C and lasting at least 3 days. All animals
were euthanized at 14 dpi and necropsied to observe pathological changes in the lungs,
which were graded using a lung macroscopic score based on the approximate volume
that each lung lobe contributed to the entire lung volume. Briefly, the right cranial lobe,
right middle lobe, cranial part of the left cranial lobe and the caudal part of the left cranial
lobe each contributed to 10% of the total lung volume, the accessory lobe contributed to
5% and the right and left caudal lobes each contributed 27.5%. Any lung sample which
had a macroscopic score equal to or higher than 50 was defined as displaying severe
pathological change. Any lung sample which had a macroscopic score higher than 30 and
lower than 50 was defined as displaying medium pathological change. Any lung sample
which had a macroscopic score equal to or lower than 30 was defined as displaying mild
pathological change. Pathological changes in the kidney, spleen, inguinal lymph nodes,
tonsil, mesenteric lymph nodes and liver were evaluated and scored from 0 to 3 (from
non-pathological to serious pathological) [22]. This study was approved by the Animal
Ethics Committee of the School of Harbin Veterinary Research Institute of the Chinese
Academy of Agricultural Sciences and was performed in accordance with animal ethics
guidelines and approved protocols. The Animal Ethics Committee Approval Number was
SYXK (Hei) 2011022.
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2.6. Viral Copy Detection

The collected and PAMs were used for viral copy detection. For PAMs, 5 × 106 PAM
cells were cultured in 6-well plates and infected with rHuN4-F5, rHuN4-F112, rHuN4-F5-
NSP2 or rHuN4-F112-NSP2 at a multiplicity of infection (MOI) of 2, followed by incubation
at 37 ◦C for 1 h. Cells were washed and incubated in RPMI-1640 with 2% heat-inactivated
FBS, 100 U/mL penicillin and 10 µg/mL streptomycin at 37 ◦C for another 48 h. The
virus-infected supernatants were collected every 12, and viral copies were determined by
qRT-PCR. Primers (forward 5′-CCC TAG TGA GCG GCA ATT GT-3′ and reverse 5′-TCC
AGC GCC CTG ATT GAA-3′) were designed from the highly conserved ORF 7 region for
generation of a 60 bp DNA product. A TaqMan® probe (5′-TCT GTC GTC GAT CCA GA-3′)
specific for DNA fragments was labeled with FAM at the 5′ end and MGB at the 3′ end.

2.7. Western Blotting

PAMs were infected with rHuN4-F5-NSP2 or rHuN4-F112-NSP2 at a multiplicity
of infection (MOI) of 2, then cells were lysed in sample buffer and heated at 95 ◦C for
electrophoresis in 10% SDS-polyacrylamide gels. The separated proteins were transferred
to PVDF membranes (Immobilon-P, Millipore, Billerica, MA, USA), blocked for one hour
at room temperature in 5% non-fat dry milk in PBS containing 0.05% Tween-20 (Sigma,
Saint Louis, MO, USA) (PBST) and incubated with anti-GP3 or anti-β-Actin MAbs (Sigma,
Saint Louis, MO, USA) for 1.5 h at room temperature. Then, the membranes were washed
3 times and incubated for 1.5 h at room temperature with 1:2000 diluted HRP-labeled goat
anti-mouse IgG antibody (Sigma-Aldrichl, Burlington, MA, USA). Finally, the chemilumi-
nescent ECL Plus substrate (Thermo Fisher Scientific, Crlsbad, CA, USA) was added to the
membranes according to the manufacturer’s instructions. Protein bands were visualized
with chemiluminescent film (Kodak, Rochester, New York, NY, USA).

2.8. Statistical Analysis

Data were presented as averages ± standard deviation (SD). All statistical analyses
were performed using SPSS 13.0 statistical software. First, the results of infection efficiency
were analyzed among all the groups. This provided the information about changes in each
infectious group compared with the control group. Then, the results were divided into two
combinations, one combination including chimeric viruses with rHuN4-F5 backbone, the
other one including chimeric viruses with rHuN4-F112 backbone. This provided detail
about the influence of each changed region based on the same backbone.

3. Results
3.1. Rescue of Chimeric and Mutant Viruses

All chimeric viruses constructed in the present study were confirmed via DNA sequencing.

3.2. NSP2 Primarily Contributes to the Infection Efficiency in PAMs

Significant lower infection efficiency of rHuN4-F112 was found on PAMs compared
with rHuN4-F5. When ORF1a was exchanged, the infection efficiency of rHuN4-F5-ORF1a
decreased dramatically compared with rHuN4-F5, and significantly increased infection
efficiency of rHuN4-F112-ORF1a was found compared with rHuN4-F112. Slight changes in
PRRSV positive rates were observed on PAMs infected with chimeric rHuN4-F112-ORF1b,
rHuN4-F112-ORF2-7, rHuN4-F5-ORF1b and rHuN4-F5-ORF2-7 compared with parent
viruses rHuN4-F112 or rHuN4-F5 (Figure 2A,D).
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viruses with site mutations. (D): Flow cytometric analysis of infection efficiency. Chimeric viruses
with rHuN4 backbone were showed with dark gray. Chimeric viruses with rHuN4-F112 backbone
were showed with light gray. Results were showed with single alphabet, or a range of alphabets which
were represented by the first and last alphabet. The results which share same alphabet mean p ≥ 0.05;
results that do not share same alphabet but have adjacent alphabets with each other mean p < 0.05;
results that do not share same alphabet or adjacent alphabets with each other mean p < 0.01. Results
among all the viruses were shown with black alphabets above the line; results among rHuN4-F5
backbone chimeric viruses were shown with black alphabets below the black line, and results among
rHuN4-F112 backbone chimeric viruses were shown with light gray alphabets below the gray line.

For future determination of the regions which contribute to the infection efficiency
on PAMs, NSP1-2, NSP3-8, ORF2-4 and ORF5-6 were exchanged between rHuN4-F5 and
rHuN4-F112. Results showed that significant differences were found when the parent
viruses changed the NSP2 region; however, changes were also found between rHuN4-F112-
ORF2-4 and rHuN4-F112 (Figure 2B,D).

3.3. Determination of the Key Amino Acids in NSP2 Gene

There were total of eight amino acid substitutions in NSP2 gene of the attenuated
vaccine strain HuN4-F112, as aligned with that of the parental strain HuN4. Site-directed
mutations in amino acids at 401, 477, 799, 1060 and 1136 did not significantly change viral in-
fection efficiency on PAMs; however, mutations of amino acids at 893 and 979 dramatically
changed the efficiency of rHuN4-F5 and rHuN4-F112 (Figure 2C,D).

3.4. NSP2 Influence Virus Replication In Vitro

At 36 h post-infection, viral copies of rHuN4-F112, rHuN4-F112-NSP2 and rHuN4-F5-
NSP2 were significantly lower compared with rHuN4-F5. No significant difference was
found between rHuN4-F112, and rHuN4-F112-NSP2 (Figure 3A). Results of Western blot
showed that when NSP2 was exchanged, the expression of GP3 was increased dramatically
in the rHuN4-F112-NSP2 group compared with rHuN4-F112; however, significantly lower
GP3 expression was found in rHuN4-F5-NSP2 compared with rHuN4-F5 (Figure 3B).
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3.5. Clinical Performance after Infection

After infection, piglets infected with rHuN4-F5 manifested various diseases, including
persistent high fever and anorexia, and four piglets died. Persistent high fever was found in
piglets belonging to the rHuN4-F5 group from 4 to 6 dpi; however, piglets in rHuN4-F112
did not show any clinical symptoms. Two and one piglets died in the rHuN4-F5-NSP2
and rHuN4-F112-NSP2 groups, respectively. None of the piglets in these groups showed
persistent high fever. Four piglets died in the rHuN4-F5-893/979 group and persistent high
fever was found from 4 to 9 dpi. No clinical symptoms were found in the rHuN4-F112-
893/979 groups (Figure 4A,B).
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3.6. Tissue Necropsy Changes after Infection

The macroscopic scores showed that lungs infected with rHuN4-F5 exhibited seri-
ous pathological changes. A lower lung score was found in the rHuN4-F5-NSP2 group,
although there was no significant difference. Dramatic lower lung score was found in
the rHuN4-F112 group compared with the rHuN4-F112-NSP2 and rHuN4-F112-893/973
groups. More severe and medium pathological cases were also found in the rHuN4-F112-
NSP2 and rHuN4-F112-893/973 groups (Table 2).

Table 2. Mean values (±SD) of macroscopic scores of lung tissues after infection.

Designation Number

Macroscopic (Lung)

Mean ± SD
Pathological Changes (Score)

≤30 30 to 50 ≥50

rHuN4-F5 5 89 ± 9.64 d 0 0 5
rHuN4-F5-NSP2 5 77.4 ± 31.94 d 1 0 4

rHuN4-F5-893/979 5 90.5 ± 3.55 d 0 0 5
rHuN4-F112 5 23.2 ± 15.42 a 5 0 0

rHuN4-F112-NSP2 5 26.8 ± 25.47 b 2 2 1
rHuN4-F112-893/979 5 53.8 ± 21.87 b,c 1 2 2

Control 5 17.6 ± 17.67 a 4 1 0

Superscript letters which share same alphabet mean p ≥ 0.05; those which do not share same alphabet, but have
adjacent alphabets with each other mean p < 0.05; those which do not share same alphabet or adjacent alphabets
with each other mean p < 0.01.

Piglets in rHuN4-F5 group showed more severe tissue changes than the other groups.
Compared with rHuN4-F5 group, lower tissue scores for kidney, spleen, liver and mesen-
teric lymph nodes were found in rHuN4-F5-NSP2 and rHuN4-F5-893/973; higher tissue
scores of kidney, spleen, liver and mesenteric lymph nodes were found in rHuN4-F112-
NSP2 compared with rHuN4-F112, although no significant difference was found (Table 3).
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Table 3. Pathological examination of piglets infected with chimeric viruses.

Designation
Macroscopic (Organs)

Kidney Spleen Tonsil Liver Mesenteric
Lymph Nodes

Inguinal
Lymph Nodes

rHuN4-F5 3 ± 0 c 1.4 ± 1.14 1 ± 1 2 ± 0.7 b 2.2 ± 1.1 0.4 ± 0.55
rHuN4-F112 0 ± 0 a,c 0.6 ± 1.34 0 ± 0 0 ± 0 a 0 ± 0 0.8 ± 1.09

rHuN4-F5-NSP2 1.2 ± 1.1 a,c 0.2 ± 0.44 1.4 ± 1.34 1.4 ± 0.89 a,b 0.6 ± 0.89 1.8 ± 1.3
rHuN4-F112-NSP2 0.4 ± 0.89 a,b 1 ± 1.4 0 ± 0 0.8 ± 1.09 a,b 1 ± 1.44 1.2 ± 1.64
rHuN4-F5-893/979 1.4 ± 1.14 a,c 0.4 ± 0.55 1.6 ± 1.14 1.2 ± 0.83 a,b 1.4 ± 1.34 1 ± 0.7

rHuN4-F112-893/979 0.2 ± 0.45 a 0 ± 0 0.4 ± 0.89 0 ± 0 a 0.2 ± 0.45 0.4 ± 0.55
Control 0.4 ± 0.55 a 0 ± 0 0 ± 0 0 ± 0 a 0 ± 0 0.8 ± 1.1

For the same organ, superscript letters which share same alphabet mean p ≥ 0.05; those which do not share same
alphabet but have adjacent alphabets with each other mean p < 0.05; those which do not share same alphabet or
adjacent alphabets with each other mean p < 0.01. Non-superscript letters mean no significant difference.

3.7. Viremia Copies in Sera

Significant higher virus copies were found in group rHuN4-F5 compared with other
groups at 3 (with the exception of rHuN4-F5-NSP2 group) and 7 dpi (with the exception
of the rHuN4-F5-893/979 group) (Figure 5A). For the chimeric viruses with rHuN4-F5
backbone, significant lower viremia was found in the rHuN4-F5-NSP2 and rHuN4-F5-
893/979 groups at 3 and 7 dpi (Figure 5B). For the chimeric viruses with rHuN4-F112
backbone, significant higher viremia was found in the rHuN4-F112-NSP2 group at 3 dpi
(Figure 5C).
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4. Discussion

Previous observations indicated that the attenuated live vaccine strain of PRRSV did
not establish sufficient infection in PAMs compared with the wild-type strain both in vivo
and in vitro. Therefore, the ability of live PRRS vaccine viruses to replicate in PAMs was
considered to be a key feature in distinguishing them from wild PRRSV isolates. The
wild-type PRRSV replicates preferentially in differentiated PAMs, which explained why
PAMs were the first to be used successfully in PRRSV isolation and as a good model for
PRRSV respiratory challenge.

In the past few years, increasingly accumulated data have demonstrated that PRRSV
NSP2 is a multifunctional protein involved in viral replication and antiviral innate im-
mune responses [23–27]. The relationship of PRRSV NSP2 and virus attenuation has been
described briefly in previous studies. Kim et al. constructed recombinant PRRSV with
deletion of 131 amino acid deletion within a relatively conserved region of NSP2 and found
that this virus grew normally in MARC-145 cells and PAMs, but was less virulent in pigs,
as examined via gross and micro-histopathology [28,29]. Wang et al. examined NSP2
expression of HP-PRRSV TJ and attenuated TJM in MARC-145 cells and concluded that the
downregulation of NSP2 significantly decreased PRRSV replication and expression of struc-
tural proteins in MARC-145 cells, but the viral replication in PAMs was not studied [30]. In
the present study, we found that ORF1a was important for the infection efficiency of PRRSV,
and then NSP2 was demonstrated to be critical and influence virus replication on PAMs.
Similar results were provided by other studies [23,25,31–36]. Furthermore, 893aa and 979aa
were demonstrated to play a key role in the infection efficiency during PRRSV infection
of PAMs. The non-structural protein 2 may influence virus infection due to its structural
protein formation, which was reported in [37,38]. In addition to PRRSV NSP2, other genes
may also be involved in viral replication of PRRSV in PAMs, as a slight increase in viral
replication was observed in PAMs infected with the chimeric virus rHuN4-F112-ORF2-7.

The replication changes always indicated the virulence change. We further test the
influence of NSP2 and amino acid 893+979. The survival rate clearly showed that NSP2 was
important for virulence, and the results of tissue damage also proved this. As one of the
most important characteristics of HP-PRRSV infection, persistent high fever disappeared in
the rHuN4-F5-NSP2 group, and lower viremia was also found compared with rHuN4-F5.
These results provide more evidence that NSP2 influences virulence. These results were
consistent with those of other studies reporting that 3′UTR, Nsp1-2, Nsp3-8 and Nsp10-12
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were virulence determinants [21,33,34]. Interestingly, when NSP2 was changed, rHuN4-
F112-NSP2 did not show the same dramatic results as rHuN-F5-NSP2; however, different
regions had different susceptibility to wild-type virus and vaccine strain, which was also
observed in our previous study. This indicated that different mechanisms might be used
during PRRSV virulence enhancement in vivo and attenuation in vitro [21].

In conclusion, we demonstrated that NSP2 contributed to the infection efficiency of
PRRSV; 893aa and 979aa made the difference between HuN4-F5 and HuN4-F112. Then,
an in vivo study demonstrated that NSP2 were not only important for infection efficiency
in vitro, but also influenced the virulence. This was indicated by the results of survival rate,
temperature, viremia, lung score and tissue score. However, although 893aa and 979aa
were important in the in vitro study, they did not play a key role in the virulence change.
These results will facilitate better understanding of the full functions of NSP2 in virology,
vaccinology and pathogenesis of PRRSV in future study, and they will provide a deep
understanding of virus attenuation.
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