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Abstract: Seasonal H3N2 influenza virus has always been a potential threat to public health. The
reassortment of the human and avian H3N2 influenza viruses has resulted in major influenza
outbreaks, which have seriously damaged human life and health. To assess the possible threat of the
H3N2 avian influenza virus to human health, we performed whole-genome sequencing and genetic
evolution analyses on 10 H3N2 field strains isolated from different hosts and regions in 2019–2020
and selected representative strains for pathogenicity tests on mice. According to the results, the
internal gene cassettes of nine strains had not only undergone reassortment with the H1, H2, H4, H6,
and H7 subtypes, which circulate in poultry and mammals, but also with H10N8, which circulates
in wild birds in the natural environment. Three reassorted strains were found to be pathogenic to
mice, of these one strain harboring MP from H10N8 showed a stronger virulence in mice. This study
indicates that reassorted H3N2 AIVs may cross the host barrier to infect mammals and humans,
thereby, necessitating persistent surveillance of H3N2 AIVs.

Keywords: H3N2; avian influenza virus; reassortment; characterization; evolutionary; pathogenicity;
strong virulence; mice; potential threat

1. Introduction

The H3 subtype influenza virus is an extremely important member of the influenza
family. Humans, dogs, pigs, horses and other mammals can be infected with the H3
subtype influenza virus, causing symptoms of high fever, cough and diarrhea, which can
even be life-threatening in severe cases [1]. Four influenza pandemics have occurred in
recorded human history: the Spanish pandemic in 1918, caused by the H1N1 subtype; the
Asian pandemic in 1957, caused by the H2N2 subtype; the Hong Kong pandemic in 1968,
caused by the H3N2 subtype; and the H1N1-subtype Influenza outbreak in 2009 in Mexico
and the United States. Each genome of the influenza virus consists of eight single-stranded
negative-strand RNA fragments: HA, NA, PA, PB1, PB2, M, NP and NS [2]. Both the partial
gene segments of the 1957 outbreak of the H2N2 Asian pandemic and the 1968 outbreak
of the H3N2 Hong Kong pandemic were derived from H3N2-subtype avian influenza
viruses [3,4]. The PB1 gene of the 2009 H1N1-subtype influenza virus is derived from the
H3N2 human influenza virus that broke out in Hong Kong in 1968, whereas the PB2 and
PA fragments are derived from the avian influenza virus. Following its emergence, this
novel reassortment of H1N1 swine influenza has caused human and swine infections. In
a recent study, researchers found obvious intrasubtypic reassortment between different
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H3N2 CIVs or CIV and FIV [5]. Reassortment between the H3N2-subtype human influenza
virus and H1N1-subtype swine influenza virus has also been common in swine in recent
times [6,7]. A subset of the H3N2 swine influenza viruses from the 1998 outbreak in the
United States are products of gene reassortment between the human H3N2 and classical
swine H1N1 influenza viruses, whereas another subset of reassortments are derived from
the genes of human H3N2, classical swine H1N1, and avian viruses [8]. The H3N2 swine
influenza (swH3N2) viruses that are currently circulating in pigs in Guangdong Province
carry six internal genes from the 2009-pandemic H1N1 virus (pmd09) with the HA and
NA genes belonging to the recent human-like lineage of the H3N2 subtype [9]. Although
swine influenza viruses evolve at a slower rate than human influenza viruses [10], strains
that have undergone reassortment no longer conform to the laws of natural evolution. The
frequent close contact between humans and swine facilitates the circulating transmission of
the influenza viruses between them. After adaptation within an individual animal, new
variant influenza viruses with high replication fitness and strong transmissibility may be
generated, which pose a potential threat to human life and health [11].

Waterfowl generally do not develop disease (or present only mild clinical symptoms)
after becoming infected with avian influenza viruses, and they are thus the most suitable
reservoir hosts for influenza viruses. As more waterfowl are farmed in regions with dense
river distributions in China, where intensively farmed waterfowl and farmhouse backyard
poultry are often in contact with wild waterfowl, multiple subtypes of the avian influenza
virus can easily spread and coexist among them [12]. The H3N2 subtype of the avian
influenza virus is widely distributed among wild and farmed waterfowl and does not
often cause morbidity. Domestic ducks, the largest waterfowl in animal husbandry, play
an important role in AIV ecology by providing an ideal environment for the reassortment
of H3-subtype influenza viruses with other subtypes of influenza viruses. As part of
surveillance, H3N2-subtype AIVs can be isolated from some of the incident chicken, duck,
and goose flocks that occur on farms, which are likely to be a major cause of the morbidity
in farmed animals. In theory, avian influenza viruses only circulate among birds; however,
they often mutate, which results in the H5 and H7 subtypes, that had previously only
circulated in birds, but are now able to infect humans and even cause multiple deaths [13,14].
The avian-origin H3N2 influenza viruses are able to directly cross the host barrier to infect
companion dogs and cause severe clinical symptoms, and they may then infect humans
via transmission [15]. A novel reassortment influenza virus was isolated from the nasal
swab of a symptomatic cat in Jiangsu Province, China and subsequent sequence analysis
indicated the presence of seven genes sharing the highest similarity with the avian-origin
canine influenza viruses (CIV H3N2) isolated in China, and an NS gene with sequence
identity, indicating it is closely related to the circulating human influenza virus (H3N2) in
the region [16]. In a previous study, reassortment was observed between the PB2 segments
of the H5N6 and H3N2 subtypes that may have caused pathogenic changes in the H5N6
epidemic branch [17], responsible for the reduced protective efficacy of the extant veterinary
vaccine. All six segments of an H9N8 virus strain identified in Korea were found to belong
to the H3 subtype, and the reassorted H9N8 virus could replicate in both the respiratory and
intestinal tracts of chickens [18]. An H3N2 AIV isolated in domestic ducks in China has the
highest sequence homology to the H7-subtype AIVs in all seven segments, except for the
HA gene. Although less pathogenic in chickens, it was able to replicate in mouse lungs [19].
According to these studies, the H3N2 subtype is highly susceptible to reassortment with
other subtypes of influenza viruses and both the antigenicity and the pathogenicity of
the influenza viruses are altered after reassortment, potentially inducing immune escape
and the recurrence of an influenza pandemic. Thus, there is a need for surveillance with
continuous sampling to determine the reassortment events and possible changes in the
pathogenicity to mammals of H3-subtype AIVs.
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2. Materials and Methods
2.1. Sample Collection and Virus Isolation

A total of 672 oropharyngeal and cloacal swabs were collected from chickens, ducks,
geese and pigeons in live poultry markets and commercial poultry farms between 2019 and
2020. Each sample was placed in 1 mL of cold phosphate-buffered saline (PBS) containing
penicillin (2000 U/mL) and streptomycin (2000 U/mL). After mixing and centrifugation at
10,000× g/min for 5 min, 0.2 mL of supernatant was used to inoculate 9-day-old specific-
pathogen-free chicken embryos via the allantoic cavity followed by incubation at 37 ◦C for
48–72 h. We then harvested the allantoic fluid. A total of 10 virus strains were isolated:
G152, G155, H159, and H157 are of chicken origin; H151, H34, H140, and H144 are of duck
origin; G630 is of goose origin; and G188 is of environmental origin (Table S1).

2.2. Whole-Genome Sequencing of AIV Isolates

RNA was extracted from the harvested virus suspensions using the RNeasy Mini
Kit (Qiagen, Hilden, Germany), according to the method recommended by the manu-
facturer, and the whole gene sequence was amplified using two-step RT-PCR and the
universal primers reported by Hoffman [20]. The ex Taq premixed enzyme used for the
amplification was purchased from Takara reagent company. PCR products of all eight
segments of these viruses were subjected to agarose gel electrophoresis, and the target
fragments were recovered using the QiAamp Gel Extraction Kit (Qiagen, Hilden, Germany)
and sequenced using an ABI3730 DNA analyzer (Shenggong Bioengineering Co., Ltd.,
Shanghai, China). Data were merged and assembled using Lasergene sequence analy-
sis software based on the National Center for Biotechnology Information (NCBI) virus
database (https://www.ncbi.nlm.nih.gov/, accessed on 9 March 2021).

2.3. Reference Strains Information

The sequence information of reference strains was download from GenBank
(https://www.ncbi.nlm.nih.gov/genbank/, accessed on 9 March 2021) and GISAID
(https://platform.epicov.org/epi3/start, accessed on 16 March 2021), with screening of all
HA reference strains from the GISAID database between 2000 and 2020. The distribution of
the HA reference strains by host was as follows: 358 strains of avian origin (e.g., chickens,
ducks, geese, and wild birds); 52 strains of environmental origin; 74 strains from humans and
123 strains from other mammals (90 strains from canines, 6 strains from horses, and 27 strains
from swine). The geographic distribution of the HA reference strains included: 239 strains
from Asia, 30 strains from Europe, and 339 strains from North America. As for the NA and
internal gene cassettes, we used each of the H3N2 genome sequences from this study as queries
to perform local BLASTn search with the default parameters, and collected the top 100 gene
sequences in the BLAST output.

2.4. Phylogenetic Analyses

MAFFT version 7.058 was used to align each of the eight gene segments and eliminate
the sequences with less than 95% of the expected segment length. Duplicate sequences in
the gene fragment were removed using PhyloSuite [21]. We performed the phylogenetic
analysis three times using the maximum likelihood (ML) method in IQ-TREE under the
GTR + F + G4 model with 5000 bootstrap replications. High-quality visualization of the
phylogenetic data was performed using the Interactive Tree of Life (iTOL).

2.5. Estimating Substitution Rates

Based on the phylogenetic topologies obtained and their bootstrap values, we selected
a few representative reference sequences and formed eight smaller data sets. TempEst
(version 1.5.1) was used to analyze the R2 values of the temporal signals and best-fit model
in the selected sequences. For estimating the nucleotide substitution rates of all eight
segments, we used the Bayesian Markov chain Monte Carlo (MCMC) method offered in
the Bayesian Evolutionary Analysis Sampling Trees (BEAST) (v1.10.4c) [22] and a relaxed

https://www.ncbi.nlm.nih.gov/
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molecular clock model with uncorrelated log-normally distributed rates and a coalescent
Bayesian Skyline. We set the chain lengths to 500 million iterations and performed sampling
every 5000 steps to obtain an effective sample size (ESS)≥200 and convergence was assessed
using Tracer (V1.7.1). Time-scaled summary maximum-clade-credibility (MCC) trees with
10 percent for the post-burn-in posterior were created using TreeAnnotator (V1.10.4), and
visualized with FigTree (V1.4.4).

2.6. Amino Acid Analysis

BioEdit and MEGA 6.0 were used for analysis of sequence format conversion and key
amino acid changes, and the online free software NetNGlyc 1.0 Server (https://services.
healthtech.dtu.dk/, accessed on 25 March 2021) was used to predict potential glycosylation
sites. MegAlign was used to analyze the sequence homologies, and Simplot was used to
analyze the recombination of the HA and NA genes.

2.7. Pathogenicity Test of BALB/c-Mice

There have been multiple reports of zoonotic infections caused by the reassortment of
human influenza viruses and avian-origin H3N2-subtype viruses. To predict the possible
threat of the H3N2 avian influenza virus to human health, we performed the mouse ex-
periments primarily to investigate the pathogenicity of the now circulating H3N2-subtype
reassortment strains in mammals. For this, we selected two strains from 2019 and two
strains from 2020 corresponding to four H3N2-subtype avian influenza viruses from differ-
ent sources (H159 isolated from chicken, H34 isolated from duck, G630 isolated from geese,
G188 isolated from the environment) and assessed the pathogenicity of these strains from
different hosts in mammals. These four strains are characterized by different degrees of
reassortment, thus, selecting them for the animal experiments allowed us to better compare
the pathogenicity of the strains with different degrees of reassortment in mice. The experi-
mental animals were five-week-old BALB/c-mice purchased from Guangzhou Yancheng
Biotechnology Co., Ltd. (Guangzhou, China). For the experiment, 50 mice were randomly
divided into a total of 5 groups, with 10 mice in each group, including 1 control group. After
administering isoflurane via inhalation as mild anesthesia, each mouse was inoculated with
50 µL of the 106 EID50 virus solution in the nasal cavity (with PBS solution administered
to the control group). The body weight changes in each group were observed for 14 days.
Four days after exposure, we euthanized three random mice from each group, and removed
the brain, spleen, lungs, and kidneys from each. The organ virus titers were measured
using nine-day-old chicken embryos, calculated using the Reed-Muench method [23] and
expressed as the average log10 EID 50/g ± SD.

3. Results
3.1. Phylogenetic Analyses of Viral Envelope-Encoding Genes

According to the analysis of sequence identities of HA gene cassette, the identities of
the six strains isolated in 2020 ranges between 98.6% and 99.9%, the identities of the four
strains isolated in 2019 ranged between 91.4% and 94.1%, and the identities of the strains
isolated in 2019 and 2020 ranged between 91.5% and 95.6% (Table S2). We did not observe
the recombination of the HA and NA genes.

According to the phylogenetic tree of the HA gene, 10 strains were of avian and Asian
origin, being markedly distant from the human and mammalian branches and from the
H3N2-subtype influenza vaccine strains recommended by the WHO for 2021 and 2022
(Figure 1a). According to the phylogenetic analysis, the strains most similar to G152 and
G155 were A/EN/Fujian/20754/2016/H3N3 and A/chicken/Guangxi/14185/2017/H3N2,
respectively. G188 exhibited the highest sequence homology with A/duck/Hubei/ZYSYF12
/2015/H3N6 (Table 1). The six strains, G630, H34, H140, H144, H151, H157 and H159, were
similar to A/EN/Guangxi/32828/2017/H3N2 (Table S3).

https://services.healthtech.dtu.dk/
https://services.healthtech.dtu.dk/
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Figure 1. Phylogenetic analysis of HA gene of H3Ny and NA genes of HXN2 subtypes. Phylogenetic
tree of (a) HA gene of H3Ny AIVs; (b) N2 gene of HxN2 AIVs. Phylogenetic analysis was performed
three times using the maximum likelihood (ML) method in IQ-TREE under the GTR + F + G4 model
with 5000 bootstrap replications. Reference sequences were downloaded from the available databases.
The phylogenetic tree of the HA was beautified according to the host, subtype and geographic
information and that of NA according to the subtype. The turquoise color represents the isolates in
this study.
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Table 1. Virus strains with the highest homology of each gene segment of the four laboratory isolates.

Strain
Name Gene Closest Virus Homology (%)

H34

HA A/duck/Hunan/7/2015(H3N6) 96.47
NA A/duck/China/322D22/2018(H3N2) 98.02
M A/duck/Vietnam/LBM48/2011(H3N2) 98.07
NP A/chicken/Ganzhou/GZ157/2016(H3N2) 97.8
NS A/chicken/Ganzhou/GZ43/2016(H3N2) 98.2
PA A/duck/China/322D22/2018(H3N2) 98.03
PB1 A/duck/China/322D22/2018(H3N2) 97.95
PB2 A/duck/Guangxi/293D21/2017(H1N2) 98.85

H159

HA A/duck/Hunan/7/2015(H3N6) 96.36
NA A/duck/Zhejiang/727042/2014(H6N2) 96.45
M A/duck/China/322D22/2018(H3N2) 99.42
NP A/duck/Guangdong/S4040/2011(H4N2) 100
NS A/chicken/Ganzhou/GZ43/2016(H3N2) 97.53
PA A/chicken/Ganzhou/GZ157/2016(H3N2) 97.81
PB1 A/duck/Guangxi/293D21/2017(H1N2) 97.74
PB2 A/duck/Guangxi/293D21/2017(H1N2) 97.78

G188

HA A/duck/Hubei/ZYSYF18/2015(H3N6) 97.51
NA A/chicken/Ganzhou/GZ43/2016(H3N2) 98.08
M A/duck/China/322D22/2018(H3N2) 99.32
NP A/chicken/Ganzhou/GZ157/2016(H3N2) 97.93
NS A/chicken/Ganzhou/GZ43/2016(H3N2) 98.43
PA A/chicken/Ganzhou/GZ43/2016(H3N2) 97.54
PB1 A/duck/Hubei/ZYSYF2/2015(H3N6) 98.3
PB2 A/chicken/Guangxi/165C7/2014(H3N2) 97.31

G630

HA A/duck/Hubei/ZYSYF18/2015(H3N6) 95.53
NA A/duck/Guangdong/8.30_DGCP036-C/2017(H6N2) 98.09
M A/chicken/Zhejiang/102622/2016(H10N8) 99.29
NP A/duck/Jiangxi/22215/2013(H7N3) 99.4
NS A/chicken/Zhejiang/51048/2015(H1N9) 98.47
PA A/chicken/Yuhuan/YH14/2016(H1N2) 97.90
PB1 A/chicken/Zhejiang/51048/2015(H1N9) 97.5
PB2 A/duck/Yuhuan/YH45/2016(H1N2) 97.86

According to the homology analysis of the NA gene, the identities of 6 strains in 2020
were 95.6–100%, the identities of 4 strains in 2019 were 91.3–96.0%, and the identities of
10 strains isolated in 2019 and 2020 were 91.0–95.6% (Table S2). According to the Phylo-
genetic analysis of the N2 gene, the branch of the N2 gene of the isolated virus strain was
composed of the H1, H3, H4, H5, H6, and H7 subtypes (Figure 1b, Table 1). Except for the
H5 and H7 subtypes, these subtypes belong to the low-pathogenic avian influenza subtype,
which does not readily cause disease and can circulate in birds for long periods. G188, G630
and H34 exhibited the highest homology with A/chicken/Ganzhou/GZ43/2016/H3N2,
A/duck/Guangdong/8/30/DGCP036-C/2017/H6N2 and A/duck/Vietnam/HU8//1918
/2017/H3N2, respectively (Table 1). G152 and G155 had the highest homology with
A/Environment/Jiangxi/47054/2016/H4N2, whereas H140, H144, H151, H157 and H159
exhibited the highest homologies with A/duck/Guangxi/293D21/2017/H1N2 (Figure 2b,
Table 1). In conclusion, G630 is closely related to the H6-subtype AIVs, G152 and G155
are closely related to H4-subtype AIVs and H140, H144, H151, H157 and H159 are closely
related to H1-subtype AIVs. The homology relationships of all strains are shown in Table S2.
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3 Figure 2. Phylogenetic analysis of internal genes of H3N2-subtype AIVs isolated from 2019 to 2020
using the maximum likelihood method. The phylogenetic trees of PB2 (a), PB1 (b), PA (c), NP (d),
MP (e) and NS (f) were obtained as a midpoint-root tree. Phylogenetic analysis was performed three
times using the maximum likelihood (ML) method in IQ-TREE under the GTR + F + G4 model with
5000 bootstrap replications. Reference sequences were downloaded from the available databases. The
turquoise color represents the isolates in this study. Light yellow2, gray, orange red 1, med spring
green, gold, tan 1, violet, slate blue 1, coral 1 and snow 1 represent H1, H2, H3N2, H3, H4, H5, H7,
H9, H10, and H11, respectively.

3.2. Phylogenetic Analyses of Internal Gene

According to internal gene homology analysis, the identities among the 10 isolates
were as follows: M (91.1–100%); NP (91.0–100%); NS (92.9–100%); PA (89.7–99.9%);
PB1 (88.9–100%); PB2 (87.3–99.1%) (Table S2). The M-gene sequences of G152, G155
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and G188 exhibited the highest homology with A/duck/Mongolia/619/2019/H3N6,
A/duck/Shanghai/SH1/2013/H3N2 and A/duck/China/322D22/2018/H3N2, respec-
tively (Table S3). The NP and NS genes of G152 and G155 exhibited the highest homol-
ogy with A/duck/China/322D22/2018/H3N2, whereas G188 had the highest similarity
to A/chicken/Ganzhou/GZ157/2016/H3N2. For the PA sequences, G152, G155 and
G188 exhibited the highest homology with A/duck/Bangladesh/38827/2019/H11N3,
A/duck/Japan/AQ-HE103/2015/H1N2 and A/chicken/Ganzhou/GZ43/2016/H3N2,
respectively. The PB1 genes of G152, G155 and G188 showed the highest similarity
to A/duck/Guangxi/293D21/2017/H1N2, A/duck/Japan/AQ-HE103/2015/H1N2 and
A/duck/Hubei/ZYSYF2/2015/H3N6, respectively. For the PB2 sequences, G152 and G155
were most closely related to A/duck/Zhejiang/6D7/2013/H3N2, whereas G188 exhibited
the highest homology with A/chicken/Guangxi/165C7/2014/H3N2. For the G630 strains,
M and NP genes had the highest homology with A/chicken/Zhejiang/102622/2016/10/26
/H10N8 and A/duck/Jiangxi/22215/2013/H7N3, respectively. The PA, PB1, PB2 and NS
genes exhibited the highest homology with A/chicken/Yuhuan/YH14/2016/H1N2. In
general, the 2019 isolates are closely related to the with H1 subtype.

According to the phylogenetic analysis, for the strains from 2020, the M genes of H140,
H144, H151, H157 and H159 showed the highest homologies with A/duck/China/322D22
/2018/H3N2, whereas H34 was most similar to A/duck/Jiangshu/YZ916/2016/H3N2. For
the NP sequences, H140, H144, H151, H157 and H159 exhibited the highest homology with
A/duck/Hunan/7/2015/H3N6, whereas G34 was most similar to A/chicken/Ganzhou/
GZ157/2016/H3N2. The NS genes of H34, H140, H144 and H159 had the highest homology
with A/chicken/Ganzhou/GZ157/2016/H3N2, whereas H151 and H157 were most closely
related to A/common/teal/Shanghai/NH110923/2019/H1N1. For the PA genes, H140, H144,
H151 and H159 exhibited the highest homology with A/chicken/Ganzhou/GZ157/2016/H3N2.
H34 and H157 exhibited the highest homology with A/duck/China/322D22/2018/H3N2
and A/common/teal/Shanghai/NH110923/2019/H1N1, respectively. The PB1 genes of H34,
H140, H144, H157 and H159 exhibited the highest homology with A/duck/Guangxi/293D21/
2017/H1N2, whereas H151 is most similar to A/duck/Mongolia/837/2015/H1N1. For the PB2
sequences, H34, H140, H144 and H159 exhibited the highest homology with A/duck/China/
322D22/2018/H3N2, whereas H151 and H157 were most closely related to A/chicken/Bangladesh/
40619/2019/H9N2. In general, the PB2, PB1 and MP genes formed three groups in the phy-
logenetic tree, and the PA, NP and NS genes formed two groups. All six internal genes are
closely related to the H1-subtype AIVs (Figure 2a–f).

3.3. Analysis of H3N2 AIVs Evolutionary Information

To obtain evolutionary information on the reassortment events of H3N2 AIVs, we es-
timated the evolutionary rates and obtained Bayesian maximum-clade-credibility (MCC)
trees for all eight segments. The evolutionary rate was calculated as 3.447 × 10−3 substitu-
tions/site/year (95% highest posterior density (HPD) from 4.0646 × 10−3 to 5.9315 × 10−3)
for HA gene and 4.2913× 10−3 substitutions/site/year (95% highest posterior density (HPD)
from 3.7177× 10−3 to 4.8743× 10−3) for the NA gene. For the six inner genes, the PB2 gene
had the fastest nucleotide substitution rate, which ranged from 4.0646× 10−3 to 5.9315× 10−3.
The evolutionary rate estimated for the MP gene ranged from 1.6106× 10−3 to 2.6038× 10−3,
which is considered slow (Figures 3 and 4, Table S4). In the analysis of the MCC trees of the
10 isolated H3N2 viruses, H3N2 AIVs had close relationship with H1 subtype, and also were
related to H2, H4, H6 and H7 subtypes (Table S5). Significantly, we found that the MP gene of
G630 derived from the H10N8 subtype, which is prevalent in wild birds and can cause human
morbidity (Figure 3).
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3.4. Key Amino Acids in Eight Proteins

The HA protein-cleavage-site motif of the 10 isolates is PEKQTR↓GLF, which implies
that the AIV strain is a lowly pathogenic to poultry. The six potential glycosylation sites
of the nine isolated strains are 22NDS24, 38NGT40, 54NAT56, 181NVT183, 301NGS303, and
499NGT501. G152 lacks the 22NDS24 glycosylation site. Before 2010, the amino acid sequence
at positions 24–26 was NST. However, it was SST IN the strain isolated in 2019 and then
mutated to SNT in 2020. The 226Q and 228G of the HA gene is consistent with having the
characteristic of avian origin. We did not detect neck deletion at the 63–65 position of the
NA gene, which can lead to increased replication rate in mammals [24]. The seven potential
glycosylation sites of the NA protein of the nine isolates are as follows: NIT, NNT, NWS,
NGT, NAT, NGT and NWS; however, the NNT glycosylation site of G152 changed to NST.
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The amino acids that were conserved in all the strains were as follows:253D, 292I,
598T, 627E, 676T, 701D and 714S in PB2 [25–29], 436Y, 577K and 622G in PB1 [30–32], 26E,
224S, 343A, 356K and 515T in PA [33–36], 286A,357Q and 437T in NP [37,38], 274H and
294N in NA [39,40], 156D in M1 [26], and 42S in NS [41] (Table S6). In the PB2 gene, we
detected R389K, A588S and L648I changes, which are found to play critical roles in avian
and mammalian adaptation in several strains [27,28]; the amino acid 269S and 677T in
PB1 [42], 347D and 383D in PA [34,35], and 30D and 215A in M1 [43], which appeared in all
strains, increase viral polymerase activity and mammalian virulence appeared in all strains.
The mutation 672L in PA appeared in all strains and is related to airborne transmissibility
among chickens [44]. We detected 31N in one strain, which increases the resistance to
adamantine [45] (Table S6).

3.5. Pathogenicity Test of H3N2 AIVs on BALB/c-Mice

The serum antibody test results of all the challenge groups were positive. The titer of
antiserum of G188, G630, H34 and H159 were 24, 25, 24, and 24, respectively. After challenge,
some mice in the G630, H34 and H159 groups died (6 mice of G630 group, 3 mice of H34
group and 5 mice of H159 group had died), and their body weights temporarily decreased
(Figure 5). The weights of the mice in the H34 and H159 groups began to recover on the
fourth day after infection, and the weights of the mice in the G630 group began to recover
on the sixth day after infection (the weights of the mice then decreased on the seventh
day due to the feeding conditions). All the mice survived in the G188 group, and their
body weights increased. According to the results of the organ-virus-content determination
after four days of testing, the G630, H34 and H159 virus strains could replicate in mouse
lungs. The load of the G630 strain was the highest in the lungs, and the three strains did
not replicate in the other organs of the mice (Figure 5). The serum antibody for G188 was
positive, but we did not detected the virus in the organs of the mice on the fourth day
after testing.
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lower limit of detection. Each bar represents the virus titer of the four strain replications in the brains,
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4. Discussion

The human influenza virus H3N2 subtype is the cause of the seasonal influenza in the
human population. Because of its susceptibility to mutation, the WHO recommends devel-
oping new influenza virus vaccines every year to prevent epidemics of mutant virus strains.
In 2021 and 2022, the WHO-recommended H3N2-subtype influenza vaccine strains were
A/Cambodia/e0826360/2020 (H3N2) and A/Darwin/9/2021 (H3N2), respectively [46,47].
The mutations include single-nucleotide changes and gene-segment reassortment. The
phenomenon of two different viruses infecting the same cell and producing hybrid progeny
viruses is called reassortment. The reassortment of viruses could cause the existing vac-
cines to lose their protective efficacy and change the pathogenicity and transmissibility of
the original strain, resulting in a serious threat to public health. The reassortment of the
H3N2-subtype avian influenza virus with the human influenza virus has repeatedly caused
human influenza outbreaks. Avian influenza viruses for which reassortment with other sub-
types of influenza viruses frequently manifest can circulate over wide geographic areas and
persist for long periods of time. They do not cause the hosts to exhibit clinical symptoms,
or they only cause mild clinical symptoms after infection through birds. They do not have
specialized prophylactic measures and treatments, and they are able to chronically coexist
in the same animal. The host range of the avian-origin H3N2-subtype influenza viruses is
wide, but their pathogenicity and isolation rates are not high. They do not compromise the
economic benefits of the farming industry and can therefore easily be ignored. In recent
years, the scale of livestock culture has continually expanded. The introduction of breeding
animals into new regions, and the increased circulation of animals raised in different re-
gions have expanded the possibility of the co-infection of the same host by different regions
through different hosts with different subtypes of influenza viruses. The co-existence of
avian influenza viruses from different hosts and regions in the same animal increases their
chances of reassortment [48]. Recent years, several reassortment H3N2 AIVs are widely
detected in the live poultry markets with drug resistance, and also found H3N2 AIVs bind
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to human-type receptors and transmit in guinea pigs and ferrets [11,42,49]. In this context,
the H3N2-subtype avian influenza viruses that are widespread among waterfowl and can
be isolated in poultry may act as vectors that transmit the gene segments of influenza
viruses, which would have otherwise been circulating in waterfowl across hosts to poultry
through the reassortment with strains circulating in poultry. Novel reassortment strains
that cause antigenic changes that result in a reduced protective capacity of the vaccine
may also improve the transmissibility and pathogenicity of the strain, and the field isolates
binding to the human-type means humans could be infected without pre-adaptation. These
demonstrate that the reassortment H3N2 avian influenza viruses pose a clear threat to
human health and could lead to avian influenza virus pandemics.

The rate of the evolution of the HA gene of the H3N2 subtype of avian influenza viruses
has been increasing every year [50]. In our study, we found a nucleotide substitution rate
of six internal gene cassettes of H3N2 were maintained at a low level, even though they
had undergone extremely complex reassortments. PB2 gene cassette is correlated with
enhanced virulence and host adaptation [51], and it is the fastest evolving segment with a
4.9936 (10−3 subs/site/year) mean substitution rate. High evolving rate of PB2 means there
are more alterations in virulence and host adaptive capacity of H3N2 AIVs. Changes in the
position and number of glycosylation sites on the HA protein are involved in the influenza
virus evolution [52]. Of the 10 avian-origin H3N2-subtype influenza viruses isolated in our
laboratory, the HA genes had homologies between 91.5–95.6%. Moreover, we found that the
glycosylation site on the HA protein of the G152 virus strain is missing 22NDS24, which may
lead to an increased affinity of the virus for the receptor [53,54]. The NA gene homology of
the 10 isolates were between 91.0–95.6%, and we did not find neck deletions and resistance
mutations. We found that five strains are derived from the H1 subtype, three strains from
the H6 subtype, and the remaining two strains from the H3 subtype. According to these
results, the majority of the HA and NA genes of the H3N2-subtype group evolved from
different subtype combinations, which demonstrates a greater likelihood of emerging avian
influenza viruses with completely different biological characteristics.

The heterotrimer of the influenza RNA polymerase protein regulates the influenza
virus replication and transcription, and PB1 has both polymerase and endonuclease activi-
ties [55]. PB2 is strongly associated with the in vitro binding and the in vivo transcription
of the influenza virus [56]. Moreover, PB2 is one of the factors determining whether avian
influenza viruses can adapt to mammals [25]. NP is closely associated with the formation
of vRNP complexes in influenza virus strains. When mutated, it can affect the binding
of the NP protein to the polymerase and subsequently affect the vRNA replication and
transcription [57]. In this study, we found that some of the PB1, PB2 and NP segments of
the H3N2 viruses are closely related to those of the various influenza-A-virus subtypes,
and not only the low-pathogenic avian influenza H1 and H4 subtypes, but also the highly
pathogenic H7 subtype. We also observed reassortment of the relatively conserved M and
NS genes; the M gene of one strain is closely related to the avian H10 subtype, and the NS
genes of three strains may have derived from the avian H1 subtype. The reassortment of
an H3N2-subtype avian influenza virus with seasonal influenza caused a large outbreak of
human influenza and H9N2, which provides all its internal genes cassettes to the H7N9
virus, was responsible for a new H7N9 pandemic [58]. In this study, we observed that
H3N2 could undergo reassortment with several subtypes of AIVs circulating in different
hosts, including circulating at the wild bird (H10), at poultry and mammalian interfaces
(H1, H2, H4, H6, H7). Our study suggesting that avian origin H3N2 subtype may have
transmitted circulating strains from wild birds to the poultry and mammalian with reas-
sortment. Significantly, H10 and H7 AIVs had infected humans and leading to multiple
human mortality cases.

We are concerned that the H3N2 subtype AIV could act as a bridge to improve
the interaction between the H3N2 subtype of human influenza and the H7-subtype AIVs,
resulting in the emergence of novel immune-escape human influenza strains or functionally-
human infected AIVs. According to the animal experiments, all mice from the test group
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tested positive for the antibody. The G630 strain in which the internal gene was completely
replaced showed higher pathogenicity in the mice than the H34 and H159 strains in which
only a few internal genes were replaced. The body weights of the mice in the G630 and
H159 challenge groups and those of the mice in the H34 challenge groups started to recover
on day four, with the highest viral load in the lungs of the mice in the G630 group four
days after infection. G188 contains an internal gene backbone of avian origin from the
H3N2 subtype that could infect mice. However, the body weights did not decrease, and
we did not detect virus in the lungs. A reasonable hypothesis is that the H3N2 AIVs have
different replication phenotypes in mice. Additionally, it is possible that the replacement of
internal genes enhances the virulence of the viral strains in mice and that different gene
combinations can be more pathogenic to mice. The reassortment of the HA gene of H3N2
avian influenza virus with human influenza has caused a pandemic, and the HA gene of
the recommended vaccine strain is far removed from the avian-origin HA gene branch.
This warns us that reassortment of H3N2 avian influenza virus could cause a new round of
the influenza virus pandemics and threaten public health.

5. Conclusions

In our study, we found that the H3N2 subtype had undergone complex reassortments
with various influenza-A-virus subtypes and shared the closest relationship with the H1
subtype. Different reassortment isolates could infect mice without preadaptation, which
suggests that the H3N2 avian influenza virus may cross the host barrier to infect humans.
Concurrently, we found that the vaccine strains recommended by the WHO are far removed
from the branch of the H3N2-subtype AIVs are likely to become infectious. If the H3N2
AIV and human influenza virus undergo reassortment again, then the existing vaccine may
not provide effective immune protection. Therefore, the continuous surveillance of the
prevalence of the H3N2 avian influenza viruses that circulate in poultry is essential.
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