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Abstract: Virus-based biopharmaceutical products are used in clinical applications such as vaccines,
gene therapy, and immunotherapy. However, their manufacturing remains a challenge, hampered
by the lack of appropriate analytical tools for purification monitoring or characterization of the
final product. This paper describes the implementation of a highly sensitive method, capillary
electrophoresis (CE)-sodium dodecyl sulfate (SDS) combined with a laser-induced fluorescence (LIF)
detector to monitor the impact of various bioprocess steps on the quality of different viral vectors.
The fluorescence labelling procedure uses the (3-(2-furoyl) quinoline-2-carboxaldehyde dye, and
the CE-SDS LIF method enables the evaluation of in-process besides final product samples. This
method outperforms other analytical methods, such as SDS–polyacrylamide gel electrophoresis with
Sypro Ruby staining, in terms of sensitivity, resolution, and high-throughput capability. Notably, this
CE-SDS LIF method was also successfully implemented to characterize enveloped viruses such as
Maraba virus and lentivirus, whose development as biopharmaceuticals is now restricted by the lack
of suitable analytical tools. This method was also qualified for quantification of rAAV2 according
to the International Council for Harmonisation guidelines. Overall, our work shows that CE-SDS
LIF is a precise and sensitive analytical platform for in-process sample analysis and quantification of
different virus-based targets, with a great potential for application in biomanufacturing.

Keywords: bioanalytical tools; capillary electrophoresis; quality attributes; virus-based therapeutics

1. Introduction

Virus-based biopharmaceuticals have a proved potential in different clinical applica-
tions, but, due to their complexity, their bioprocessing represents an essential and challeng-
ing task nowadays. In fact, regulatory requirements have been evolving and becoming
more challenging during the last decades, reflecting the increasing complexity of bio-
pharmaceutical products [1]. Virus structures can undergo several modifications during
bioprocessing, temperature, ionic strength, pH, or shear can compromise viral vector func-
tionality or infectivity [1,2]. Considering this, a set of complementary analytical tools needs
to be in place to assess the identity, quantity, potency, and purity of the virus-based targets
to monitor the bioprocess and guarantee the safety and efficacy of the final drug product.
Analytical methods currently available for this purpose have limited sensitivity and ro-
bustness, thus limiting their general applicability, especially for in-process samples [3,4].
In the end, besides accurate analytical tools that ensure compliance with the regulatory
guidelines, there is also a need for fast and robust techniques to accelerate their translation
from development to market [5].

Capillary electrophoresis (CE) has undergone a wide re-emerging in the analytical
field since the pharmaceutical industry moved from traditional small therapeutics into
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complex biologicals, such as protein- and virus-based products [6]. This methodology
enables the separation through different modes, including capillary isoelectric focusing
(cIEF), gel-based CE-sodium dodecyl sulfate (SDS), and capillary zone electrophoresis
(CZE), providing a comprehensive characterization of the bioproduct. In addition, recent
developments in the capillary material used for the separation of DNA fragments [7], show
that there is still potential to improve this technology for biopharmaceutical applications.
CE has already proved to be a powerful orthogonal technique for several bioanalytical ap-
plications, such as purity and structural protein confirmation [8], analyte identification [9],
molecular interactions [10], and immunoaffinity assessment [11]. Moreover, CE can be
used on-line with other analytical techniques, such as high-resolution mass spectrometry,
scaling its analytical potential [11,12]. CE-SDS is currently widely used in the pharma-
ceutical industry to assess sample purity of therapeutic proteins, particularly monoclonal
antibodies (mAbs) by ultraviolet (UV) light detection. However, this type of detection
requires a large amount of product, making it unsuitable for virus-based pharmaceuticals,
where total protein concentration is considerably lower [13]. The use of a laser-induced
fluorescence (LIF) detector is an established alternative to reduce the sample amount, of-
fering additional advantages, such as high resolution and improved sensitivity [14]. For
this type of detector, the sample needs to be labelled with either non- or covalently bound
fluorescent dyes to be detected [15]. For the case of mAbs, CE-SDS with LIF detection of
3-(2-Furoyl)quinoline-2-Carboxaldehyde (FQ)-labelled samples has already been validated
as a GMP method for purity assessment [16,17]. In addition, the CE-SDS LIF methodology
with pyrylium dye-labelled samples is also being explored for purity analysis and quality
control of recombinant adeno-associated virus (rAAV) capsid proteins [18].

Here, we implemented a robust and sensitive analytical platform for in-process sample
analysis and quantification for both non- and enveloped viral vectors using FQ labelling,
allowing the detection of viral proteins through CE-SDS coupled to a LIF detector. The
established method was used to assess one of the most important critical quality attributes
(CQA) of rAAV, the ratio of two structural viral proteins (VP), VP1 and VP3, using 100 times
less sample than traditional methods (e.g., SDS-PAGE). In addition, we analyzed several
samples from purification processes of either non-enveloped rAAV or enveloped virus,
lentivirus (LV), recombinant vesicular stomatitis virus (rVSV—Maraba MG1 vector), and a
chimeric VSV with proteins of Newcastle Disease Virus (rVSV-NDV). The increased sensi-
tivity of the method allowed a better understanding of virus quality, namely, purity and
integrity. Moreover, qualification of the rAAV quantification method using a commercial
reference standard was pursued following the International Council for Harmonisation
(ICH) guidelines [19]. Altogether, this work demonstrates the high sensitivity and versatil-
ity of this methodology that may be applied for the characterization of either enveloped or
non-enveloped viruses-based products and can contribute to bridge a critical gap in the
bioanalytical field and virus particles biomanufacturing.

2. Materials and Methods
2.1. Purified Samples

Both non-enveloped, such as rAAV, and enveloped viruses, such as LV, rVSV–Maraba
MG1 vector, and a chimeric rVSV-NDV, were evaluated in this work. A quality screen
of different rAAV serotypes from different production platforms (already described and
published) was also conducted. rAAV2 was produced in HeLaS3 stable cell line system [20].
rAAV5, rAAV8, and rAAV9 were produced by triple plasmid transfection methodology
by suspension cultures of HEK293T, as described in Chahal et al., 2014 [21], with the
following modifications: culture medium used was BalanCD HEK293 (FUJIFILM, Tokyo,
Japan) supplemented with 4 mM GlutaMAX(TM) (Thermo Fisher Scientific, Waltham,
MA, USA). Transfection was performed at a cell density of 2 × 106 cell/mL and harvest
was performed 72 h post transfection. LVs were produced with HEK293T cells by the
four-plasmid transfection system, consisting of three structural plasmids and one plasmid
corresponding to the transgene, which, in this case, was GFP [22]. The rVSV was kindly
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provided by Turnstone Biologics and the chimeric rVSV-NDV vector was kindly donated
by Dr. Jennifer Altomonte from Technical University of Munich.

All the samples were stored at −80 ◦C and thawed immediately before sample prepa-
ration for CE-SDS LIF analysis.

2.2. In-Process Samples

For in-process virus-based samples analysis on CE-SDS LIF, two different purification
processes for LV and rAAV were used. LV downstream purification process was based
on the protocol described previously by Moreira et al. [23]. Samples from the two elution
fractions (high and low ionic strength step) were evaluated by CE-SDS LIF in terms of
purity and LV particle integrity.

For the rAAV2, the following downstream processing steps were performed: cell
lysate was clarified by centrifugation (4000× g for 5 min at 20 ◦C) and filtration with a
polyethersulfone (PES) membrane 0.2 µm filter (Supor®, Pall Life Sciences, Portsmouth,
UK), followed by an affinity chromatography step with a AVB Sepharose column (Cytiva,
Marlborough, MA, USA) [24]. The polishing step for removal of residual impurities
consisted of size exclusion chromatography (SEC) with Sepharose 4 Fast Flow resin (Cytiva).
Samples from AVB and SEC steps were evaluated by CE-SDS LIF in terms of purity and
the presence of process-related impurities.

2.3. Sample Preparation for CE-SDS LIF

The sample labelling procedure for CE-SDS LIF analysis was based on the protocol
described by SCIEX (Framingham, MA, USA) [25]. For the purity evaluation analysis,
10 µL of each virus sample was mixed with 2 µL of an aqueous solution with 4% SDS
(Life-Technologies) and 150 mM N-Ethylmaleimide (NEM) (Sigma-Aldrich, Burlington,
MA, USA) and incubated at 70 ◦C for 5 min, for denaturation. After that, the ATTO-TAG™
FQ Amine-Derivatization Kit (Life Technologies, Carlsbad, CA, USA) was used to label
the samples. A volume of 2.5 µL of FQ dye at a concentration of 2.5 µM and 1 µL of the
nucleophile KCN solution (30 mM) were added. After incubation at 70 ◦C for 10 min, 28 µL
of an aqueous solution of 1% SDS was added to quench the labelling reaction, followed
by another incubation for 5 min. Before injecting the sample into the CE LIF instrument, a
dilution was performed with 40 µL of Liquid Chromatography-Mass Spectrometry (LC-MS)
grade water (Fisher Scientific). To achieve higher resolution and sensitivity, the sample was
desalted before being loaded into the analysis vials. This desalting step employed a 10 kDa
cut-off filtration membrane (Amicon® Ultra—10 kDa 0.5 mL centrifugal filters). The buffer
exchange solution was composed of an aqueous solution of 0.1% SDS and 1.875 mM NEM.
For this, two consecutive centrifugations of 10 min at 20,817× g were performed.

2.4. CE-SDS LIF Instrument Setup

All the analyses were carried out in a CESI 8000 Plus system (SCIEX) with a 488 nm
laser-induced fluorescence (LIF) detector module. Detection was performed using an
emission filter of 600 nm. The separation was performed using a bare fused silica capillary
of 50 µm inner diameter (I.D.), 30.2 cm of total length, and 20.2 cm of effective separation
length (SCIEX).

The overall conditioning, separation, and shutdown methods’ settings for the time
program was performed as depicted in Table 1 [26].

Conditioning and shutdown methods were run at the beginning and end of every
analysis sequence, respectively.

For the separation of viral proteins, a standardized method was designed. The samples
were injected by applying a voltage of 5 kV for 20 s. The separation was carried out either
for 25 or 30 min with a voltage of 15 kV, depending on the type of sample (25 for AAVs,
and 30 min for the analyzed enveloped targets).
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Table 1. Description of the experimental conditions used for conditioning and shutdown methods.

Solution Aim
Operation
Conditions

(Conditioning)

Operation Conditions
(Shutdown)

0.1 M NaOH cleaning 10 min, 20 psi,
forward 10 min, 70 psi, forward

0.1 M HCl neutralization 5 min, 20 psi, forward 5 min, 50 psi, forward

LC-MS grade water removal of acid
residues 2 min, 20 psi, forward 2 min, 50 psi, forward

SDS-MW gel buffer filling 10 min, 70 psi,
forward 10 min, 70 psi, forward

SDS-MW gel buffer equilibration 10 min, 15 kV,
forward

10 min, 15 kV, reverse
polarity

2.5. CE-SDS LIF Qualification as a Quantification Method for AAV

A commercially available reference standard of rAAV2 was used (ATCC, ref: VR-1616)
for method implementation and qualification of the quantification method. Specificity
for the AAV2 viral proteins, absence of matrix interference and peak assignments were
established during method development, by using blanks constituted of sample matrix.
The method repeatability and linearity were determined based on 6 concentration levels in
the range of 1.15 × 1010 TP–3.67 × 1011 TP rAAV2 particles per mL (standard curve). For
the qualification, an experimental sequence was designed with 3 replicates of the standard
curve, plus 3 concentration levels of quality control (QC) samples—low, middle, and high
range with 1.84 × 1010, 3.67 × 1010, and 1.47 × 1011 TP/mL, respectively. A 10 kDa marker
(SCIEX) was included in each concentration point of the calibration curve as an internal
standard. The labelling of this internal standard was performed separately, following the
samples preparation herein presented, and afterwards 1 µL of this preparation was added
to each concentration sample.

This experimental sequence enabled the assessment of linearity, range, accuracy,
repeatability, intermediate precision, limit of detection (LOD), and limit of quantification
(LOQ). For this, the corrected peak areas (Acorr) of VP3 and 10 kDa internal control peaks
were calculated, using the velocity correction as shown in Equation (1). Here, we used
the uncorrected peak areas (A), and the migration times (t) and capillary effective length
(Ld )(to calculate the velocity (ν)).

Acorr = νA =
Ld A

t
(1)

2.6. CE-SDS UV

For the electrophoretic separation using the UV light detector, 100 µL of sample
was added to a 10 kDa Amicon tube (Amicon® Ultra—0.5 mL centrifugal filters) and
desalted in two rounds with sample buffer (SCIEX). After desalting, 2 µL of 10 kDa marker
(SCIEX), 3 µL of 1 M Dithiothreitol (DTT) and 10 µL of SDS 1% were added, followed by
a 10 min incubation at 100 ◦C. After denaturation and reduction, 45 µL of LC-MS water
was added to the mix and transferred to the nanoVial for further analysis on the CESI
Plus 8000 system. The experimental conditions used for the conditioning, shutdown and
separation methods were performed as for CE-SDS LIF method, changing only the detector
for UV light (214 nm).

2.7. SDS-PAGE with Sypro Ruby Pro Staining

For protein profiling analysis in traditional SDS-PAGE, 13 µL of each sample was
mixed with the loading buffer (LDS sample buffer 4× (Thermo Fischer Scientific), and
sample reducing agent 10× (Invitrogen, ref. NP004, Waltham, MA, USA) and denaturized
at 99 ◦C, for 5 min. MG1 proteins were separated under reducing conditions in a 4–12%
(w/v) polyacrylamide NuPAGE® gradient precast gel (Thermo Fischer Scientific). Samples
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were resolved for 60 min using NuPAGE® MOPS SDS running buffer at a constant voltage
of 200 V and stained with Sypro ruby pro (Thermo Fischer Scientific) overnight following
the manufacturer’s protocol.

2.8. Quantification of Adenovirus 5 by qPCR

The quantification of wild-type Adenovirus 5 (wtAd5) was performed by qPCR
as described previously by Martin et al. [20], with minor modifications. Briefly, in-
process samples were treated with DNAse (Promega, Madison, WI, USA) followed by
Proteinase K (Roche, Basel, Switzerland) treatment and a heat inactivation step 20 min
at 95 ◦C. wtAd5 viral genome was detected with specific primers (Forward primer 5′-
TCCGGTTTCTATGCCAAACCT-3′, reverse primer 5′-TCCTCCGGTGATAATGACAAGA-
3′) [27] against E1A gene and quantified by standard curve extrapolation approach.

2.9. Quantification of Adeno-Associated Virus by ELISA

The quantitative determination of AAV serotype 2, 5, 8, and 9 particles was performed
through enzyme immunoassay using the respective titration enzyme-linked immunoassay
(ELISA, Helsinki, Finland) kit (Progen, Heidelberg, Germany), following the manufac-
turer’s protocol. This method is based on the sandwich ELISA technique. For particle
concentration, three separate dilutions of each sample were performed. After the assay, the
absorbance was measured at 450 nm and 650 nm for reference value, on Infinite®200 PRO
NanoQuant (Tecan, Mennedorf, Switzerland) microplate multimode reader.

2.10. Lentivirus Infectivity Assay

The functional LV titers were determined by transducing HEK293T cells with the
produced LV supernatants. GFP expression was analyzed by flow cytometry as described
elsewhere [22].

2.11. Lentivirus Total Particles Quantification

Total particles (TP) concentration was calculated by determining the amount of p24
protein using the QuickTiter™ Lentivirus Titer Kit (Cell Biolabs, Inc., San Diego, CA, USA)
according to the manufacturer instructions. A ratio of 1.25 × 107 TP/ng of p24 was used to
calculate the TP titer.

3. Results
3.1. Capillary Gel Electrophoresis Analysis of Virus-Based Products

To evaluate the applicability of the CE-SDS LIF method for different viral vectors, we
first used the commercial reference standard rAAV2. Several amounts of rAAV2, ranging
from 4.9 × 108 to 1.5 × 107 TP, were labelled with FQ dye and injected into a CESI 8000
Plus instrument (Figure 1A). The AAV capsid is composed of 60 copies in total of viral
protein VP1 (∼87 kDa), VP2 (∼73 kDa), and VP3 (∼61 kDa) in an approximate population
ratio of 1:1:10, respectively [28]. The electropherogram of a representative single injection
of the rAAV2 sample is depicted in Figure 1B, showing a successful separation of all three
viral proteins of rAAV2 (VP1, VP2 and VP3), achieved within 22 min of run time. The viral
proteins were detected with baseline separation, at an average migration time (MT) of 21.05,
20.11, and 19.42 min, respectively. CE-SDS LIF methodology allowed us to detect a peak
corresponding to a truncated form of VP3 (tVP3), which is known to be present in serotype 2,
at 19.09 min MT [18]. We also evaluated the influence of a desalting step using a centrifugal
filtering device (Amicon™ with a pore size of 10 KDa) with the same amount of sample
injected, as presented in Figure 1C. We observed an increased sensitivity by approximately
6–7-fold when compared with no desalting. This result supports prior reports detailing
how high salt concentrations in the injected sample reduce CE-SDS sensitivity [29]. We
estimate that the FQ labelling/LIF detector approach described here increases sensitivity
by 100-fold when compared to previous reports using CE-SDS with a UV detector [29].
Moreover, the performance consistency of the equipment was evaluated through two
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independent experiments, including different sample preparations with several injections
each (Figure 1D). The analysis of the migration time of the VP3 protein showed an average
value of 19.57 min, with a relative standard deviation (RSD) of 0.67% (n = 9), showing
great repeatability.
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ology used for the analysis of viral proteins using CE-SDS coupled with a LIF detector. (B) Elec-
tropherogram of rAAV2 reference standard, displaying capsid proteins VP1, VP2, VP3, and tVP3.
(C) Comparison of rAAV2 (9 × 1011 TP/mL) electropherograms using desalting step (blue line)
vs no desalting (green line). (D) Representation of VP3 migration time (min) for two different
sample preparations (n = 9 for each). (E) Comparison of CQA attribute (ratio VP3/VP1) for differ-
ent AAV serotypes. (F) Overlay of the electropherograms of the different AAV serotypes; (HeLa3
AAV2 9 × 1012 viral genomes (VG/mL), with rAAV5 (2 × 1011 VG/mL), rAAV8 (5 × 1012 VG/mL),
and rAAV9 (7 × 1012 VG/mL).
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The CE-SDS LIF methodology was also used for the evaluation of VP3/VP1 ratio, a
known CQA for the rAAV product. We analyzed the serotypes rAAV2, rAAV5, rAAV8, and
rAAV9, by quantifying corrected peak areas of the VP3 and VP1. The results of VP3/VP1
ratios obtained by CE-SDS LIF showed excellent consistency over all serotypes as shown
in Figure 1E,F. Interestingly, by using a CE-SDS LIF analytical approach, we were able to
detect significant differences in rAAV2 viral vector quality among two production platforms
evaluated. While rAAV2 produced in HEK293T by triple plasmid transfection (reference
material) had a VP3/VP1 ratio of 5.6, the HeLa S3-based production system showed a
VP3/VP1 ratio with a value of 9, near to the theoretical optimal VP composition of the AAV
capsid of 10 [30]. These results suggest that CE-SDS LIF method is capable of detecting
differences associated with other quality criteria, besides assessing purity. Notably, when
compared to existing methods for assessment of AAV capsid protein purity, such as SDS-
PAGE [31], FQ-labelled protein analysis on the CE-SDS LIF platform reduces analysis time
while increasing sensitivity, and precision of VPs ratio measurement.

With a similar approach used for rAAV analysis, we used the Maraba MG1 vector
as proof of concept to evaluate the capability of CE-SDS LIF methodology for enveloped
virus analysis, as these vectors present extra challenges in manufacturing and there is a
lack of suitable analytical tools for assessing their quality. MG1 is a vesicular stomatitis
virus with a bullet shape, belonging to the rhabdovirus family. This oncolytic vector is made
up of four proteins, G, M, N, and L, with theoretical molecular weights (MW) of 60, 20–25,
47, and 242 kDa, respectively. Using CE-SDS LIF methodology, we were able to detect the
four main proteins of the viral vector with excellent separation at MT 15.76, 18.61, 21.38,
and 27.02 min, respectively (Figure 2A). The protocol used in this work for viral proteins’
detection uses a combination of chemical (SDS detergent) and thermal denaturation. This
has been proven to work with rAAV particles, which are known to be resistant to several
chemical agents, as described by Srivastava et al. [32]. Moreover, we also showed that
this denaturation method is highly efficient with enveloped viruses such as lentivirus and
Maraba virus, also in combination with CE-SDS LIF analysis offers a good separation of
enveloped virus proteins. Potentially, other enveloped viruses described to be resistant
to chemical degradation, as SARS-CoV2, could also be successfully analyzed with this
approach [33].

We determined the MW of the observed peaks by extrapolation of the MT of known
MW standards ran under the same conditions (Figure A1). The calculated MWs were
consistent with the theoretical MW of M, N, G and L proteins, as depicted in Table A1.
Moreover, we were able to detect several process-related impurities peaking from MT 11.89
to 17.07 min. When comparing CE detectors, LIF and UV (Figures 2A and 2B, respectively),
we concluded that even if we loaded 100 times more sample, it was only possible to detect
protein N with the UV light detector (peak area 10 times less intense than with LIF), not
being possible to detect the low MW impurities and M, G, and L proteins. Our results are
in agreement with previous reports on the characterization of other viral vectors, showing
that CE-SDS LIF methods have higher sensitivity than CE-SDS UV [18].

Additionally, we compared CE-SDS LIF methodology with the traditional SDS-PAGE.
We used the Sypro Ruby Pro staining, a ready-to-use and ultrasensitive stain for the
detection of proteins. This method is commonly used to assess the purity of therapeutic
proteins, including rAAV [34]. As with the CE-SDS LIF approach, we were able to detect
the presence of the core viral proteins (M, N, G, and L proteins), as well as low MW
protein impurities. However, we loaded up ten times more sample than in the CE-SDS
LIF approach, which also takes less analysis time (25 min of separation time vs 35 min
SDS-PAGE separation time plus overnight staining) and has higher-throughput capabilities.
Importantly, SDS-PAGE with Sypro Ruby staining seems to overestimate purity results
when compared with CE-SDS LIF method since the method is less sensitive, showing a
false higher level of purity.
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Figure 2. Characterization of MG1 vector. (A) Overlay of electropherograms of MW marker (grey
line) and purified MG1 sample using CE-SDS with a LIF detector (blue line). I, Zoom-in of impurities
profile (RT 11 to 19 min), and II, Zoom-in in L protein elution (RT 22 to 28.5 min). (B) Electrophero-
gram of the purified MG1 samples using CE-SDS with a UV detector (C) SDS-PAGE with Sypro
Ruby staining.

We also evaluated the versatility of the implemented CE-SDS LIF methodology by
comparing different structural constructions of chimeric enveloped viruses. For this, we
used a hybrid engineered vector comprising the Newcastle disease virus (NDV) and
vesicular Stomatitis Virus (VSV), named rVSV-NDV. This vector includes a conserved VSV
backbone, but its glycoprotein has been replaced by the hemagglutinin-neuraminidase
(HN) and the modified hyperfusogenic fusion (F) envelope protein of rNDV. This difference,
which is depicted in Figure 3A, contributes to the reduction in the cytotoxic effect associated
with the rVSV vector in clinical applications [35]. Consequently, while WT viral vector has
a G protein with an expected MW of 58 kDa, the chimeric vector does not have G protein
and has both F (65 kDa) and HN (75 kDa as a monomer or 150 kDa as a dimer) proteins
instead. We explored the possibility to detect these small MW differences by CE-SDS LIF. In
fact, this methodology proved to be a valuable technique for the evaluation of this kind of
construction alterations. The results obtained for this comparison between the rVSV-NDV
vector and rVSV vector are shown in Figure 3B (and Table A1). The calculated MW of the
viral proteins are in line with what is described in the literature [36]. Between MT of 20 and
21 min, it is possible to observe a peak corresponding to the MW of protein G in the WT
construct (green line) which is not detected in the electropherogram of the rVSV-NDV (blue
line). In the latter, we observe the presence of two peaks with a MT of 20.65 and 21.70 min,
corresponding to both enveloped viral proteins (F and HN) of rVSV-NDV.
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tural construction of rNDV-VSV and rVSV family (MG1 vector). (B) Overlay of the electropherograms
of both viral vectors and MW marker.

Escandell et al. [14] very recently discussed the need for new analytical tools to
replace the classical techniques that do not have high-throughput capabilities, present low
sensitivity, resolution, and reproducibility. Considering all these results, we demonstrated
that the FQ labelling combined with CE-SDS LIF analysis is a versatile platform for the
characterization of enveloped and non-enveloped viruses. The results here obtained
for viral vector samples are consistent with other reported labelling approaches used in
this CE-SDS platform, such as labelling with the pyrylium dye Chromeo™ P503 [18], in
terms of superiority over UV detection and also the classical SDS-PAGE analysis tools.
Importantly, we have shown for the first time that the CE-SDS LIF platform is also suitable
for the characterization of final samples of enveloped viruses, which extends the described
applicability of the method.

3.2. Qualitative Analysis of Virus In-Process Purification Samples

There is a gap in analytical tools for quantitative and qualitative evaluation of virus
integrity or/and purification levels during optimization of downstream processing (DSP).
There is a clear need for quick, sensitive, and reliable assays to complement the traditional
methods used, such as ELISA, qPCR, or SDS-PAGE [5]. To overcome these current limita-
tions in the assessment of DSP, the CE-SDS LIF methodology was explored to characterize
in-process samples of the HelaS3 cell line-based rAAV production system. This production
system relies on a helper virus infection, usually with wtAd5, which triggers rAAV produc-
tion. However, to deliver a safe product, the wtAd5 viruses need to be removed during DSP.
To attain this, a purification process based on affinity chromatography (AVB Sepharose
resin) and size exclusion chromatography (SEC) as a polishing step was employed. Notably,
by CE-SDS LIF analysis, we were able to detect traces of wtAd5 contamination in AVB
purified sample (Figure 4A), at an MT of approximately 24 min, which corresponds to the
migration time of wtAd5 Hexon protein (Figure 4B). The presence of wtAd5 was confirmed
also by qPCR of DNAse-treated samples, indicating a wtdAd5 titer of 4 × 109 DNAse
Resistant Genomes (DRG)/mL after this first chromatography step. CE-SDS LIF results of
the AVB+SEC purified sample showed that SEC removed the wtAd5, as the peak previously
observed at an MT of ~24 min was no longer detectable (Figure 4C). These results were
further corroborated by qPCR where the wtAd5 titer obtained was 1 × 106 DRG/mL, close
to the limit of detection of the assay.
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LVs are characterized by being fragile and sensitive to DSP, usually due to damage
imposed on envelope membrane, which affects their infectivity and functionality. We
used the CE-SDS LIF methodology to evaluate LV integrity after ion-exchange membrane
(IEX) chromatography, as represented in Figure A3. Two isocratic steps were used for
the elution, a lower ionic strength concentration expecting the recovery of the LV (LI
sample), and a higher ionic strength concentration to desorb the impurities (HI sample).
Figure 5 depicts the electropherograms of both LI and HI samples. CE-SDS LIF analysis of
FQ-labelled samples enabled the detection, on the LI sample, of three proteins consistent
with the expected LV’s Rev, p24 and Gag-Pol-Pro, at 13.92, 14.71, and 18.80 to 20.12 min,
respectively, and the envelope protein VSV-G at 18.15 min (Figure 5A). Regarding Gag-
Pro-Pol polyprotein, it is possible to observe three small peaks from 18.80 to 20.12 min
approximately (Figure 5A), which are consistent with truncated versions of the polyprotein,
as described in the literature [37]. Interestingly, in the case of the HI sample, we were able
to detect the proteins Rev, p24, and Gag-Pol-Pro, but not the enveloped VSV-G protein
(Figure 5A), suggesting that this elution fraction is composed of defective viruses or other
product-related impurities such as non-infectious extracellular vesicles that share common
protein with LV [38]. In this work, an ELISA measuring structural p24 protein was used to
titrate the samples regarding total particles. The LI and HI samples presented a recovery of
6.71 × 1010 TP/mL and 9.66 × 1010 TP/mL, respectively. However, when we measured
infectious particles by flow cytometry, the HI sample showed a concentration of 6.30 × 105

transducing units (TU)/mL, by comparison with the 1.30 × 106 TU/mL of the LI sample.
A possible hypothesis for the discrepancy between ELISA and infectivity assay results is
the presence of product-related impurities such as defective LV particles that have lost their
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enveloped protein (VSV-G) or extracellular vesicles comprising some of the LV proteins in
their structure, that could be still detected by p24 ELISA. This could be particularly true
in the HI sample since we could not detect the peak for VSV-G protein by CE-SDS LIF
(Figure 5A) explaining the lower infectious titer obtained when compared to the LI sample.
In fact, in LV manufacturing, the analysis of infectious titer during bioprocessing is of
major importance and the most challenging method to be performed. Current established
methods, such as flow cytometry and qPCR lack the capability of enabling high throughput
sample processing since they require a considerable amount of manual handling [39]. The
results herein presented corroborate the need for new reliable analytical tools capable of
being integrated with virus-based manufacturing, and this could be partially overcome by
the CE-SDS LIF method here described.
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Figure 5. Evaluation of different in-process LV samples by CE. (A) Comparison of the two elution
fractions of LV IEX chromatographic step (low and high ionic strength, upper and lower panel, respec-
tively). (B) Table representation of the TP/mL and TU/mL for both in-processing elution fractions.

Overall, the applicability of the reported CE-SDS LIF methodology was successfully demon-
strated for the in-process monitoring of non- and enveloped viruses, making this methodology
a suitable analytical platform to be applied during viral biotherapeutics manufacturing.
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3.3. Method Qualification for Virus-Based Targets Quantification

ELISA is the gold standard method for rAAV capsid/viral particle quantification [40].
However, as discussed above, this method presents several limitations: it is time-consuming,
has high inter-assay variability, and is serotype dependent (in the case of rAAV). New
methods for capsid quantification are being developed, such as SEC with Multi-Angle Light
Scattering detector (SEC-MALS) or Biolayer Interferometry (BLI). However, SEC-MALS
lacks sensitivity and BLI requires serotype-specific antibodies [41]. Given the need for accu-
rate, sensitive, and serotype-independent quantification, a CE-SDS LIF rAAV quantification
method was qualified (following the ICH guidelines for method qualification [41]). The
workflow used is depicted in Figure 6A.
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Figure 6. Applicability of the CE-SDS LIF as a quantification method for viral-based manufacturing.
(A) Schematic representation of the workflow performed for quantification approach. (B) Overlay of
the electropherograms of the standard calibration curve from 0 to 3.67× 1011 TP/mL. (C) Intermediate
precision determination, comparison between the calculated quality control (QC) samples concentra-
tion with the theoretical concentration (1.84 × 1010, 3.67 × 1010, 1.47 × 1011 TP/mL). (D) Accuracy
results for the 3 QC samples of reference standard AAV2: low, mid, and high range. The recovery (%)
was calculated by the Cobs to Cspike ratio for each run multiplied by 100. Cobs—extrapolated concen-
tration of QC samples from the calibration curve; Cspike—theoretical concentration of QC samples.



Viruses 2022, 14, 2539 13 of 18

In this work, the specificity, precision, accuracy, linearity, LOD, and LOQ of the method
were assessed to demonstrate that the method is suitable for the specified purpose.

The specificity was proven by the absence of peaks consistent with the viral protein
of interest (VP3) in the electropherogram of the formulation buffer (blank). Evaluation of
method linearity was based on the LIF detector response when injecting six concentration
levels of rAAV2 reference material (1.15 × 1010, 2.30 × 1010, 4.59 × 1010, 9.18 × 1010,
1.84 × 1011, and 3.67 × 1011 TP/mL) with a constant concentration of the internal control
(10 kDa marker). This spike with an internal control was used to normalize the peak areas
between runs, ensuring that the measurements were not affected by fluorescence decay
over time. The electropherograms for the six concentration levels of rAAV2, are depicted in
Figure 6B. A linear response was obtained by plotting the VP3/10 kDa marker peak area
ratio versus the corresponding six concentration levels of rAAV2 used (Figure A2A). In
the concentration range evaluated, it was possible to obtain a correlation with R2 higher
than 0.996, considering all nine standard curves assessed in three experiments (three
independent sequences with triplicates each).

The intermediate precision was also assessed along with three independent sam-
ple preparations and measurements. The measurements were performed by two differ-
ent analysts (analyst 1, run 1 and run 2; and analyst 2, run 3) on three different days,
representing three assays in total. Each assay included three replicates of the standard
reference material curve and the three-quality control (QC) samples. These comprised
high (1.53 × 1011 TP/mL), medium (3.83 × 1010 TP/mL), and low (1.43 × 1010 TP/mL)
concentrations, within the standard curve range. CE-SDS LIF results showed good inter-
mediate precision with CV values between experiments (inter-assay) equal to or lower
than 15%, with the highest values corresponding to the low range QC sample (Figure 6C).
Moreover, intra-assay CV results were very consistent and lower than 10%, revealing
good repeatability.

The accuracy was assessed over the three concentration levels (QC samples) in tripli-
cate, by calculating the percent recovery (ratio between the extrapolated concentration from
the calibration curve and the theoretical concentration of each QC sample). The recovery
average obtained (Figure 6D) for the QC samples was 112%, 102%, and 104% for QC low,
mid, and high range, respectively. Notably, this value is within the acceptance criteria of
FDA guidelines [42], except for the low range QC in two of the assays, showing values of
122 and 123%. Thus, for lower concentrations the accuracy may decrease. Nevertheless, the
overall accuracy of the three QC samples was within this range, confirming the suitability
of the method for quantification of AAV2 in the conditions herein used.

All these data showed the linearity, precision, accuracy, and specificity of the CE-SDS
LIF method under the conditions described. Moreover, the results obtained were in line
with the criteria considered acceptable by the regulatory authorities for method validation.
The LOD and the LOQ were calculated based on signal-to-noise ratio (described in [41])
for all three assays, considering both analysts (Table A2). The average estimation for
LOD and LOQ was 3.19 × 109 and 9.68 × 109 TP/mL, respectively. These results also
demonstrate the high sensitivity and capability of this method to detect and determine low-
range concentrations of rAAV samples. A desalting step could be performed to increase
the sensitivity of the quantification method, as shown in Section 3.1. Although this may
reduce precision and accuracy (due to material losses), it decreases the variability associated
with the sample matrix interferences (buffer exchange). Nevertheless, the method’s LOQ,
determined in this workflow, is suitable for rAAV-based pharmaceuticals, where the dosage
in the final product could be from 3 to 5 orders of magnitude higher [14]. When compared to
orthogonal methods which measure capsid titer, the CE-SDS LIF qualified method showed
2–3 orders of magnitude greater sensitivity than serotype independent methods, such as
SEC-MALS or Optical density, presenting equivalent sensitivity to serotype dependent
methods [41].

This workflow herein proposed is described as a high-throughput method since it
enables the analysis of several samples in relatively short period of time. As showed
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in Figure 6 sample preparation and analysis could be achieved in approximately 1 h.
This time is mostly influenced by the several incubation times needed (denaturing and
labeling) combined with the separation of proteins in CE-SDS (25 to 35 min). Furthermore,
operator dependence factor could be greatly diminished with automation systems for
sample preparation. This demonstrates its applicability as a high-throughput platform
for the investigation of various rAAV products and serotypes and with little operator-
dependence. Importantly, the electropherograms obtained could also be used to measure
purity and VP3/VP1 ratio with high repeatability and sensitivity, all defined as CQAs for
rAAV-based biopharmaceuticals.

After qualifying the method for rAAV quantification, we evaluated its applicability
for enveloped viral targets. Three MG1 samples from different time points in the DSP train
were analyzed. Using the above described AAVs concentrations of 3.20 × 1011, 7.47 × 1011,
and 1.17 × 1012 VG/mL were extrapolated. The corrected protein N peak area, as shown
in Figure A2B, revealed good linearity of fluorescence response vs sample concentration,
with R2 higher than 0.990 (n = 2, independent runs). This indicates the potential of the
method for the quantification of more complex particles, such as enveloped-based targets.
However, to improve the quantification method accuracy the use of a specific standard
sample is required. However, there is not any commercially available reference standard for
this virus in Europe, which did not allow us to further explore the quantification method
for MG1.

4. Conclusions

Virus-based pharmaceuticals play a critical role as emerging tools for cell and gene
therapy applications, and they require an extensive characterization to guarantee the safety
and efficacy of the therapies. This work describes the implementation of an FQ labelling
procedure coupled to a CE-SDS-LIF detector, making this platform highly sensitive and
suitable for in process and final product virus-based samples. Besides this, it was described
for the first time that a CE-SDS LIF method is suitable for the qualitative analysis of in-
process samples and final product of enveloped virus-based targets, such as lentiviral
vectors or Maraba MG1, overcoming current needs of the field. Additionally, the CE-SDS
LIF was also explored to implement a quantification method for purified rAAV, following
the ICH guidelines for method qualification. This could contribute as a step forward to
have this method used under GMP conditions.

Overall, our results showed that CE-SDS LIF has the potential to become a standard
approach for the analysis of virus-based products in a near future, owing to its superior
performance and compatibility with GMP compliance.
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Figure A1. Calibration curve of Migration time (min) vs. log MW (Daltons) for molecular weight
marker standard.

Table A1. Molecular weight (MW) determination for the different viral proteins of MG1 and rVSV-
VSV obtained by extrapolation of migration time from the calibration curve.

Protein MT (min) log MW (Da) MW (kDa)

MG1

M 15.76 4.36 23
N 18.61 4.63 42
G 21.38 4.88 77
L 27.02 5.41 256

rVSV-NDV

M 15.66 4.35 23
N 18.55 4.62 42
F 20.65 4.82 66

HN 21.70 4.91 82
L 27.02 5.41 256
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