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Abstract: Global SARS-CoV-2 genomic surveillance efforts have provided critical data on the ongoing
evolution of the virus to inform best practices in clinical care and public health throughout the
pandemic. Impactful genomic surveillance strategies generally follow a multi-disciplinary pipeline
involving clinical sample collection, viral genotyping, metadata linkage, data reporting, and public
health responses. Unfortunately, current limitations in each of these steps have compromised the
overall effectiveness of these strategies. Biases from convenience-based sampling methods can
obfuscate the true distribution of circulating variants. The lack of standardization in genotyping
strategies and bioinformatic expertise can create bottlenecks in data processing and complicate
interpretation. Limitations and inconsistencies in clinical and demographic data collection and
sharing can slow the compilation and limit the utility of comprehensive datasets. This likewise can
complicate data reporting, restricting the availability of timely data. Finally, gaps and delays in the
implementation of genomic surveillance data in the public health sphere can prevent officials from
formulating effective mitigation strategies to prevent outbreaks. In this review, we outline current
SARS-CoV-2 global genomic surveillance methods and assess roadblocks at each step of the pipeline
to identify potential solutions. Evaluating the current obstacles that impede effective surveillance can
improve both global coordination efforts and pandemic preparedness for future outbreaks.

Keywords: SARS-CoV-2; COVID-19; genomic surveillance; molecular surveillance; public health
intervention; epidemiology; global health

1. Introduction

The emergence and rapid spread of SARS-CoV-2, the causative agent of COVID-19,
has resulted in a global pandemic with over 620 million cases and 6.5 million deaths since
late 2019 (as of 1 October 2022) [1]. Like all viruses, SARS-CoV-2 continually mutates
during its spread, resulting in new viral variants that may have phenotypic differences
in replication [2] and/or host–pathogen interactions [3]. Mutations that confer a selective
advantage in a given environment may allow a specific variant to outcompete others and
expand in the population. Variants that spread rapidly or pose a public health risk due
to enhanced transmissibility, risk of severe disease, or immune evasion are designated as
variants of concern (VOCs) by the World Health Organization (WHO) [4].

To track the emergence of new variants and assess their potential public health risks,
researchers and public health experts largely rely on genomic surveillance. Genomic
surveillance refers to the combinatorial efforts of epidemiological analysis, next-generation
sequencing, and bioinformatics to identify relationships between viral genetic diversity
and public health outcomes [5]. Genomic surveillance at the population level assists
in the rapid identification of new emerging variants and the targeted deployment of
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mitigation strategies by public health entities to prevents their spread. Linking sequences
with clinical and molecular data further enables the association of specific mutations with
pathogenic outcomes or therapeutic efficacy, providing critical information for determining
best practices in clinical care. Genomic surveillance has been used for decades to inform
the public health response to a number of pandemic pathogens, including H1N1 influenza
A virus, Ebola virus, Methicillin-resistant Staphylococcus aureus, Zika virus, and Human
Immunodeficiency Virus [6–10]. However, recent advances in sequencing technologies and
accessibility, coupled with the global scope and urgency of the COVID-19 pandemic, have
resulted in more genomic surveillance for SARS-CoV-2 than any other pathogen to date.

Genomic surveillance strategies are generally comprised of clinical sample collection,
viral genetic analysis, linkage to metadata (and possibly clinical) data, reporting, and
communication with public health agencies for response and messaging (Figure 1). A
robust and sustainable infrastructure for genomic surveillance systems to track SARS-CoV-
2 variants around the globe has the potential to substantially reduce the burden of disease
through the timely dissemination of data to optimize research priorities, therapeutics
development, public health responses, and clinical care. Unfortunately, several limitations
in the global genomic surveillance infrastructure have dampened this potential, resulting
in long delays in data availability and inconsistent messaging. The purpose of this article
is to review the current state of SARS-CoV-2 genomic surveillance, identify limitations
in the pipeline, and highlight potential solutions that may help minimize the impact of
future outbreaks.
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Figure 1. Molecular Surveillance Pipeline. The pipeline outlines the main concept of each process
(sample collection, genotyping, clinical and metadata linkage, reporting, and public health response),
and illustrates the solutions and roadblocks present at each stage of the pipeline. Asterisks in the
genotyping section are representative of identified mutations in variant X.
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2. Sample Collection

The first step of genomic surveillance is the collection of specimens harboring intact
SARS-CoV-2 genetic material from COVID-19-positive individuals. Often, collected clinical
specimens are in the form of residual, PCR-based diagnostic tests that likewise rely on
the detection of viral RNA. Most SARS-CoV-2 specimens are collected from the upper
respiratory tract as nasopharyngeal (NP) or oropharyngeal (OP) swabs stored in an RNA-
compatible media, such as viral or universal transport media (VTM or UTM) [11]. While
other anatomical sites can be sampled (i.e., the lower respiratory tract via bronchoalveolar
lavage (BAL) washings or sputum), they are generally less accessible, available, and/or con-
venient [12,13]. Specimens are then cataloged, organized, and preserved for downstream
genotyping. Long-term preservation requires the use of low-temperature freezers designed
to maintain the long-term integrity of biological specimens. Overall, while this process
of sample collection seems relatively straightforward, the practice of convenience-based
sampling, increased prevalence of antigen testing, and unequal resource distribution can
bias collection.

First, most genomic surveillance studies rely on convenience-based sampling methods
to collect their specimens. Convenience-based sampling is a type of non-probability sam-
pling wherein specimens are collected from individuals that are selected for convenience
and not truly at random [14]. For example, if a genomic surveillance study relies on the col-
lection of residual diagnostic specimens from a local health center, the specimens are likely
to reflect the populations that the health center serves, which may or may not reflect the
demographics of the population of the broader region. This can further result in oversam-
pling of populations in regions with better surveillance infrastructure and resources [15,16].
While systematic investment in surveillance infrastructure and an evidence-based sam-
pling strategy would be needed to resolve these issues long-term, sampling biases can
be detected and addressed in studies that rely on convenience sampling. One common
method to detect sample bias is to test for statistical differences in the descriptive statistics
of the sampled and represented populations such as the mean, variance, and distribution
of demographic variables [17]. If pulling a subset from a larger collection of specimens,
researchers can address sampling bias using stratified random sampling to ensure that
the observed cohort matches the geographic and demographic distribution of the true
population [18,19]. Alternately, another method to minimize the effects of sampling bias is
to use mathematical modeling to correct these effects during study analysis [18,20].

Second, the rise of at-home, antigen-based tests and the prevalence of testing centers
that lack the resources for specimen biobanking or sequencing pose major challenges
to unbiased specimen collection. Rapid, antigen-based tests do not require professional
administration or interpretation and have been widely adopted in some countries and
populations for self-diagnosis [21]. These individuals are often not encountered in the
health system and so are not likely to be sampled in convenience-based methods [22]. Even
some testing centers that do use a PCR-based test for SARS-CoV-2 RNA, including many
commercial testing centers and community clinics, often lack the incentive or resources
to save or share specimens for surveillance [23]. These discrepancies in testing facilities
results in many specimens originating from larger medical centers that are incentivized
to perform specimen collection and biobanking either for research purposes or due to
pre-existing relationships with outside partners, such as public health departments. This
can result in an underestimation of the overall incidence of infection and a significant bias
towards at-risk individuals and those presenting with more severe disease. With increased
vaccination rates and immunity gained from the previous infection, infected individuals
are less likely to progress to severe COVID-19 or present for routine upper respiratory
tract testing [24–26]. Asymptomatic individuals are especially unlikely to be sampled
except in coincidental cases such as before travel, before a medical procedure, or following
testing after a known exposure. To overcome these limitations, alternative methods of
non-invasive viral detection, such as wastewater surveillance, have been used to assess
the overall incidence and viral variant distribution. Wastewater surveillance involves the



Viruses 2022, 14, 2532 4 of 21

detection and sequencing of viruses in sewage systems following viral shedding in fecal
matter [27]. Recent efforts have implemented wastewater surveillance to quantify viral
loads, estimate the true incidence of infection in a population, and detect emerging or
under-sampled variants [28]. The Netherlands was the first to implement this system to
monitor under-reported cases as well as serve as an early warning signal for the emergence
of new variants in real-time [29]. Though useful in estimating the prevalence, wastewater
surveillance loses granularity in its inability to be linked with other data types and thus
can only serve as a tool to detect broad trends.

Finally, collected specimens must be cataloged in biospecimen repositories, com-
monly referred to as biobanks, which present their own challenges. Specimen biobanks
provide tremendous value in epidemiological surveillance by providing samples for the
development of therapeutics [30] and diagnostics [30,31]. Although biobanking obstacles
are not novel, the unprecedented volume of samples due to the high community inci-
dence of COVID-19 will require a sustainable way to efficiently store informative samples
without overburdening research facilities [16]. This is especially challenging in low- and
middle-income countries (LMICs) that often lack the resources, infrastructure, and trained
personnel for broad-scale biobanking [32,33]. Addressing concerns of equitable sample
collection is crucial to prevent under-representation of the true SARS-CoV-2 genetic diver-
sity landscape (see also Section 6.4 on Equity in Public Health Responses). Furthermore,
problems in standardization and quality assurance may cause downstream problems in
specimen quality. Guidelines for the storage and processing of samples are typically specific
to each institution with no universal recommendations on storage containers or labeling
schemas [34,35]. The European Virus Archive (EVA), a non-profit dedicated to biobanking
viral products, has developed a grading system that defines the virus product quality in a
specimen, but it is unclear how many other biobanks have adopted the same system [36,37].
Institutional biobanks tend to be siloed within a single center due to administrative bur-
dens, such that linking and establishing networks of biobanks across institutions becomes
even more difficult and reduces the potential of large-scale research efforts. Biobanking
issues can be resolved through standardization and well-defined guidelines that include
clarity on the processing, governance, and sharing of data that will ultimately expedite
multi-center collaborations. Furthermore, identifying biobanks collecting similar specimens
could establish networks of biobanks that could easily improve the effective sample size
of the biobank. Efforts to coordinate institutional sampling and biobanking have been
implemented by governmental entities and public health departments to varying degrees
of success [38]. Together, these measures would ensure the sustainability and longevity of
these biobanks and ensure that they can be repurposed for future studies.

3. Genotyping

The second step in genomic surveillance is to determine the virus’s genomic sequence
or genotype. Depending on the set of mutations that a virus carries, it can be assigned to a
specific clade or lineage using phylogenetic analyses. While a couple of distinct nomen-
clatures exist for the naming of SARS-CoV-2 lineages, the Phylogenetic Assignment of
Named Global Outbreak Lineage (or PANGOLIN) nomenclature is one of the most widely
used. This dynamic nomenclature was proposed in 2020 to assign SARS-CoV-2 lineages
as they arose [39]. PANGOLIN lineages are particularly useful for tracking prospective
transmission events and outbreaks, ultimately complementing other nomenclature tools
that focus on clade designation [40]. Mutations linked with specific lineages, VOCs, or
phenotypes (i.e., drug resistance or increased transmission) can inform risk assessments
and policy.

SARS-CoV-2 genotyping can be performed using a variety of techniques including
specialized reverse transcription-quantitative PCR (RT-qPCR) assays, Sanger sequencing
of targeted amplicons, or whole-genome sequencing (WGS). Of these, WGS is the most
informative as it can be used to detect novel mutations and define new, emerging vari-
ants, whereas the other approaches, such as RT-qPCR, are generally limited for use in
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the detection of or differentiation between known variants. Throughout the COVID-19
pandemic, WGS of SARS-CoV-2 isolates has provided an in-depth understanding of the
genetic characteristics and evolution of the virus [41–43]. Paired with clinical metadata,
sequencing information can be utilized to study the association between specific mutations
or variants and clinical outcomes [44], diagnostic failure [45], and therapeutic/vaccine
efficacy [46]. Viral genetic data combined with more traditional epidemiological methods
have been furthermore used to track routes of transmission and identify risk factors for
infection [47]. Despite the power of these tools, several challenges have limited their broad
adoption, including variability in sequencing protocols, lack of bioinformatic expertise,
and high cost.

In response to the far-reaching pandemic, a large number of next-generation sequenc-
ing (NGS) technologies and approaches have been adapted for WGS of SARS-CoV-2. Each
technology has its strengths and weaknesses and relies on slightly different sequencing
protocols. This has led to technology-specific differences in read mappability, genome
coverage, and sensitivity, as well as precision of calling single nucleotide variants (SNVs),
all of which may influence the confidence of genotype determination [48]. This has been
particularly challenging for samples with low viral loads, which often cannot be sequenced
at high coverage or with high confidence [49]. While new and improved protocols for
low-copy-number sequencing are under continual development, this has resulted in knowl-
edge gaps in how the virus is evolving late in disease course, in people with high levels
of immunity (due to prior infection or vaccination), or in compartments with only low-
level replication (i.e., in the brain or gut). An improved understanding of the benefits
and drawbacks of different sequencing protocols can help researchers select the protocol
that produces the most accurate results given their circumstances. For example, fresh
samples often yield better coverage than frozen samples [48], but this can be resolved by
deeper sequencing or reduced sample multiplexing when working from a cryopreserved
biobank. Another alternative would be to use metagenomic shotgun or target-enrichment
sequencing protocols, which may improve yield and reduce error, though these approaches
are lower throughput and more expensive. Transparent reporting of sequencing methods,
adoption of standardized protocols (i.e., the ARTIC protocol has been highly used for
SARS-CoV-2 sequencing [50]), and requirements for robust quality control assessments
would all improve the reliability of viral WGS.

Bottlenecks in the bioinformatic analysis of SARS-CoV-2 sequence data present yet
another challenge. After sequencing, researchers use bioinformatics tools to identify muta-
tion frequencies, assign lineages, and infer population dynamics [51]. However, the lack of
experienced personnel and reliable computational infrastructure has resulted in significant
delays to data reporting and limited application of the data in more complex analyses [41].
The lack of standardization in bioinformatics pipelines, such as the assembly of raw reads,
also poses an issue. There is currently no “gold standard” for genome assembly, which
results in errors that get incorporated in downstream analysis. There is an urgent need
for easily implementable, interpretable, and reproducible bioinformatics pipelines that
can be utilized with minimal training. Further studies may be warranted in assessing
current bioinformatics pipelines, such as genome assemblers, to create a standardized
pipeline that results in rapid analyses post-sequencing and generate actionable baseline
results [51–55]. Point-and-click software is a class of software that is user-friendly and
requires minimal domain knowledge for use. Nextstrain is one such example, where the
software can take raw sequence data and offer flexible analyses that output interpretable
results for researchers to understand the genome of their specific SARS-CoV-2 samples [56].
The disadvantage of point-and-click software lies in the restricted functions encoded in the
software. Even with functional limitations, point-and-click software can serve as a solution
in resource-limited settings. Another solution could be the use of installation-free cloud
computing, where sequencing data can be uploaded onto a secure server, and results such
as mutational profiles of raw sequences can be produced by a third party [57]. Regardless,
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the lack of reliable internet service and computing power in certain regions of the globe,
particularly in LMICs, are limiting factors.

Other, more accessible approaches for SARS-CoV-2 genotyping have been developed
that require less specialized equipment and expertise. Given the prevalence of RT-qPCR
machines in most research settings, many institutions have used RT-qPCR protocols to
identify specific SARS-CoV-2 variants. The RT-qPCR workflow is familiar and cost-effective
as compared to most sequencing protocols and has been effectively employed to rapidly
screen thousands of specimens for the emergence of specific variants. For example, when
the Alpha VOC became predominant, a deletion in the Spike gene open reading frame (ORF)
resulted in the loss of amplification for that target in diagnostic tests, a phenomenon called
the S-Gene Target Failure (SGTF) [58]. SGTF is defined as a non-detection of the S-gene
target in samples that test positive for both the N-gene and ORF1ab gene targets. Certain
Omicron variants have also presented with SGTF due to internal Spike deletions, which
have been used by some as a proxy for assigning the lineages without direct sequencing of
the sample [59]. While high-throughput and less costly, the main limitation of RT-qPCR
is that it can only detect known variants. Primer sets must be specifically designed to
known portions of the genome that differ between previously described variants. As an
alternate approach, less resource-intensive WGS protocols have been developed that may
be suitable for application in resource-limited settings. For example, Oxford Nanopore
Technology is a newer sequencing platform that can be manufactured at a cheaper rate
compared with other high-throughput sequencing platforms. While this technology is less
high-throughput, has a higher error rate compared to Illumina sequencing platforms, and
produces longer but fewer reads, it is sufficient for SARS-CoV-2 WGS [60].

4. Clinical and Metadata Linkage

The third step in genomic surveillance is to link the viral genotype data with avail-
able demographic, epidemiological, and clinical metadata. While sequence data alone
is useful for the analysis of viral evolution and for understanding macro-trends in viral
population structures, its value to public health and clinical care comes from linkage to
these additional datasets [16,61,62]. Comprehensive genomic surveillance data, including
genomic, demographic, epidemiological, and clinical data are required to identify associ-
ations between specific viral lineages and patient risk factors, disease severity, immune
escape, transmissibility, and therapeutic efficacy [4]. The establishment of comprehensive
surveillance networks that utilize multiple data types to accurately assess risk will be a
key tool to fight the continual spread of SARS-CoV-2 as well as future pathogens [63,64].
In the meantime, however, challenges with data compartmentalization, standardization,
and administrative burdens will need to be addressed to best leverage ongoing genomic
surveillance efforts.

The primary challenge in data linkage is often compartmentalization. Many of the
data types discussed above are generated in different locations: public health departments
generate epidemiologic data, research centers generate genomic data, and hospitals gener-
ate clinical and vaccination data. In a majority of cases, however, there is often no strategic
coordination between these entities to link different data types together to form a com-
prehensive dataset [59,65]. Though monomeric or partial data types can and do provide
valuable insight [66], data linkage is necessary for maximal utility and benefit. Even when
data types are linked, oftentimes the data that are shared are limited, have a high percentage
of missing values, and are only provided voluntarily. For example, while GISAID has
become a prime example for the international sharing of SARS-CoV-2 sequence data, the
metadata associated with each sequence are minimal, limiting interpretability [67]. The
amount of available metadata varies substantially by country (Figure 2). The United States
and the United Kingdom have generated and uploaded the largest number of sequences to
GISAID, but only ~50% and <5%, respectively, have associated sex and age metadata. On
the contrary, Slovakia and Slovenia have high levels of associated age and sex metadata
but have provided limited sequence data relative to the rest of the world. One way to
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combat compartmentalization is to establish strategic interdisciplinary collaborations by
identifying data management commonalities and creating flexible data use and sharing
agreements that allow for the timely sharing of data while protecting patient privacy [68].
Another solution would be for widely adopted systems, such as GISAID or Genbank,
to require minimally standardized, de-identified, and structured metadata requirements.
Metadata standards such as the Minimum Information about any (x) Sequence (MIxS)
as developed by the Genomic Standards Consortium (GSC) provide guidelines for what
metadata should be shared with each sequence to enable an in-depth analysis of these
sequences [69,70].
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Another major issue is the lack of standardization in data-sharing practices. Interoper-
ability in healthcare research has been a longstanding issue, but the COVID-19 pandemic
brought this problem to the forefront [71,72]. Before the pandemic, the development of
the FAIR (Findable, Accessible, Interoperable, and Reusable) data principles as well as the
establishment of the Research Data Alliance (RDA) began the movement toward integrated
data management practices [73,74]. However, the rapid onset of the pandemic exposed the
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lack of readiness and data-sharing infrastructure in our current health institutions. The
variation of data management pipelines, inconsistencies in data fields, and lack of adher-
ence to standardized record-keeping practices resulted in a lack of interoperability between
and even within institutions that greatly complicated the compilation of comprehensive
metadata [69]. Although there have been previous guidelines for the standardization of
health information (i.e., HL7, FHIR, LOINC, SNOMED, ICD-9/ICD-10, etc.) [75], these
guidelines are often ambiguous and are not widely implemented by hospital systems
across different countries [76]. Even within a standardized data system, heterogeneous case
definitions and differences in healthcare professional training could alter how a patient is
an input into electronic health records [77,78]. Wider adoption of existing frameworks for
interoperability could reduce issues of data linkage. For example, SNOMED (Systemized
Nomenclature of Medicine) is a mature framework for clinical terminology that seeks to
collate multiple, related medical concepts into one broader, interpretable medical term [79].
It is often used to overcome interoperability issues due to its ability to provide standardized
terminologies [80]. New SNOMED terms could be adapted to COVID-specific symptoms
that would allow for translatable knowledge between institutions [71]. It also provides a
standardized dataset that could be leveraged for machine-learning-based algorithms or
other analytical approaches to extract clinical insights.

Beyond compartmentalization and lack of interoperability, administrative and po-
litical roadblocks have hindered data sharing and/or record linkage. To protect patient
privacy, different countries, regions, and institutions have different data management
policies that can vary widely and can often present insurmountable barriers to data shar-
ing. As one example, the European Union has adopted policies such as the General Data
Protection Regulation (GDPR) that place firm restrictions on the international sharing of
health data [81]. Policies that are too burdensome can hinder public health innovation and
geographically restrict discoveries that must then be independently assessed on a global
scale [82]. Many policies likewise require patient consent for even minimal data sharing.
This is often not possible when working with retrospective biobanks while prospective
sampling and consenting are resource-intensive. Furthermore, recent studies have found
that an increasing number of patients have concerns over sharing their personal health
information (PHI) [83], which ultimately results in the withholding of information from
the provider and an unwillingness to consent to any data-sharing policies. Data sharing
from LMICs is complicated further by a lack of trust, inequitable distribution of resources,
and diminished returns for contributions [84,85]. In the long term, these issues could be
addressed through the establishment of pre-existing protocols for patient data collection,
consenting, and sharing as well as the development of international data-sharing con-
sortiums that can easily share data across international borders. Additional guidance on
global data sharing towards normalized standards for PHI handling and the protection
of patient privacy would further minimize administrative burden. In the meantime, addi-
tional analysis methods are currently being developed to enable statistical modeling in the
absence of direct data sharing. For example, federated learning is a new infrastructure to
train machine-learning algorithms on data without the actual exchange of data itself [86].
The algorithm processes data locally and only model characteristics are transferred across
different sites, hence, bypassing the data-sharing governance and privacy rules. In the
context of genomic surveillance, models trained to predict severity could be transferred
across institutions to be continually refined by the additive power of increased sample size.
This model could prove to be very powerful and robust if it were to leverage existing data
from multiple institutions across the globe.

5. Reporting

The fourth step in genomic surveillance is data dissemination and reporting to public
health or international governing entities. The reporting hierarchy begins with research
institutions and genomic surveillance centers that relay molecular findings to local public
health organizations, disseminate sequence data through public repositories, and publish
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research studies in open-access journals. Ultimately, these data are collated and reviewed
by national and transnational entities, such as the Centers for Disease Control (CDC) in the
United States or the WHO, where the body of evidence is assessed by public health experts
and translated into messaging and policy recommendations. Identifying components
from successful pre-COVID-19 infectious disease reporting (i.e., timeliness, automation,
completeness in data, etc.) has helped to define metrics to evaluate and strengthen our
current surveillance systems. For example, a mixed-methods approach was used to evaluate
the national reporting of epidemiologic data handled by the Indonesian Early Warning
Alert and System from 2017 to 2019. This study identified completeness and timeliness as
critical components to successful reporting, but this was contingent on robust infrastructure
and technical expertise [87]. Many of these challenges persist including variability in
the timeliness of reporting genomic data, overly centralized data flows that exclude self-
reporting mechanisms, and ineffective communication strategies.

The timeliness of data reporting to relevant public health institutions during the pan-
demic has varied considerably across the globe, highlighting a key barrier to the real-time
surveillance of pandemic threats. When assessing surveillance reporting using the CDC’s
“Updated Guidelines for Evaluation of Public Health Surveillance” system, collection
to submission time (CST) in Nigeria ranged from 24 h to two weeks in 2020–2021 [88].
However, other regions of the globe such as Hong Kong and Qatar reported much more
variable CSTs ranging from 24 h to over 1 year. The reasons for delayed reporting within
national surveillance systems can be attributed to infrastructural limitations, especially in
LMICs, and the lack of a coordinated data reporting plan that fails to escalate local-level
surveillance data. In contrast, many higher-income countries, such as the United Kingdom,
have had consistently lower CSTs (as fast as three days for 76.6% of all cases) [89], which
may be attributed to strong investments in genomic surveillance and a centralized public
health system [90]. In general, we see a trend where higher-income countries tend to have
shorter CSTs than LMICs (Figure 3). As a consequence of variable reporting, the delayed
identification of emerging variants within populations with high CST leaves global efforts
susceptible to poor preparation for new waves of cases from emerging variants. While
increased funding, structured incentives, and defined reporting hierarchies may help to
minimize CST, continued evaluation of surveillance systems using quantifiable and compa-
rable metrics will be required to identify other key variables to improve the timeliness of
genomic surveillance data reporting [91].

Most reporting workflows are centralized through clinical care centers and testing sites,
but this structure relies on patient encounters that may not be representative of the broader
population. Especially with the increased availability of at-home testing and decreased
risk of severe disease due to COVID-19, the reliance on traditional reporting routes may
underestimate the overall incidence and exclude critical segments of the population. Indeed,
both traditional surveys and immunological screening suggest that the incidence of COVID-
19 was higher than reported throughout the pandemic. One strategy to mitigate this would
be to adopt strategies that enable self-reporting of infection and outcomes. Indeed, the use
of machine learning to harvest informal self-reporting data has been explored as a method
to improve accurate case estimations. A US retrospective study surveying self-identified
COVID-19 infections on Twitter suggested higher-than-reported case counts, highlighting
the need to account for non-canonical means for measuring incidence [92]. The use of
self-reporting to expand contact tracing using mobile devices has also proved to be effective.
For example, the Taiwan CDC’s Central Epidemic Command Center launched a self-report
contact tracing system to relay information to epidemic prevention coordinators to limit
community spread [93]. In addition, self-reporting could be leveraged to complement or
reinforce current reporting systems by tracking patients’ post-treatment or re-infection
status. Although self-reporting would assist in the accurate estimation of case counts
and targeted follow-up, many genomic and clinical gaps in understanding would remain
dependent on health system encounters.
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Beyond variable timeliness and rigid reporting workflows, effective communication
of surveillance data to a non-expert audience remains a critical challenge to a successful
reporting strategy. The messaging platforms used to relay surveillance information can
broadly be categorized into: (1) platforms curated by and targeted towards specialists
for SARS-CoV-2 information (i.e., GISAID, Nextstrain, or Pubmed), (2) data tracking and
messaging platforms curated by specialists and targeted towards general audiences (i.e., the
New York Times Data Tracker, CDC website/press releases, the John Hopkins Coronavirus
Resource Center, the Yale SARS-CoV-2 Genomic Surveillance Initiative, etc. [94]), and
(3) social media platforms that facilitate conversations about SARS-CoV-2 information
among the public. While social media platforms such as Twitter have proven to be a feasible
outlet for public health messaging given appropriate monitoring and sufficient public
engagement [95], they have also enabled the spread of misinformation that has greatly
complicated public health responses in some countries. The expansion of mobile phone
network messaging has also proven to be an effective tool for reporting and public health
messaging in response to COVID-19 and other infectious disease outbreaks [96], especially
in LMICs [97,98]. Lastly, communication among molecular surveillance experts in different
sectors plays a crucial role in refining and relaying accurate public health information. One
notable successful collaboration between those performing molecular surveillance and
public health figures is in the COVID-19 Genomics UK (COG-UK) consortium launched
in March 2020 [63]. This consortium collaborated with the National Health Service (NHS)
and the Scientific Advisory Group for Emergencies (SAGE) to generate weekly datasets
that focused on presenting digestible datasets to multiple stakeholders. Overall, successful
communication—even among trained molecular surveillance specialists—is pivotal to
streamlining reporting efforts.
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6. Public Health Response

The fifth and final step in genomic surveillance is to inform an effective public health
response. Technological and bioinformatics advances in pathogen genomics present a
unique opportunity to utilize molecular epidemiology for the enhancement of public health
responses. In the COVID-19 pandemic, effective genomic surveillance pipelines have
proven to be essential in promoting evidence-driven public health messaging and inter-
ventions. Ideally, an all-encompassing, surveillance-informed intervention strategy would
reflect benefits across the essential public health services framework [99]. This framework
is composed of actionable steps to achieve effective strategies that indiscriminately promote
health across all populations and emphasizes four focus areas: (1) assessment, (2) policy
development, (3) assurance, and (4) equity (Figure 4). Previous scholars have documented
how inequities in genomic surveillance during the COVID-19 pandemic can be attributed
to the lack of foundation and/or support in one or more of these essential service areas [99].
Specifically, these studies have pointed to the negative influence of neglected infrastructure,
siloed institutions with disjointed public health messaging, and improper intervention
strategies to mitigate the spread of infection on genomic surveillance efforts. Further-
more, the lack of surveillance in resource-limited countries and the lack of infrastructure to
support this work in under-sampled populations highlight areas that could benefit from in-
ternational collaboration and capacity-building efforts. To simplify this discussion, we will
explore current limitations using the public health services framework and evaluate current
ongoing efforts that incorporate molecular surveillance with public health assessment and
policy development to increase equity in public health responses to disease outbreaks.
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6.1. Assessment

Essential public health services start with assessment, including assessing risk, iden-
tifying high-risk populations, and understanding public health behaviors that increase
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transmission. Assessing the global disease burden of COVID-19 and identifying risk factors
that increase the incidence or severity of disease rely heavily on molecular diagnostics and
genomic surveillance. Without proper assessment, all downstream actions are limited and
may not target appropriate audiences. Early in the pandemic, clinical, demographic, and
epidemiological datasets were leveraged to identify routes of transmission and high-risk
populations for infection and severe disease outcomes (i.e., older age, higher body mass
index, etc.). Transmission models and identification of high-risk populations were then
incorporated into public health assessments to inform best practices. For example, surveil-
lance and modeling studies in national [100] and multi-national [101] cohorts were crucial
to inform public health policy on how to limit transmission in long-term care facilities
(LTCFs) and healthcare workers (HCWs). The WHO’s Mass Gathering COVID-19 Risk As-
sessment tool leverages real-time epidemiology data and genomic surveillance information
to enable risk evaluation, recommend mitigation measures, and suggest communication
strategies [102].

Periodic reassessment of risk as new viral variants emerged was critical to inform the
implementation of mitigation measures and public health policies designed to limit disease
burden. For example, the increased transmissibility of the Delta variant resulted in revised
policy recommendations for indoor masking [103–106] while enhanced immune escape by
the Omicron variant resulted in updated vaccine recommendations.

Low-socioeconomic-status communities have limited access to healthcare [107], which
subsequently limits access to testing. As a result, these communities were under-sampled
and are under-represented in surveillance efforts [108]. Under-sampling of these popu-
lations could negatively bias results to exclude the effects of social determinants that are
correlated with disease severity and to skew public health responses due to inaccurate
representations of the population [109,110]. Moving forward, increasing gaps in sequencing
data availability for multi-center modeling, especially in low-income communities, are
likely to impede further public health assessment [111].

6.2. Policy Development

Surveillance systems aim to provide accurate and high-quality data in real-time to
inform multiple stakeholders with the hope of influencing public health policy develop-
ment. However, the timeliness in which surveillance information is reported to appropriate
agencies and the public can have a large influence on the effective implementation of policy
and public opinion [112]. Likewise, metadata completeness and the interconnectedness of
surveillance systems play critical roles in informing policy. These components have previ-
ously been reported to be obstacles in prior surveillance systems globally, and have been
re-identified during the COVID-19 pandemic as an area requiring improvement [113]. The
mode of health messaging dissemination is as important as the quality of the surveillance
data being reported [114]. Public health briefings, social media platforms, and traditional
media such as news stations and radio are common ways in which public health recom-
mendations are disseminated to the public and strengthen policy development [115].

Several key instances of COVID-19 surveillance influencing policy development show-
case its potential to limit incidence. In Germany, routine national surveillance overlapping
with periods of non-pharmaceutical interventions (NPIs), such as restrictions on mass-
gathering events and targeted public lockdowns, demonstrated real-time disruption in
transmission dynamics [116]. Critically, assessing the impact of NPIs on infectious disease
transmission was dependent on ongoing surveillance. Similarly, changes in public policy
can have impacts on the effectiveness of genomic surveillance strategies and reported
incidences. For example, in July 2020, contact tracing policies in South Sudan were relaxed
to test only symptomatic cases, resulting in substantial under-reporting of incidence [117].
Different methods of public health governance, whether they be centralized or decentral-
ized (i.e., unilateral vs. shared decision-making), also impact how public health policy is
implemented. The US has distributed public health governance through approximately
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59 health departments with mixed centralization models [118], whereas other nations such
as Australia have a centralized and unilateral decision-making process.

The strong association between public perception and its influence on public policy
development and adherence has been documented in multiple accounts [119–121]. By far,
the largest contributor to the public perception of COVID-19 relies on the pillar of informing,
educating, and empowering individuals to engage in safe practices. On a global scale,
this requires targeting a broad range of stakeholders in addition to the public. Improper
surveillance can skew reported case incidences or result in spurious associations that can
result in a cascade of misinterpretation and inaccurate data dissemination. During the
COVID-19 pandemic, the spread of misinformation has been amplified through digitally
enabled platforms in what is known as an “infodemic” [122]. Future strategies to avoid
molecular surveillance misinformation should involve partnerships with social media
outlets to aggregate data on misinformation spread [123].

6.3. Assurance

Public health assurance encompasses the enforcement of policies, linking policies to
care, promoting a well-informed workforce, and evaluating current strategies [124]. Assur-
ance can be further described as the reinforcement of developed policies and evaluation
of whether implemented changes and surveillance systems met their objectives. There-
fore, public health assurance requires a constant reassessment of molecular surveillance
objectives, methods, and technology to optimize data-to-public health benefits. Overall,
assurance, as it relates to SARS-CoV-2 genomic surveillance, is ongoing as contextualized
by the roadblocks and limitations present at each stage discussed above. It should be noted
that the routine monitoring of surveillance performance has historically strengthened other
systems, such as the National Human Immunodeficiency Virus (HIV) Surveillance System
and the National Notifiable Disease Surveillance System (NNDSS) in the United States [125].

6.4. Equity

Global genomic surveillance efforts are not immune to exclusionary practices that
prevent equitable collaboration and representation. Prioritization of equity in both global
surveillance and the public health response is required to achieve inclusive and sustain-
able impacts on the broader community. Equity in global genomic surveillance involves
identifying vulnerable and high-risk populations that are either (1) under-sampled in
surveillance systems or (2) more susceptible to worsened clinical outcomes. As previously
mentioned, variant under-sampling is a current obstacle that prevents us from accurately
understanding the viral landscape in different populations. Similarly, under-sampling of
vulnerable and high-risk populations undermines public health intervention effectiveness,
as under-reporting can result in a delay in identifying reservoirs of infection or emerg-
ing variants. The Economic Community of Central African States (ECCAS), composed
of 11 central-African nations, found that only 0.9% of all reported cases were actively
sequenced and reported from the region [126]. The current sampling of these populations is
not representative of these central-African nations, which resulted in the delayed reporting
of the emergence of the Eta variant in the region in late 2020 [127]. Even within the United
States and the United Kingdom, the countries that have contributed the most sequences to
the GISAID repository, there are geographic locations that are under-sampled in proportion
to their population (Figure 5). This is reflective of intranational inequities and policies that
require monitoring and active intervention to bolster an equitable public health response.
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Achieving equity in the context of international research during the SARS-CoV-2
pandemic requires proper evaluation of key obstacles that can hinder surveillance. Fund-
ing, authorship, trust, recognition, and infrastructure support are recognized as critical
components of successful international collaboration [128]. Respect for cultural beliefs and
practices in international collaboration must also hold equal importance as the technical
aspects needed for research and public health interventions [129]. As opposed to relying
on outsourcing technical expertise and resources to high-income countries, collaborations
such as the COVID-19 Clinical Research Coalition (CRC) strive to equip LMICs to perform
genomic surveillance in their countries [130]. This instance of greater capacity building
requires financial assistance from external sources including international agencies, aca-
demic institutions, and industrial partners. Collaborative efforts that do not equip LMICs
with infrastructural support or building capacity for local researchers to drive surveillance
and evidence-driven public health fall short of sustainable and mutually beneficial col-
laboration. Overall, equity in the context of both the population at risk for COVID-19
as well as stakeholders involved in surveillance and population-level interventions must
be considered.

7. Future Directions and Conclusions

The scope and far-reaching impacts of the COVID-19 pandemic have refocused inter-
national attention on the importance of genomic surveillance and pandemic preparedness.
Genomic surveillance of SARS-CoV-2 has played a critical role in understanding the im-
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pact of viral evolution on global transmission dynamics, pathogenesis, and therapeutic
intervention. As discussed, although this pipeline has been continually refined during
this pandemic, there is still much left to be improved on. Most notably, for an effective
global response to a global pathogen, the gap between developed countries and LMICs
needs to be addressed. Failure to properly allocate resources, build capacity, and foster
local expertise in LMICs for genomic surveillance has been a long-standing issue that has
continued through the COVID-19 pandemic. The lack of pre-existing networks for data
sharing and the lack of standardized practices likewise are not unique to this pandemic
and are larger issues that need to be addressed for future pandemic preparedness. The
emergence of the virus from a yet unidentified animal reservoir further highlights the
continued lack of genomic surveillance in animal species. As urbanization, globalization,
and climate change increase the threat of zoonotic transmission and rapid spread, more
resources should be dedicated to early detection of potential pandemic threats.

Regardless, no matter what improvements are implemented, genomic surveillance is
inherently reactive; after the virus has mutated, researchers race to characterize its viral
evolution and consequential phenotype. A proactive approach to understanding the role
of viral variation on viral replication and immune escape could someday serve as a gold
standard for an expedited understanding of phenotypic consequences. For example, Starr
et al. experimentally measured how all amino acid mutations in the SARS-CoV-2 Spike
protein would affect folded protein expression and its associated binding affinity to ACE2
to predict mutations that would enhance transmissibility [131]. Similarly, Obermeyer et al.
developed a hierarchical Bayesian regression model to identify mutations associated with
viral fitness measured by the growth rate of each lineage and arising mutations [132].
Likewise, Maher et al. used statistical modeling to identify the mutations that could result
in future SARS-CoV-2 variants of concern [133]. Predicting and cataloging variants of
concern before they arise would enable the preemptive design of therapeutics and public
health measures to be employed at need. Much like efforts to prepare for future pandemic
threats, proactive tracking would enable preparation against new pandemic variants.
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