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Abstract: During the last phase of HIV viral production, nascent HIV virions acquire a fraction of 

the cellular lipid membrane to create the external lipid envelope, a process by which cellular 

proteins present on the surface of the infected cell can be incorporated along with Env trimers. 

Interestingly, several studies indicated that these incorporated host molecules could conserve their 

biological activity and consequently contribute to HIV pathogenesis either by enhancing the 

infectivity of HIV virions, their tissue tropism or by affecting immune cell functions. The following 

review will describe the main approaches used to characterize membrane bound host molecule 

incorporation into HIV virions, the proposed mechanisms involved, and the role of a non-

exhaustive list of incorporated molecules. 
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1. Introduction 

Since the beginning of the epidemic, more than 84.2 million individuals have been 

infected by HIV. In 2021, about 38.4 million people have already died from HIV-related 

diseases (https://www.who.int/gho/hiv/en/) (accessed on 15 of August 2022) and 37.6 

million people were living with HIV infection, but none of them were able to naturally 

clear the infection. Indeed, in the absence of treatment, 99% of HIV-infected people 

experience a gradual decline in their CD4 T cell count. When the CD4 T cell count drops 

to around 200 cells/mm3 of blood, these individuals enter the final stage of the infection, 

the acquired immunodeficiency syndrome (AIDS), eight to ten years after infection [1-3]. 

At that stage, the immune system collapses and is no longer able to protect individuals 

from opportunistic pathogens, and HIV-infected individuals ultimately die from 

infections or cancers [1, 4]. 

The reasons for this extremely efficient way for HIV to resist to the pressure exerted 

by the immune system probably reside in complex immuno-virological mechanisms [5-

9]. The functional impairment of HIV-specific CD4 and CD8 T cells (reviewed in Fenwick 

et al., 2019 [7]), the difficulty in generating broadly neutralizing antibodies by HIV-

specific B cells (reviewed in Havenar-Daughton et al., 2017 [8]), as well as the ability of 

the virus to establish a viral reservoir capable of remaining in a latent state, and therefore 

invisible to the immune system (reviewed in Cohn et al., 2020 [9]) contribute to the 

persistence of the virus [7-9].  

Since HIV is an enveloped virus, HIV virions can incorporate host molecules located 

either at the membrane or at the cytoplasmic levels during the production process [10-16]. 

Interestingly, several studies indicated that these incorporated molecules could still 

harbor biological activities [17-19].  

A mathematical model estimated that between 100 million and 100 billion viruses 

could be produced and eliminated from the body of an HIV-infected individual every day 

[20]. Due to the extent of viruses produced and the capacity of HIV virions to incorporate 
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host molecules during the budding phase, several studies focused on their potential 

impact during HIV pathogenesis. The present review therefore proposed to focus on the 

main experimental approaches used to identify membrane bound host molecules 

incorporated into HIV virions, the mechanisms involved in the incorporation process and 

the potential role of selected incorporated molecules in HIV pathogenesis. 

2. Experimental Strategies to Characterize Host Proteins Incorporation into  

HIV Virions 

The deep structural characterization of viruses has, for a long time, been limited by 

their relatively small size. However, in the last decades, the development of novel 

technological tools allowed for a better characterization of HIV virion structures as well 

as their protein compositions. Because each technique has its advantages and 

disadvantages; e.g., the sensitivity for mass spectrometry, the robustness for western blot 

and electron microscopy, and the small amount of required protein for immune capture 

(Figure 1), most recent studies proposed combined approaches to characterize the host 

protein spectra of HIV virions and their potential factors during HIV pathogenesis [21, 

22]. The following section will focus on the characteristics, advantages, and limitations of 

the major experimental strategies used to characterize HIV virion envelope composition.  

Mass spectrometry (MS) (Figure 1a) or coupling methods such as liquid 

chromatography–MS (LC-MS) are considered gold standards for the characterization of 

the protein composition of several viral sources [22-24]. Indeed, the high sensitivity in 

determining the protein quantity and composition of several viruses has improved the 

understanding of the viral structure and host protein interactions [21, 22, 24]. In addition, 

MS is actually the only experimental strategy that does not require prior knowledge of a 

virus-incorporated host factor [22]. However, this technique has mostly been used on HIV 

virions produced in vitro from cell lines and not on HIV virions collected directly from ex 

vivo samples from body fluid studies [25]. Even though MS has been a pioneer tool in the 

identification of host molecules incorporated into HIV virions, no insights into the host 

protein profile of a single virion or the co-incorporation of host molecules or the precise 

localization into the lipid envelope have been obtained, as the analyses were performed 

on bulk viral preparations.  

Over the past decades, electron microscopy (Figure 1b) became a powerful approach 

for the characterization of the structural organization of HIV virions. While mature HIV 

virions could be easily recognized by the specific conical shape of the capsid using 

electron microscopy, the characterization of host protein incorporation into the HIV virion 

lipid envelope requires the use of a specific immunogold-labeling [26, 27]. Immunogold 

staining of cellular sections infected with viruses involves low level of fixation, which may 

result in the loss of HIV viral structure and limit the visual characterization of HIV virions 

in these preparations. The development of novel approaches to distinguish several 

proteins on an individual virion by electron microscopy was therefore developed and 

illustrated by the recent use of dual immunogold-labeling [19, 28]. This approach is based 

on the use of two primary antibodies (e.g., p24, Env, or host proteins) labeled beads 

harboring distinct sizes, distinguishable by electron microscopy. This approach classically 

allows the determination of the co-expression of the two proteins (viral or host proteins) 

on individual HIV virions [28]. This approach may also provide further information on 

the localization (e.g., envelope, capsid, matrix) of cellular proteins into HIV virions.  

The immuno-capture assay is a highly specific approach that includes two phases 

(Figure 1c). The first step consists of the capture of viral particles that can be achieved 

using either beads or plates coated with antibodies against the proteins of interest. The 

second step is usually based on the quantification of either p24 or HIV RNA to determine 

the quantity of viral particles captured by the specific antibodies [12, 29, 30]. Several 

studies used this approach to confirm the incorporation of host proteins (e.g., Intercellular 

Adhesion Molecules-1 (ICAM-1), HLA-DR, and α4β7) [12, 29, 30]. However, one of the 



Viruses 2022, 14, 2523 3 of 13 
 

 

limitations of this technique is the detection of only one protein at a time, preventing the 

study of the co-incorporation of various host molecules.  

 

Figure 1. Methods to characterize host protein incorporation into HIV virions: (a) mass spectrometry 

is the gold standard to deeply characterize protein compositions of viral preparations; (b) electron 

microscopy and more recently the use of immuno-gold labeling are becoming standard tools to 

characterize host protein interaction/incorporation in HIV virions; (c) the immuno-capture of HIV 

virions is a two-step process; first, the capture using beads or plates coated with mAbs and second, 

the detection of either HIV RNA or p24 to quantify HIV virions; and (d) flow virometry represents 

a promising tool, where HIV virions could be detected and characterized using fluorescently labeled 

mAbs. 

Until recently, the use of flow cytometry to characterize HIV virions was limited due 

to the difficulties of conventional flow cytometers to detect particles smaller than 400 nm, 

knowing that the size of HIV virions is comprised between 90–120 nm. However, in the 

last few years, many efforts were invested in the development of more sensitive 

instruments and the most recent studies are able to efficiently distinguish individual HIV 

virion using a new approach called flow virometry (Figure 1d) [31-35]. Most of these 

studies used fluorescent-labeled in vitro produced HIV virions to facilitate the 

discrimination between the background noise and viral populations [36, 37]. To 

circumvent the small size of HIV virions and to increase the purity of viral preparations, 

one study proposed an indirect method by first isolating viral particles using an immuno-

capture assay by small magnetic beads (15 nm) coated with gp120 antibodies and second, 

the HIV virion-bead complex detection using flow cytometry [32]. This study confirmed 

the presence of two cellular proteins known to be incorporated into HIV virions (i.e., HLA-

DR, and LFA-1) and was able to distinguish distinct viral subpopulations based on the co-

expression of these two proteins [32]. This method has several advantages; the estimation 
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of the amount of cellular proteins expressed by a single virion as well as the potential co-

expression of different proteins, allowing for the differentiation of distinct viral 

populations based on their host protein incorporation signatures. Indeed, the flow 

virometry method could represent a considerable advance in virology research and may 

echo the technological shift that flow cytometry has brought to cellular immunology. 

3. Mechanisms of Host Protein Incorporation 

Pioneer studies initially proposed that host protein incorporation resulted from a 

passive mechanism depending on the quantity of proteins expressed on the cell surface 

and located at close proximity to the budding site (Figure 2a) [38].  

In agreement with this paradigm, initial findings proposed that during the viral bud-

ding process through the lipid rafts, proteins present on the cell surface were passively 

incorporated into the HIV virion envelope [39, 40]. 

However, more recent studies have demonstrated that the protein levels on HIV-in-

fected cell surfaces did not necessarily correlate with host protein profiles of HIV virions 

[11, 41]. In this context, more recent studies proposed that in addition to a passive mech-

anism (Figure 2a) and to the enrichment of host molecule incorporation into HIV virions 

due to the composition of anchored proteins within the lipid raft (Figure 2b), host mole-

cules could also be incorporated via an active process involving direct interactions be-

tween host molecules and viral proteins (Figure 2c) [42]. The next section will, therefore, 

underscore the proposed mechanisms of host protein incorporation and host protein ex-

clusion [41, 43].  

HIV can actively remodel the lipid composition of the cell membrane at the budding 

site (Figure 2b). The lipid composition remodeling is usually divided into two phases; the 

first one consists of the formation of a liquid order (Lo) domain occurring when Gag pol-

yproteins start to oligomerize at the cell membrane [44]. Indeed, Gag polyprotein has a 

high affinity for Phosphatidylinositol-4,5-bisphosphate (PIP2) that is enriched at the site 

of assembly and can mediate the clustering of specific GPI-anchored lipid raft within vi-

rions envelope to facilitate the incorporation of several proteins (e.g., CD59) [44-46]. The 

second phase is also mediated by Gag and relies on the curvature of the plasma membrane 

at the assembly site [44]. The enrichment of host proteins with high affinity to the Lo phase 

domain increases protein composition differences and membrane thickness compared to 

the bulk plasma membrane [44]. Consequently, these changes result in an increase in the 

line tension, therefore inducing the membrane domains to form circular zones, leading to 

the formation of budding vesicles enriched in host proteins with high affinity to the Lo 

domain [44, 47]. In this context, while the remodeling of the lipid raft at the budding site 

involves an active mechanism mediated by viral proteins, the incorporation of host mole-

cules might reflect an indirect consequence of this process.  

The selective acquisition of host proteins might also occur as an active process in-

volving the interaction with host molecules and viral proteins (e.g., Gag or Env). Gag pol-

yprotein consists of four fragments: p17 (MA), p24 (CA), NC, and p6. The p17 domain 

was demonstrated to be crucial for the incorporation of Env, and p17 and NC have been 

shown to be potential players in protein incorporation [42, 48-50]. Notably, the incorpora-

tion of host molecules (e.g., HLA-DR) has also been shown to be dependent on Env incor-

poration, even though this observation is still a matter of debate [51, 52]. In this context, 

two independent studies indicated that the interaction of Gag polyprotein with host mol-

ecules (i.e., ICAM-1 and PD-L1) promotes their incorporation (Figure 2c) [19, 42]. 
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Figure 2. Mechanisms of host protein incorporation into HIV virions: (a) passive incorporation; no 

differences in protein (e.g., HLA-DR in blue) levels between the cellular and viral envelope: and (b) 

lipid composition remodeling (grey fragments) and surface curvature promote the incorporation of 

specific proteins (e.g., CD59 in red) that have a transmembrane domain with high affinity to the 

liquid-order phase generated by HIV virions. (c) Interaction between HIV proteins (e.g., Gag poly-

protein) (violet) and the intracytoplasmic tail of host proteins (e.g., ICAM-1 in green). 

In these cases, the intracytoplasmic tail of host molecules was shown to interact with 

the matrix (MA) domains of Gag polyprotein thus, driving the active incorporation into 

HIV Virions [19, 42, 53]: Of note, the interaction between the host proteins and Gag can 

remain stable even after the complete maturation of HIV virions. A better understanding 

and characterization of specific motifs governing the interactions between Gag polypro-

tein and host molecules would be of great interest to prevent/force the incorporation of 

host molecules that might have a beneficial/detrimental role during HIV pathogenesis.  

Interestingly, some host proteins (e.g., CD45, CD4, and CD80) can be actively ex-

cluded from HIV virion lipid envelopes [41, 54, 55]. Some authors proposed that this may 

rely on a mechanism similar to the one used by tetherin, an anti-viral protein known to 

prohibit HIV virions released during the late phase of the budding process [56]. In this 

model, the authors proposed that HIV Vpu protein could block the insertion of the GPI 

domain of tetherin into HIV virion envelope by preventing its co-localization with Gag at 

the plasma membrane, thus counteracting its potential anti-viral property on mature HIV 
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virions [57]. Whether or not such a mechanism also occurs for other host molecules re-

mains, however, to be determined. 

HIV virions can use two distinct pathways to bud out from infected cells. HIV virions 

can bud using the lipid membrane at the surface of cells to create their own envelope 

(Figure 3a). This mechanism mostly occurs in lymphoid cells but can also happen in my-

eloid cells [58]. Furthermore, HIV virions can also assemble in virus containing compart-

ment (VCC) in myeloid cells (Figure 3b) [59]. The different production pathways of HIV 

virions may partially explain the differences in host protein incorporation signatures ob-

served between HIV virions produced in lymphoid vs. myeloid cell lineages [25].  

 

Figure 3. HIV virion assembly and maturation routes: The assembly of HIV virions might occur 

either (a) using the lipid membrane at the cell surface, mostly in lymphoid cells (e.g., HLA-DR in 

blue) or (b) using virus containing compartments, mostly in myeloid cells (e.g., CD63 in green). 

4. Potential Influence of Host Protein Incorporation on HIV Pathogenesis 

Upon incorporation into HIV virions, molecules can retain their biological activity 

and mediate some effects during the course of HIV infection. Depending on the nature of 

the host molecules incorporated, several potential impacts were proposed on HIV patho-

genesis (e.g., HIV virions infectivity potential, cell attachment and immunoregulation) [12, 

17, 19, 29, 30, 60, 61]. The following section will, therefore, underscore the major potential 

influence of host molecules incorporation on HIV pathogenesis.  

4.1. Potential Influence on Promoting HIV Virions Interaction with Susceptible Cells 

HIV virion interaction with the host cell is mediated by the viral glycoprotein gp120 

interacting with the cellular receptor CD4, resulting in conformational changes in gp120 

and allowing the interaction with one of the two co-receptors, CCR5 or CXCR4 [62]. How-

ever, the adhesion to the target cell can be reinforced by host proteins incorporated into 

the HIV virion lipid envelope, which can increase the binding affinity [30, 63]. In this re-

gard, certain incorporated molecules were proposed to play a role in enhacing HIV infec-

tivity by promoting the direct interaction between HIV virions and susceptible cells (e.g., 
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HLA-DR) (Figure 4a), while others may increase HIV infectivity through indirect interac-

tion with follicular dendritic cells (FDCs) (e.g., ICAM-1) (Figure 4b), or with the extracel-

lular matrix of high endothelial venules (HEVs) (e.g., α4β7 or LFA-1) (Figure 4c) [12, 17, 

29, 30]. 

 

Figure 4. Host molecules incorporated into HIV virions influence virion-cell interactions. The incor-

poration of host molecules might influence HIV pathogenesis by promoting the interaction between 

HIV virions and susceptible cells. The incorporation of host molecules (e.g., ICAM-1) might promote 

HIV virion infectivity through: (a) the direct interaction with susceptible cells; and (b) trans-infec-

tion through the interaction with FDC. (c) Incorporated molecules (e.g., α4β7 and LFA-1) might 

promote HIV virion attachment to endothelial cells and thus enhancing the interaction with suscep-

tible cells either in homeostatic or inflamed environments. 

ICAM-1: ICAM-1 is an adhesion molecule expressed mainly on endothelial cells and 

is playing a crucial role in the migration of immune cells expressing LFA-1 to inflamma-

tion sites [64]. Furthermore, the interaction between ICAM-1 and LFA-1 is also known to 

create an immunological synapse between dendritic cells and T cells thus promoting their 

interaction [65]. ICAM-1 incorporation into HIV virions was proposed to be mediated fol-

lowing interactions with Gag viral protein [13] and promote HIV virion infectivity by in-

creasing virus attachment to susceptible LFA-1+ cells, thereby promoting the first steps of 

HIV replication cycle [17, 66, 67]. Indeed, no increase in infectivity was observed when 

LFA-1- cells were infected with ICAM-1+ HIV virions, thus supporting these findings [68]. 

ICAM-1 incorporation might also promote HIV virions rolling on susceptible cells to max-

imize gp120-CD4 interaction, enhance the interaction with the co-receptor CXCR4, and 

induce cytoskeleton-remodeling [66, 67, 69]. Furthermore, ICAM-1 incorporation into HIV 

virions might also favor trans-infection from LFA-1+ cells (e.g., FDCs) to susceptible cells 

in LNs germinal centers (GC) [70, 71]. 

α4β7: α4β7 is expressed on immune cells and has been described to play a funda-

mental role in T-cell homing towards the intestinal track through its interaction with 

MAdCAM-1 expressed on HEV in Peyer’s patches and the mesenteric lymph nodes [72]. 

A recent study based on SIV/SHIV-infected macaques demonstrated that the blockade of 

α4β7 reduced SIV/SHIV viral load both in plasma and gastrointestinal tissues and delayed 
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the time to viral rebound after ART interruption [73, 74]. The author subsequently pro-

posed that α4β7 mAbs might have acted directly on α4β7+ HIV virions interrupting key 

events of viral infection [12]. Using an in vivo model, they showed that the incorporation 

of α4β7 into HIV virions might play a role in promoting HIV virions accumulation to 

MAdCAM-1+ on HEV [12]. Notably, a higher proportion of α4β7+ HIV virions was ob-

served in plasma of viremic acute HIV-infected individuals compared to chronic HIV-

infected individuals [12]. Based on these observations, a clinical trial using α4β7 mAbs in 

ART-treated HIV-infected individuals investigated the potential impact on HIV viral re-

bound. Unfortunately, this study did not achieve the same promising results as the one in 

macaques, and no delay in viral rebound was observed [75]. Therefore, the role of α4β7 

mAbs in the therapeutic armamentarium for HIV cure remains debated. 

Other adhesion molecules were shown to be incorporated into HIV virions (e.g., 

LFA-1 and CD62L) and it has been proposed that they play a role in enhancing HIV infec-

tivity by promoting the interaction of HIV virions with susceptible cells through the in-

teraction with their respective ligands (i.e., ICAM-1 and CD34/MAdCAM-1) in various 

settings (e.g., homeostatic vs. inflamed environment) [76-79]. 

4.2. Influence of T and B Cell Responses 

Various incorporated molecules were proposed to impact immune cell function/acti-

vation (Figure 5), either by promoting B and/or T-cell activation (e.g., CD40L and HLA-

DR alone or co-incorporated with CD86) or functional impairment (e.g., PD-L1) [18, 19, 

60, 61, 80].  

HLA-DR: HLA-DR is one of the MHC class II molecules expressed mostly on anti-

gen-presenting cells (APCs) and is able to present peptides to CD4 T cells [81]. HLA-DR 

is also known to be upregulated on activated CD4 T cells [82]. HLA-DR was one of the 

first host molecules described to be incorporated into HIV virions. In addition to its role 

in increasing HIV infectivity through the enhancement of HIV virion fusion by the inter-

action of HLA-DR+ HIV virions with CD4, HLA-DR incorporation was proposed to influ-

ence T-cell function/activation [30, 38, 52, 83]. Interestingly, it was also suggested that 

HLA-DR+ HIV virions may have the capacity to present peptide epitopes to CD4 T cells 

and may modulate CD4 T-cell responses (Figure 5a) [60, 61, 63]. The consequences of this 

stimulation may depend on the co-incorporation of the co-stimulatory molecule CD86 and 

the nature of the peptide presented [60, 61]. Indeed, some authors proposed that HLA-

DR+ HIV virions might be sufficient to trigger T-cell proliferation, cytokine production, 

and apoptosis in vitro, while other studies proposed that HLA-DR+ HIV virions might not 

trigger complete CD4 T-cell activation and thus may prime these cells towards anergy [60, 

61, 63]. Another study proposed that HLA-DR+ HIV virions trigger T-cell apoptosis by 

increasing Fas and FasL expression levels [84]. 

PD-L1: The interaction between PD-1 on T cells and PD-L1 on APCs contribute to 

regulate T-cell proliferation and cytokines production and is proposed to play a major role 

in T-cell functional impairment [85, 86]. It was demonstrated that PD-L1 was actively in-

corporated into HIV virions from plasma of viremic HIV-infected individuals with a pro-

cess involving, at least in part, the interaction with HIV p17 matrix proteins. In this study, 

PD-L1+ HIV virions were able to significantly reduce T follicular helper (Tfh) cell prolifer-

ation and IL-21 production in vitro (Figure 5a), through the partial inhibition of T-cell 

signaling pathway [19]. Interestingly, the impact of PD-L1+ HIV virions on Tfh cell func-

tion ultimately translated into reduced IgG1 production from GC B cells in vitro (Figure 

5b) [19]. Therefore, in this study, the authors showed that PD-L1+ HIV virions may not 

only influence directly CD4 T-cell functions but also indirectly influence B-cell responses.  

CD40L: CD40L is a co-stimularoy receptors expressed on T cells that play a funda-

mental role by interaction with CD40 on B cells during B-cell maturation and differentia-

tion processes [87]. Several studies showed that CD40L+ HIV virions could interact with B 

cells and could induce unspecific B-cell proliferation, activation, and terminal differentia-

tion as well as IgG production, and IL-6 secretion (Figure 5b) [18, 80, 88]. Interestingly, the 
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quantity of IgG produced did not correlate with the presence or absence of Env but only 

depended on the presence of CD40L on HIV virion surface. The authors proposed that 

CD40L+ HIV virions might contribute to the hypergammaglobulinemia observed during 

the course of HIV infection [80, 88]. At the intracellular level, CD40L+ HIV virions were 

able to induce an activation of the NF-κB pathway, which was similar to the one observed 

using CD40 antibody stimulation. Furthermore, CD40L+ HIV virions might also contribute 

to the increase the infection rate of CD4 T cells when co-cultured with tonsillar B cells, by 

promoting the secretion of pro-inflammatory cytokines by B cells, providing a favorable 

micro-environment for HIV replication [88].  

 

Figure 5. Potential influence of host protein incorporation on T and B cell responses. The incorpo-

ration of host molecules might influence HIV pathogenesis by modulating T and B cell responses: 

(a) the co-incorporation of HLA-DR and CD86 into HIV virions may favor T-cell activation by in-

creasing NF-κB pathway. The incorporation of PD-L1 into HIV virions may favor T-cell functional 

impairment by inhibiting NFAT pathway; and (b) the incorporation of PD-L1 impacts B-cell func-

tions through an indirect mechanism, by impairment of Tfh cell functions, which in turn may fail to 

provide efficient B-cell support. The impact of incorporated molecules on B-cell functions might 

involve direct or indirect interactions. The incorporation of CD40L into HIV virions interacts with 

CD40+ B cells and may promote B-cell activation. 

5. Conclusions 

During the budding process, HIV virions can passively and/or actively incorporate 

functionally active host molecules, which may play an active role during HIV pathogene-

sis. The development of novel experimental strategies and the advance of new technolo-

gies will soon uncover the complexity of this phenomenon, opening the way to a better 

understanding of HIV pathogenesis. 
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