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Abstract: Cocktail is an easy-to-use computer program for mathematical modelling of bacteriophage
(phage) infection kinetics in a chemostat. The infection of bacteria by phages results in complicated
dynamic processes as both have the ability to multiply and change during the course of an infection.
There is a need for a simple way to visualise these processes, not least due to the increased interest in
phage therapy. Cocktail is completely self-contained and runs on a Windows 64-bit operating system.
By changing the publicly available source code, the program can be developed in the directions that
users see fit. Cocktail’s models consist of coupled differential equations that describe the infection of
a bacterium in a vessel by one or two (interfering) phages. In the models, the bacterial population can
be controlled by sixteen parameters, for example, through different growth rates, phage resistance,
metabolically inactive cells or biofilm formation. The phages can be controlled by eight parameters
each, such as different adsorption rates or latency periods. As the models in Cocktail describe the
infection kinetics of phages in vitro, the program is primarily intended to generate hypotheses, but
the results can however be indicative in the application of phage therapy.
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1. Introduction

The ability of bacteriophages to kill bacteria has attracted increased interest in recent
times. This is probably partly due to reports from clinics where they have been used
for decades as bactericidal agents in the treatment of various infections, so-called phage
therapy, but more recently also to a large number of studies of isolated phages (short for
bacteriophages) which in laboratory experiments have been shown to be able to effectively
kill bacteria in vitro, including antibiotic-resistant strains [1,2]. The increasing interest has
also led to experimental treatments of severe infections, being carried out at other clinics
than where they have traditionally been used for a long time [3,4]. The outcomes of clinical
treatments are nevertheless difficult to predict, depending on many factors. Both bacteria
and phages show an enormous variation between different clones and can change during
the course of treatment, which together with largely unknown pharmacokinetics and
pharmacodynamics results in treatments not being comparable and the effect of a certain
treatment not being predictable. Although the variation between clinical experiments is
very large, the combined results of them suggest that there is reason to continue studying
how phage treatments against bacterial infections can be optimised.

A large number of mathematical models have been developed to study the dynamics
between host organisms and their parasites, and bacteria–phages are no exception. De-
pending on the question, models use everything from evolutionary game theory (EGT),
for example, on the evolution of the life cycle of phages, or networks of bacteria’s genetic
changes after a bacteriophage infection (flux-balance analysis, FBA), but the most common
bacteria–bacteriophage models are reaction kinetic models [5] (and references therein). These
models essentially consist of coupled differential equations that describe the changes in the
bacterial and bacteriophage population sizes over time in a vessel given a set of parameters.

Viruses 2022, 14, 2483. https://doi.org/10.3390/v14112483 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v14112483
https://doi.org/10.3390/v14112483
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0003-0115-4151
https://doi.org/10.3390/v14112483
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v14112483?type=check_update&version=2


Viruses 2022, 14, 2483 2 of 14

In their simplest form, the models describe the titre of susceptible, infected and resistant
bacteria (classic SIR models) as well as the titre of the infecting bacteriophage. As mentioned
above, bacteria and phages are self-replicating entities that can both change genetically, in
the case of bacteria also phenotypically, through altered transcription [6,7]. Although simple
models can provide valuable information, many models are more elaborate (for a review,
see [8]). Several authors have contributed to the development of models that describe the
dynamics of systems with, for example, more than one type of virulent bacteriophage, the
formation of protective biofilms by bacteria or degradation of phages [9–13]. If models are
also to be able to describe the dynamics in vitro, for example, during phage therapy of a
human bacterial infection, it is also necessary to take into account the additional complexi-
ties that arise in interaction with human tissues and cells, for example, synergies between
the immune system and phages, in the killing of bacteria or neutralisation of phages and
phagocytosis by macrophages [14–17]. However, many of these in vitro interactions are still
largely unknown in detail [18].

The purpose of the Cocktail program is to model the infection dynamics of one, or a
combination of two, phage(s) infecting a bacterial species under varying relevant param-
eter settings, and in the latter case, to some extent, the interference between two phages
infecting at the same time. The aim is to supply an easier way to carry out modelling in
phage infection biology, e.g., for a better understanding of the complex dynamics during
phage therapy. Although the program is easy to use, the most important parameters are in-
cluded. The mathematical models are based on the basic models described, for example, by
Levin et al. [10], Gill [13], Lenski [19], or Levin and Bull [20] and some of the additions
discussed by Abedon [11]. It is thus possible in the program to also study the effect of
metabolically inactive cells or biofilm formation as well as the decay of bacteria and phages,
analogous to the action of an immune response (Figure 1).

Figure 1. The Cocktail user interface.
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As with all models, there has to be a balance between reality and generality. Hence,
it is important to stress that some parameters, e.g., temperature, pH, release of nutrients
from lysed bacteria or phages binding to cell debris, are not included in the program
and others, e.g., modelling of the dynamics of an immune defence or cells in biofilm, are
simplified. Therefore, the program should be seen as a tool for inducing hypotheses about
the population dynamics of bacteria and phages during a phage infection and not exact
predictions. This is especially important to stress regarding phage therapy experiments.
The program does not consider the in vitro pharmacokinetics and pharmacodynamics of
phages. Hypotheses will always need to be tested experimentally. Mathematical modelling
of phage infection in a chemostat may however set boundaries to what can be expected
while it can reflect the dynamics under ideal conditions (e.g., constant nutrient supply
and agitation).

The following information describes the models and calculations in more detail. The
basic condition is a bacterial population, growing in a vessel in a constant volume of
nutrient, which can become infected by phages at varying titres and times. Although the
volume is constant in such a chemostat, there could be an inflow and outflow of nutrients,
and an outflow of bacteria and phages.

2. Materials and Methods

An overview of symbols used for all bacteria, phages and parameters can be found
in Table 1. In the program, values can in general be given with three significant digits.
If the input should be an integer, it can be given either as that or in scientific notation,
e.g., 1,000,000 or 1.0 × 106. Real numbers should be given either in decimal or scientific
format with a point as the decimal separator. If the wrong format is used, values are auto
corrected in most cases. Hovering with the mouse pointer above a box displays a hint
on which values can be given. The tab key can be used for jumping between boxes and
it is also possible to use the up and down arrows in some boxes to increase or decrease
values in fixed steps. Please note that some parameter values should be given per hour and
others per minute, as shown by the default values (Table 1). Additionally, note that many
parameters are represented with their average values despite in reality being distributed in
time or size, e.g., the latent period will vary from cell to cell and not all cells will generate
the same burst size (produce exactly the same number of phages).

2.1. Bacteria

For most bacteria, the rate of growth mainly depends on the concentration of nutri-
ents (physical factors, e.g., temperature and the presence of various gases are of course
also important). In a closed system, while nutrients are consumed by the bacteria, their
concentration decreases and growth slows. Seen over time, in such cases the bacterial
growth becomes a logistic function of the concentration of nutrients. One of the most
widely used relationships between growth rate and nutrient concentration was formulated
by Monod [21]; the growth of bacteria depends on three parameters, µ = µmax × s/(Ks + s)
where the growth rate, µ, is a function of the maximum growth rate, µmax, a constant, K,
and the concentration of nutrients, s. This is also the basic growth function in the Cocktail
program where most parameter symbols and default parameter settings are taken from
Lenski [19] (Table 1). In the program, the max growth rate per hour is denoted as ψ, a real
number between 0 and 1.5 and the Monod half-saturation constant, K in µg/mL, is a real
number between 0.01 and 100. The reason for allowing this large span is the observed
variation among strains and experimental conditions when assessing the half-saturation
constant, but the values are usually between 0.1 and 10 µg/mL [22]. The concentration of
nutrients varies in a chemostat while the nutrients are consumed by bacteria and where
there is an inflow and outflow. It is denoted C in the program and the concentration of
nutrients over time equation is described in more detail below. While mutated bacteria
may suffer from reduced fitness, the growth rate of bacteria that have become resistant to
either one or both phages can be entered separately. Bacteria can become resistant to phage
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infection by mutation but only at cell division when new cells are produced. The mutation
rates should also be written as decimal numbers or in scientific notation. Note that bacteria
becoming resistant to both phages, A and B, occurs at a rate being the product of the rate of
mutation to resistance against A and B, respectively, and does not need to be specified. It
is also possible that the starting population of bacteria may contain resistant bacteria to
either one or both phages. These frequencies are also entered either as decimal numbers or
in scientific notation as above.

Table 1. Symbols and parameters.

Start Values

Symbol Description Default Allowed Range Unit

Bacteria
S Uninfected, susceptible bacteria 1 × 105 10−1 × 1012 CFU/mL
IA Bacteria infected by phage A - - |
IB Bacteria infected by phage B - - |

IAB Bacteria infected by phages A and B - - |
RA Bacteria resistant to phage A 1 × 10−7 0–1 × 10−2 |
RB Bacteria resistant to phage B 1 × 10−7 0–1 × 10−2 |

RAB Bacteria resistant to phages A and B 1 × 10−14 0–1 × 10−6 |
RAIB Bacteria resistant to A infected with B - - |
RBIA Bacteria resistant to B infected with A - - |

Sr Susceptible bacteria in a refuge 0 - |
RrA Bacteria resistant to A in a refuge - - |
RrB Bacteria resistant to B in a refuge - - |

RrAB Bacteria resistant to AB in a refuge - - CFU/mL
Parameters

ψ Growth rate of S 0.7 0–1.5 /h
K Monod constant 5.0 0.01–100 µg/mL *
ε Resource for division of one bacterium 2 × 10−6 1 × 10−8–1 × 10−4 µg/cell *
γ Bacterial decay rate 0 0–1 /h

µA Mutation rate for resistance against A 1 × 10−7 0–1 × 10−2 /cell div.
µB Mutation rate for resistance against B 1 × 10−7 0–1 × 10−2 /cell div.

ψRA Growth rate of RA 0.7 0–1.5 /h
ψRB Growth rate of RB 0.7 0–1.5 /h
ψRAB Growth rate of RAB 0.7 0–1.5 /h
σ Rate of bacteria into refuge 0 0–0.01 /min
ρ Rate of bacteria out from refuge 0 0–0.01 /min

C0 Available resources from start 100 0–1000 µg/mL *
C Resources flowing in from a reservoir 100 0–1000 µg/mL *
ω Flow rate 0.2 0–100 /h

Phages
Parameters

A Titre of phage A 1 × 108 0–1 × 1013 PFU/mL
B Titre of phage B 1 × 108 0–1 × 1013 PFU/mL
δA Adsorption rate of A 1 × 10−10 1 × 10−14–1 × 10−7 mL/min
δB Adsorption rate of B 1 × 10−10 1 × 10−14–1 × 10−7 mL/min
lA Latent period of A 30 1–60 min
lB Latent period of B 20 1–60 min
βA Burst size of A 100 0–1000 PFU/cell
βB Burst size of B 100 0–1000 PFU/cell
ϕA Decay rate of phage A 0 0–1 /h
ϕB Decay rate of phage B 0 0–1 /h

* The symbol for the micro prefix, “µ”, is denoted by “u” in the program user interface.

Bacteria can also decay from natural causes, and not just die from a phage infection. In
an in vitro situation, this would be, e.g., from neutralisation by antibodies or phagocytosis.
This results in an exponential decay Nt = N0 × e−γt where N0 is the number of bacteria
at time 0 and Nt at time t and γ is the decay rate constant. The decay is calculated as
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Nt+1 = Nt − (Nt × γ) in the equations below while this equals N0 × e−γt. γ is quite small
for bacteria growing in a chemostat, half of the population has decayed at t = ln(2)/γ, and
values of γ is generally around 0.02 per hour in nature [23,24]. The decay rate per hour, γ,
should be given as a real number between 0 and 1. Note that new bacteria resulting from
cell division each generation is excluded from decay.

2.2. Resources

The addition of nutrition is necessary for the growth of bacteria. The concentration of
nutrients is regulated by the flow into and out of the system at a rate ofω turnovers/hour.
The starting concentration, C0 in µg/mL, can be set independently from the concentration
of nutrients continuously flowing into the system, C in µg/mL. The flow in and out of the
system causes dynamic changes in the system while it is not just nutrients flowing out but
also bacteria and phages. The conversion efficiency, the resources used by one dividing
cell, is denoted as ε and given in µg/cell as a decimal number or in scientific notation, e.g.,
1.0 × 10−6. The equation for dC/dt is shown below in the following text.

2.3. Phages

Two virulent phages, A and B, can infect the bacterial population in different titres,
adsorption rates, and at different times while it is possible to let the bacterial population
grow for some time and add phages at three different time points. As with the bacteria,
phages can decay and be washed out of the system. Phages inactivated by binding to
lysed cell debris cannot be entered separately but must be included in the decay. Phage
populations grow by two additional parameters. When the latent period comes to an end,
infected bacteria burst open producing the burst size number of phages. Note that a fast
phage of one type, e.g., A, infecting a bacterium already infected with a slower phage, e.g.,
B, will produce only type A phages if its latent period is shorter than the remaining time of
phage B’s latent period. If only one phage is chosen to infect, the added titre of the other
phage should be set to 0. Additionally, if one wants to study a nonproductive infection, the
burst size should be set to zero.

2.4. Model Settings

A phage infection starts with the adsorption of the phage to receptors on the bacterial
surface. The adsorption can be set to happen by different mathematical models described
in the following text. In short, phages can adsorb one by one per unit time as described
in the primary adsorption “Standard” model below or several phages at once per unit
time according to the Poisson probability of infection. The “Poisson” setting hence allows
for multiple adsorption proportional to the multiplicity of infection. It is also possible
to adjust both models to allow adsorption to uninfected and non-resistant cells only or
to all susceptible and non-resistant cells irrespective if they have already been infected.
These secondary adsorption alternatives are chosen with the settings “Uninfected” or
“Susceptible”. An overview over which types of cells that get adsorbed and infected by
which phages is given in Table 2. Details and the mathematical background to all models is
given in the text that follows.

2.4.1. Primary Adsorption: Standard Model

Bacteria can divide and the population grow, but bacteria can also decay, be completely
resistant or mutate to resistance against phage infection (Section 2.4.3), hide in a refuge
(Section 2.4.4) as well as become infected by phages and lyse from the infection. In the
Cocktail program, this results in the possibility of thirteen types of bacteria being present
in the system at the same time (Table 1). As mentioned, phages A and B can infect at
different times and by different adsorption rates, and after varying latent periods lyse
infected bacteria resulting in a burst of phages of different size. Bacteria and phages can
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both flow out of the system. Starting with the concentration of nutrients, this results in the
following basic equations:

dC
dt

= (C0 − C)ω− εNψC
K + C

(1)

Table 2. Adsorbed A and B phages per unit time under the primary and secondary adsorption settings.

Primary Adsorption Setting Standard Poisson

Secondary Adsorption Setting Uninfected Susceptible Uninfected Susceptible

Phages adsorb one
at a time to
uninfected
non-resistant cells

Phages adsorb one at a
time to non-resistant cells

A number of phages adsorb
according to a Poisson
probability with lambda =
MOI to uninfected
non-resistant cells

A number of phages
adsorb according to a
Poisson probability with
lambda = MOI to
non-resistant cells

Bacteria Conceivably adsorbing phages
S = Susceptible A or B A or B A and B A and B
IA = Infected by A B A or B B A and B
IB = Infected by B A A or B A A and B
IAB = Infected by A and B - A or B - A and B
RA = Resistant to infections by A B B B B
RB = Resistant to infections by B A A A A
RAB = Resistant to infections by
A and B - - - -

RAIB = Resistant to infections by
A infected with B - B - B

RBIA = Resistant to infections by
B infected with A - A - A

Sr = Susceptible planktonic
bacteria in a refuge - A or B

No infection
A and B
No infection

A and B
No infection

RrA = Planktonic bacteria
resistant to A in a refuge - B

No infection
B
No infection

B
No infection

RrB = Planktonic bacteria
resistant to B in a refuge - A

No infection
A
No infection

A
No infection

RrAB = Planktonic bacteria
resistant to AB in a refuge - - - -

Sr = Susceptible bacteria in a
LIFO refuge - - - -

RrA = Bacteria resistant to A in a
LIFO refuge - - - -

RrB = Bacteria resistant to B in a
LIFO refuge - - - -

RrAB = Bacteria resistant to AB in
a LIFO refuge - - - -

The first Equation (1) describes the nutrient content in the system over time where
C is the concentration of nutrient in µg/mL (C0 is the start concentration), ω is the flow
rate in turnovers/h, ε is the resource consumption by one bacterium in µg/cell and ψ is the
specific growth rate of bacteria per hour. N stands for the S and R types of bacteria (S, RA,
RB, RAB) as the infected bacteria are supposed to cease both to consume nutrients and to
divide. K is the Monod half-saturation constant in µg/mL (the concentration of nutrients
resulting in half the maximum growth of the bacteria). For simplicity, ε and K are the same
for all dividing bacteria, but ψ can vary and be different for phage-resistant bacteria.

dS
dt

=
SψSC
K + C

−
(µA + µB + µAB)SψSC

K + C
+ ρSr − σS− γS− δASA− δBSB−ωS (2)

This second Equation (2) describes the growth and losses of susceptible bacteria. The
losses over time are due to bacteria mutating to become resistant against phage A or B or
both at a specific rate of µ per cell division (µAB is calculated as µA × µB). This means that
it is only divided bacteria that mutate. Bacteria can also move into a refuge population,
Sr, at a rate of σ where they may or may not be adsorbed by phages, and move out of the
refuge at a rate of ρ. Bacteria can also decay or be neutralised at a rate γ, becoming infected
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by phages at the adsorption rate δ, and finally be washed out of the system at a rate of ω.
The equations for phage-resistant bacteria become:

dRA
dt

=
RAψRA C

K + C
+ µAS + ρRrA − σRA − γRA − µBRA − δBRAB−ωRA (3)

dRB
dt

=
RBψRB C
K + C

+ µBS + ρRrB − σRB − γRB − µARB − δARB A−ωRB (4)

dRAB
dt

=
RABψRAB C

K + C
+ µABS + ρRrAB − σRAB − γRAB + µARB + µBRA −ωRAB (5)

Phage resistance is intended to result in complete blocking of adsorption by the phage.
Hence, a bacterium resistant to phage A can mutate to become resistant to phage B as well
but also be infected by phage B, and vice versa. Needless to say, a bacterium resistant to
both phages (Equation (5)) cannot become infected at all.

Infected bacteria (Equations (6)–(8)) are thought not to consume resources or divide
and not to be part of the refuge population of cells. Cells in the refuge (see Equations (26)
and (27) below) is simulating the presence of either metabolically inactive cells or cells in
biofilm and inhibited phage propagation. Phages can however adsorb to different classes of
bacteria depending on the secondary adsorption mode setting. In the “Uninfected” setting,
phages are adsorbing to uninfected bacteria only, which is common in basic mathematical
models, where phage A adsorbs only to S, IB, and RB. In the “Susceptible” setting, on
the other hand, phages are allowed to adsorb to already-infected bacteria as well, i.e., A
adsorbs to S, IA, IB, IAB, RB and RBIA (referred to as secondary adsorption [11]). In addition
to this, A can also adsorb to the Sr and RrB cells in the refuge if the “Standard” primary
adsorption model is applied, the “Planktonic” mode is set and the rate of cells in and out of
the refuge are given values. Phage B adsorbs to Sr and RrA as well with this setting. Cells
in the refuge will however not be infected, only adsorbed by phages.

dIA
dt

= δASA− γIA − δB IAB− IA(t−lA)
−ωIA (6)

dIB
dt

= δBSB− γIB − δA IB A− IB(t−lB)
−ωIB (7)

dIAB
dt

= δA IB A + δB IAB− γIAB − IAB(t−lB)
− IAB(t−lA)

−ωIAB (8)

The expressions IA(t−lA)
, IB(t−lB)

, IAB(t−lB)
and IAB(t−lA)

, part of the delayed differ-
ential Equations (6)–(8), are all describing the loss of infected bacteria due to lysis, after
the latency time lA or lB. A bacterium simultaneously infected by two phages will lyse
at time lA if the latency of phage A is shorter than the latency time for phage B, lB. This
results in that IAB(t−lB)

becomes zero for a bacterium when IAB(t−lA)
becomes positive. One

of IAB(t−lA)
and IAB(t−lB)

subsequently always becomes zero. A bacterium infected with
phage B at time tB and superinfected with phage A at time tA will lyse and produce phages
of type A only if tA + lA is shorter than the remaining time to lysis caused by phage B,
i.e., tA + lA < tA + lA − tB + lB = tA < tA − tB + lB. This means that in an infection with
both phages, A and B will interfere with each other and not produce the number of phages
expected from single and separate infections by A or B. Other interference between phages,
e.g., by actively impeding the other phage’s transcription or replication, is not considered.

Finally, bacteria that are resistant to infections by one phage can become infected with
the other phage (Equations (9) and (10)).

dRBIA
dt

= δARB A− γRBIA − δARBIA(t−lA)
−ωRBIA (9)

dRAIB
dt

= δBRAB− γRAIB − δBRAIB(t−lB)
−ωRAIB (10)
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Titres of phages A and B can grow through the release of phages from all types of
infected bacteria (13 and 14). After the phage specific latency periods mentioned above,
each bacterial cell gives rise to the number of phages equal to the phage’s burst size, β.
Phages will be lost by adsorption to the bacteria mentioned above, and adsorbed phages
representing phages bound to bacteria, is denoted PA and PB, respectively (11 and 12).
Phages can also decompose at a rate of ϕ, and be washed out at a rate of ω. With the no
secondary adsorption “Uninfected” setting:

PA = δA A(S + IB + RB) and PB = δBB(S + IA + RA) (11)

Additionally, with the “Susceptible” setting:

PA = δA A(S + IB + RB + IA + IAB + RBIA)
and

PB = δBB(S + IA + RA + IB + IAB + RAIB)
(12)

The change in phage titres will hence be:

dA
dt

= βA

(
IA(t−lA)

+ IAB(t−lA)
+ RBIA(t−lA)

)
− PA − ϕA A−ωA (13)

dB
dt

= βB

(
IB(t−lB)

+ IAB(t−lB)
+ RAIB(t−lB)

)
− PB − ϕBB−ωB (14)

2.4.2. Secondary Adsorption: Poisson

Only uninfected bacteria can be infected by phages in the “Standard” model with the
“Secondary adsorption Uninfected” setting (δASA in the equations). This is in many cases
a good approximation but neglects that several phages may adsorb to a single bacterial
cell, assuming that the number of cell receptors is not limited, i.e., multiple adsorption [11].
Phages adsorbed to cells will follow Poisson probabilities. While more phages per bacterium
can infect, this is referred to as MOIactual in contrast to MOIinput [11,25]. Bound phages will
hence be:

Pt+1 =
(

1− e−δMt
)

Pt (15)

Here, P is the titre of phages and M is the sum of all bacteria that can be adsorbed by
a particular phage. These are denoted MA for phage A and are bacteria S, IB, and RB, in
the “Uninfected” adsorption mode and S, IA, IB, IAB, RB and RBIA with the “Susceptible”
setting, i.e., the same sets of bacteria as in the “Standard” primary adsorption model. MB is
accordingly bacteria S, IA, and RA, and S, IB, IA, IAB, RA and RAIB, respectively. While more
phages than one may adsorb to a cell, infected bacteria will equal:

It+1 = (1− e−
Pt
Mt )Mt (16)

Taking Equation (16) into account, the equations describing the change in uninfected
bacterial titres (17–19) will have to change to:

dS
dt

=
SψSC
K + C

−
(µA + µB + µAB)SψSC

K + C
+ ρSr − σS− γS− ((1− e−

PA
MA )MA)− ((1− e−

PB
MB )MB)−ωS (17)

The equations for resistant bacteria will change accordingly:

dRA
dt

=
RAψRA C

K + C
+ µAS + ρRrA − σRA − γRA − µBRA − ((1− e−

PB
RA )RA)−ωRA (18)

dRB
dt

=
RBψRB C
K + C

+ µBS + ρRrB − σRB − γRB − µARB − ((1− e−
PA
RB )RB)−ωRB (19)
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dRAB
dt

=
RABψRAB C

K + C
+ µABS + ρRrAB − σRAB − γRAB + µARB + µBRA −ωRAB (20)

If the infection is by the primary adsorption option “Poisson” and bacteria are chosen to
be in the planktonic refuge and entered at a certain rate (see Equation (26) below), phages are
additionally also adsorbing to the bacteria in the refuge. Phage A will additionally adsorb
to Sr and RrB cells and phage B to Sr and RrA cells. However, this is not the case if the last-
in-first-out (“LIFO”) type of refuge cells is selected (27). Bound phages, A and B, are again
denoted PA and PB, respectively. In the Poisson mode, this results in Equations (21)–(25) for
infected bacteria:

dIA
dt

= ((1− e−
PA
MA )MA)− γIA − µB IA − ((1− e−

PA
IB )IB)− IA(t−lA)

−ωIA (21)

dIB
dt

= ((1− e−
PB
MB )MB)− γIB − µA IB − ((1− e−

PB
IA )IA)− IB(t−lB)

−ωIB (22)

dIAB
dt

= ((1− e−
PA
IB )IB) + ((1− e−

PB
IA )IA)− γIAB − IAB(t−lB)

− IAB(t−lA)
−ωIAB (23)

dRBIA
dt

= ((1− e−
PA
RB )RB)− γRBIA − RBIA(t−lA)

−ωRBIA (24)

dRAIB
dt

= ((1− e−
PB
RA )RA)− γRAIB − RAIB(t−lB)

−ωRAIB (25)

The expression of phages A and B lost by adsorption to bacteria is the same as in the
“Standard” model, described in Equations (13) and (14), but bound phages PA and PB is
calculated differently as shown in Equation (15) above.

It should be pointed out that the difference between the “Standard” mode of infection
and the “Poisson” mode is obviously small at a MOI around 1. It is only when there
are phages in excess, a probability of more than one phage infecting a bacterium, that a
difference may be observed as a more rapid loss of adsorbed phages.

2.4.3. Resistance Mutation

Dividing bacteria can mutate at a rate of µ, and the mutant frequencies in the popu-
lation can be calculated in two different ways. In the “Deterministic” mode, each class of
newly divided bacteria contains N × µmutants, where N is the number of newly divided
bacteria. With the “Stochastic” alternative, mutations are introduced by random sampling
from a Poisson distribution having a mean of N× µ = λ if λ≤ 10 or from sampling a normal
distribution if λ > 10. The normal distribution, (λ;

√
λ), is generated by the Box-Müller

algorithm and all random numbers are generated by a Mersenne Twister algorithm. This
results in good, but somewhat slow, generation of pseudo random numbers but this does
not have a great impact on the overall program performance. When stochastic mutation is
active, results will of course vary from run to run. With small numbers of divided bacteria
per millilitre, for example, 105 bacteria, and a mutation rate of 10−7, the resulting frequency
of mutants is bound to be very low. There would be only 0.01 mutant bacteria in the
population and these would be eliminated if the option of rounding off values below one is
activated. In the program, resistance is modelled as affecting the adsorption and regarded
as complete. Therefore, resistant bacteria do not adsorb any phages.

2.4.4. Refuge Cells

The refuge population is simulating the existence of metabolically inactive cells, with
the “Planktonic” setting, or cells forming biofilm with the last-in-first-out (“LIFO”) setting.
The “LIFO” setting means that the last cells that entered the refuge are reintroduced to the
normal pool of cells followed by the next to last cells and so forth. The rate of cells moving
into the refuge can be set to at most 0.01, which means that 1% of the current population
will enter the refuge per minute. Another limitation is that there has to be more than 10 cells
outside of the refuge. In such a case, only 0.1 cells enter the refuge. If only whole cells
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should be allowed to enter, the round off <1 option should be chosen. Both boxes, the rate
in/min and rate out/min must be given a value in order to activate the refuge cells models.
While in the refuge, these cells are not dividing and cannot produce phages or mutate and
become resistant which they can become upon reintroduction to the normal pool of cells.
Infected bacteria (IA, IB, IAB, RAIB, RBIA) are not part of either refuge population, as these
cells will lyse in any event. In the “Planktonic” mode, cells can be flushed out of the system
or decay whereas in “LIFO” mode cells are thought to be metabolically inactive and sessile
until reintroduced. Planktonic refuge cells:

dSr
dt = σS− ρSr − γSr −ωSr ; dRrA

dt = σRA − ρRrA − γRrA −ωRrA
dRrB

dt = σRB − ρRrB − γRrB −ωRrB ; dRrAB
dt = σRAB − ρRrAB − γRrAB −ωRrAB

(26)

Cells in the last-in-first-out (LIFO) mode:

dSr
dt = σS− ρSr ; dRrA

dt = σRA − ρRrA
dRrB

dt = σRB − ρRrB ; dRrAB
dt = σRAB − ρRrAB

(27)

2.4.5. Time Step Size

Calculations of differential equations in Cocktail are done using Euler’s method, taking
the input values as the initial values for calculating the values numerically after the chosen
time interval, set either as one minute or as a 30-, 15- or 5-second time step size. At large
time intervals, other methods for solving differential equations result in smaller errors,
but the differences between methods become smaller and smaller as the step size (time
interval) decreases. Hence, running the program with a step size of one minute results in
a larger discretisation error than with a five-second step size, but is considerably faster.
On the other hand, the program speed depends mainly on the length of the phages’ latent
periods and the rates of bacteria into and out of refuge populations. These are stored on
arrays in dynamic memory that need to be recalculated in each step, which will slow down
the program performance if a long running time is set. However, there is virtually no time
difference between short and long time step sizes if a short running time and no refuge
cells are chosen. If accuracy and a small discretisation error is preferred, step size should
be set to five-second intervals.

3. Results

Examples of Cocktail outputs can be studied by running the example data files pro-
vided as Supplementary Materials. The file Bohannan_Lenski_1997_Fig 3B.ctl contains
input parameter values and a comparison to a chemostat experiment where the authors
found that the titre of Escherichia coli bacteria and an infecting T4 phage can oscillate over
time [26]. The phage titre decreases over time when there are very few bacteria to infect
which in turn results in a higher titre of bacteria and so forth (Figure 2A). Coexistence can
theoretically be shown to occur at higher bacterial titres as well. Running the parameter
settings in the file Lenski_1988_Fig_2a.ctl from Lenski [19] results in oscillations leading
to stable coexistence of bacteria in a titre of about 107 and phage titres being around 109

(Figure 2B). However, a fourfold increase in the concentration of nutrients, from 25 to
100 µg/mL results in increasingly large oscillations, but as in the first case, bacteria never
become extinct (Figure 2C).
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Figure 2. Example output graphs from the Cocktail program: (A) Escherichia coli bacteria infected with
phage T4 in a chemostat where both the bacteria and the phage titre fluctuate under certain conditions.
The parameter settings were as in [26] with the exception of the resource density being set to
1.0 instead of 0.5 mg/L (µg/mL) in the chemostat, and the time step size set to 1 min instead of 3 min.
The run was for the first 200 h of the original chemostat experiment (before development of bacterial
phage resistance). Complete parameter settings can be found in the file Bohannan_Lenski_1997_
Fig 3B.ctl in the Supplementary Materials. (B) Oscillations of bacterial and phage can theoretically
exist even at higher titres as shown by Lenski [19]. Bacteria in a titre of 106 cell forming units is
infected with virulent phages with a burst size of 100 and in a titre of 108. The stability of the system
depends on a low concentration of nutrients, 25 µg/mL. The parameter settings can be found in the
Supplementary Materials file Lenski_1988_Fig_2a.ctl. (C) As the concentration of nutrients increases
four times, the titres of both bacteria and phages shift. This results in increasingly large oscillations
where bacterial titres are reduced to a few cells every cycle, but they never become extinct. The
settings are from the file Lenski_1988_Fig_2b.ctl. in the Supplementary Materials. (D) An example of
bacteria at high titres simultaneously infected by two phages with different infection characteristics.
Bacteria that mutate and become resistant to either one of the phages are eventually lost and non-
resistant bacteria slowly become extinct but replaced by bacteria resistant to both phages. See text for
more details. Settings from the file Fig_2D.ctl in the Supplementary Materials.

It is also possible to analyse more complex problems and formulate hypotheses that
later can be evaluated experimentally. The last example describes two phages in a cocktail
with different latent periods, added in the same titres, and at the same time to the bacteria.
Most parameters were entered with their default values (Table 1). Parameters set to different
values were the bacteria’s starting titre, 1 × 108, and the program was executed with the
standard model where phages only adsorb to uninfected cells, mutations are set to be
deterministic and no cells were allowed to be resistant to either phage A or B or both,
metabolically inactive or form biofilm. The log10 option was selected for the output. While
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log10(0) = −∞, a titre of 0 is represented as −16 (log10 of 10−16). The data can be retrieved
by running the file Fig_2D.ctl. The result showed that bacteria resistant to phage A will
disappear from the system within an hour (Figure 2D). Phage B has a shorter latent period,
and has outcompeted phage A, by infecting most of the susceptible bacteria. The mutation
rate of bacteria becoming resistant to both phages was set to 10−7 × 10−7 (the product of
mutation rate for resistance to A and B, respectively) which resulted in a low titre of double
resistant cells, as the bacteria had a good supply of nutrients and were able to divide, but
the titre of such cells will grow to about a thousand cells/mL in 48 h. Allowing resistant
cells from the beginning, in the start population, results in higher titres of such cells.

4. Technical Information

Cocktail runs on Windows 64-bit systems. The program interface (Figure 1) is in
English, but some instructions may turn up in the language set on your computer when
Windows DLLs are called (e.g., file dialogs). There is no support for other languages in
Cocktail. The program is developed in Object Pascal from the Free Pascal Team (Free
Pascal: A 32-, 64- and 16-bit professional Pascal compiler. Version 3.2.0. URL https://www.
freepascal.org. RRID:SCR_014360), accessed on 28 September 2022, using the Lazarus IDE
and libraries developed by the Lazarus Team (Lazarus: The professional Free Pascal RAD
IDE. Version 2.0.10. URL http://www.lazarus-ide.org. RRID:SCR_014362, accessed on 28
September 2022). The IDE, compiler and program libraries can be downloaded from: https:
//www.lazarus-ide.org/index.php?page=downloads, accessed on 28 September 2022.
Source code files (cocktailunit1.pas, cocktailunit2.pas, cocktailunit1.lfm, cocktailunit2.lfm,
Cocktail.lps, Cocktail1.lpr, Cocktail1.res, Cocktail.dbg, globalvariables.pas, Cocktail.ico and
the Lazarus project information file Cocktail.lpi) as well as updates will be available from
GitHub at https://github.com/ASNilsson/Cocktail-phage-infection-kinetics, accessed on
28 September 2022.

The Cocktail program and source code files are distributed under the license Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International License. In short, this
means that it is free for everyone to use, to modify the source code, build upon the program
or code, and free to distribute in any medium. However, you must give appropriate credit
and a link to the license. If changes were made to the program or code, these must be
specified, and distribution of modifications must be under the same license. It is not
allowed for anyone to use any part of the program or code for commercial purposes. A
short description of the license can be found at: https://creativecommons.org/licenses/
by-nc-sa/4.0/, accessed on 28 September 2022. The license and program version number
can be found by double clicking anywhere in the Cocktail parameter settings window.

The results of the program can be saved as charts, in PNG or SVG graphics file formats,
and/or as a .ctl data file. The items in the .ctl file constitute the complete settings for
running the program. The file format is a plain .txt file, but note that the format is fixed as
in the example .ctl file. Moving items to another position in the file will inevitably result in
a file error. A comma (,) is often used as a delimiter when more than one item is to be found
on a line. The advantage of this is that the file can contain a short label of each of the items
which makes reading and editing a file much easier. The disadvantage is that omitting a
comma, or using another delimiter, will result in a file error. Selected output parameters
should however be surrounded by at least one blank in the list following the label “Output
parameters:”, e.g., 1 11 14 (note the blank after the last number). A .ctl file can easily be
created by running the program and saving the result by clicking on the “Save” button
at the bottom of the result window. Editing such a .ctl file that has been shown to work
as a template, and saving it under a new name, is a good idea. Double clicking on a .ctl
file will open a new instance of the program provided that a link to the program has been
established in the Windows “How do you want to open this file?” dialog by marking the
Cocktail program and checking the “Always use this app to open .ctl files” box.

https://www.freepascal.org
https://www.freepascal.org
http://www.lazarus-ide.org
https://www.lazarus-ide.org/index.php?page=downloads
https://www.lazarus-ide.org/index.php?page=downloads
https://github.com/ASNilsson/Cocktail-phage-infection-kinetics
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14112483/s1, Executable and supporting files: Cocktail.exe,
Readme.txt and the runtime information file Cocktail.pdf. Example files: Lenski_1988_Fig_2a.ctl,
Lenski_1988_Fig_2b.ctl, Abedon_2009_Fig_2F.ctl and Fig_2_demo.ctl. Note that source code files can
be downloaded from GitHub (link in technical information above).
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3. Międzybrodzki, R.; Borysowski, J.; Weber-Dąbrowska, B.; Fortuna, W.; Letkiewicz, S.; Szufnarowski, K.; Pawełczyk, Z.; Rogóż, P.;
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