
Citation: Hu, H.; Kennedy, C.M.;

Kevrekidis, P.G.; Zhang, H.-K. A

Modified PINN Approach for

Identifiable Compartmental Models

in Epidemiology with Application to

COVID-19. Viruses 2022, 14, 2464.

https://doi.org/10.3390/v14112464

Academic Editors: Thanasis Fokas,

George Kastis and Hernan

Garcia-Ruiz

Received: 29 August 2022

Accepted: 4 November 2022

Published: 7 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Article

A Modified PINN Approach for Identifiable Compartmental
Models in Epidemiology with Application to COVID-19
Haoran Hu †, Connor M. Kennedy †, Panayotis G. Kevrekidis † and Hong-Kun Zhang *,†

Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA
* Correspondence: hongkunz@umass.edu
† These authors contributed equally to this work.

Abstract: Many approaches using compartmental models have been used to study the COVID-19
pandemic, with machine learning methods applied to these models having particularly notable suc-
cess. We consider the Susceptible–Infected–Confirmed–Recovered–Deceased (SICRD) compartmental
model, with the goal of estimating the unknown infected compartment I, and several unknown
parameters. We apply a variation of a “Physics Informed Neural Network” (PINN), which uses
knowledge of the system to aid learning. First, we ensure estimation is possible by verifying the
model’s identifiability. Then, we propose a wavelet transform to process data for the network training.
Finally, our central result is a novel modification of the PINN’s loss function to reduce the number
of simultaneously considered unknowns. We find that our modified network is capable of stable,
efficient, and accurate estimation, while the unmodified network consistently yields incorrect values.
The modified network is also shown to be efficient enough to be applied to a model with time-varying
parameters. We present an application of our model results for ranking states by their estimated
relative testing efficiency. Our findings suggest the effectiveness of our modified PINN network,
especially in the case of multiple unknown variables.

Keywords: network dynamics; COVID-19; PINNs; wavelets

1. Introduction

On 31 December 2019, 27 cases of pneumonia were reported in Wuhan City, Hubei
Province in China. The cause was identified on 7 January 2020, and was subsequently
termed SARS-CoV-2 (the virus) and COVID-19 (the disease) by the World Health Orga-
nization (WHO) [1]. The disease subsequently grew to the point that the WHO officially
declared it a pandemic on 11 March 2020 [2]. As of 31 May 2022, a cumulative total of
526,558,033 cases and 6,287,117 deaths attributed to the disease had occurred [3]. The sheer
scale of the disease’s development prompted research to combat it across the globe. A
proper modeling of the disease has been crucial not only in evaluating the behavior of the
virus, but also towards policy decisions made in response to it [4,5]. An extensive evalua-
tion of social-distancing measures and other nonpharmaceutical interventions found that
these approaches were effective. These results supported the adoption of these policies on
numerous occasions throughout the pandemic [6–8]. More recently, the role of vaccination
has also been considered in the relevant models [9].

One of the greatest issues in studying the disease has been the difficulty in estimating
its spread. Even simply getting an accurate estimate of the current number of infected
individuals has been extremely difficult [10]. Accurate counts of the infected population
are crucial. They serve as a guiding tool on policy decisions from the distribution of testing
resources, to the allocation of treatment materials, to the severity of lockdown procedures.
Limited testing supplies in the early stages and the frequency of asymptomatic cases have
caused major information gathering difficulties [11]. The accurate estimation of certain
parameters used in modeling the disease, notably the base reproduction rate and case
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confirmation rate, are also useful in guiding policy. The parameters’ true values, however,
are dependent on these unknown infected cases. There are some methods, however, to infer
these unknown quantities from limited available data; see, e.g., [12] for a recent discussion.
We focus here specifically on the usage of compartmental epidemiological models in
conjunction with the usage of the widely applicable and highly successful technology of the
so-called physics-informed neural networks (PINNs) (see [13] for a recent review thereof)
to estimate these quantities.

The classic SIR ODE model is, arguably, the most well-known compartmental model.
It separates the population into susceptible, infected, and removed (recovered) groups, with
the model’s origins tracing back to the seminal work of [14]. In the almost century that has
followed there has been a wide variety of variations of the model to fit the particular features
of different diseases [15]. In the case of COVID-19, several different modifications have been
considered to more accurately describe its development. The SEAHIR model (involving
susceptible, exposed, asymptomatic, hospitalized, infected, and recovered populations)
incorporates the effect of social isolation measures [16]. Meanwhile, the SIRSi (susceptible,
infected, recovered, sick) approach models temporary immunity that wanes over time [17].
There have been numerous other proposals, involving different numbers of components
(and other features such as, e.g., age stratification [18] and spatial distribution [19]). More
complex models do run the risk of their unknown quantities being difficult to estimate,
or in some cases even impossible [20]. If we want to estimate these unknowns, we need a
model that reflects the practical realities of COVID-19, the effects of isolation [6], and the
prevalence of asymptomatic cases [10,11], while still allowing estimations.

We adopt the usage of the SICRD model implemented in [21]. The susceptible, infected,
and recovered groups are similar to the standard SIR setting discussed above. We now also
consider two additional compartments, the confirmed and death cases, which we assume to
be the only directly known variables. We adopt this model as it incorporates the noteworthy
effects of testing and quarantining. It also crucially splits the infected population into
unknown/known compartments, as well as includes data on fatalities. The latter is an
extremely important piece of accessible information as we note in Section 2.3.2. Indeed
without it, it would actually be impossible to estimate the number of infected individuals,
or most of the important parameters from confirmed case counts alone. The relevance
of the inclusion of the death data (as well as potentially and more recently, the data on
hospitalizations) is a feature that some of the present authors have argued in various earlier
works [12,18]. The SEAHIR model has similar advantages and much of the analysis below
could be adapted to that model as well (an avenue that we do not pursue herein).

We propose the usage of a sophisticated neural network approach to estimate the
unknown cases and parameters, i.e., a methodology that has proved extremely successful in
a variety of applications within scientific computing [13,22]. A key component in the usage
of a neural network over traditional regression techniques is in their improved flexibility.
Regression methods such as those in [23] may only model the data as exactly following a
specified model. A neural network has many more adjustable parameters, allowing for a
more flexible modeling of a given problem. Indeed, in this vein, there have been some quite
promising recent results in the usage of neural networks in disease modeling. The work
of [24] effectively forecasts COVID-19 spread using a combination of an ensemble neural
network with a fuzzy logic system. The usage of a graph neural network leveraged human
mobility information to improve forecasting of COVID-19 in Germany [25]. Meanwhile, the
spread of influenza in the U.S. has been modeled using a recurrent neural network to better
reflect the time-sequential nature of the viral spread [26]. The usage of a neural network is
also quite natural for us, as our model is particularly well suited for an adaptation of the
“Physics Informed Neural Network” (PINN) approach [27].

The principle of PINNs was developed for the estimation of unknown quantities
in a system adhering to a physical law, generally a nonlinear PDE (or lattice dynamical
equation [28]) that the system is assumed to obey [27]. The effectiveness of this approach
has been substantial across a wide variety of disciplines, notably having excellent compati-
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bility with other techniques such as the previously mentioned graph and recurrent neural
networks [22]. We note there have been several other attempts to apply the PINN concept
to studying COVID-19. The work of [29] considered the SIR model. They suitably modified
the dynamical equations thereof through a nonlinear transformation, aiming to leverage
neural networks to identify the (assumed-to-be) linear dependence of the infection rate
and subsequently performed short-term predictions. This has some interesting parallels
to our proposals and analysis below, although we seek to avoid some of the relevant as-
sumptions on the reliability of the total case counts or of the linear time-dependence of the
infection rate. Meanwhile, the work of [30] also attempted a similar inference of parameters
to our work and considered the more nuanced susceptible–exposed–infected–recovered–
susceptible model. This attempt, however, also considered all variables to be known. Yet
another effort in this vein of leveraging data-driven techniques in epidemiological problems
can be found in the interesting work of [31]. In this paper, the authors sought to discover
the associated dynamic models directly from data in the case of childhood diseases such as
chickenpox, rubella, and measles, with partial success.

The novelty of our work comes from the substantial difficulty of having unknown vari-
ables in our system and the modifications of the PINN technique we make to overcome this.
The standard PINN directly uses the governing equations to define its loss term, with no
further reformulation specific to a given model. We found that in our case, with several
unknown variables, the standard PINN consistently converged to incorrect values for all
parameters and variables. We address this by introducing a new approach to the training
loss. We derive a new set of terms for our loss function in Section 2.5. The new loss terms
are structured to reduce the number of unknowns that must be simultaneously considered
in a single term. This avoids errors due to too many degrees of freedom in the network’s
attempted estimation. The result is a network with rapid and accurate convergence. We
achieve very promising results, even with a simple feed-forward network architecture. This
suggests the relevance of further research into other architectures, such as recurrent net-
works to improve performance, or an application to a graph neural network to incorporate
human mobility [19,32]. The exact form of our new loss is specific to the SICRD model,
but the principle of deriving new equations for the purpose of improved stability of the
training is far broader. The concept could be applied to the training loss of any machine
learning system, so long as there exist some governing equations for the considered data.
Thus, any such analysis could see improvements in the network’s convergence, stability,
and efficiency with appropriately derived loss terms from the governing equations. In sum-
mary, we propose the usage of a neural network approach to avoid the more substantial
restraints of traditional regression methodologies. We use the PINNs among the former
to connect to a widely used tool. Finally, we provide an approach that leads to an im-
provement of the training loss of the latter and whose principle can be generalized to other
systems within this class (of relevance to epidemiological applications).

We begin in Sections 2.1 and 2.2 by explicitly defining the SICRD model, as well as
explaining the general concepts of the model and the sources of our data. In Section 2.3, we
consider the question of whether the unknown variables and parameters may be estimated
from the partially known information. We formally address this by showing our model is
identifiable, meaning the unknown parameters and unknown variables can be uniquely
determined by the known variables. We thus verify we are in a regime where the estimation
goal is possible. It is also shown that several variations of our model are not identifiable,
which justifies our particular choice over several considered alternatives. In Section 2.4,
we address the issue of potential noise in our collected data with the use of a wavelet
transform, which separates the signal into key features and the noisy component caused
by smaller scale fluctuations. This filtering also smooths the data, which improves our
ability to apply an ODE model to it. With the model defined and the data appropriately
processed, Section 2.5 explicitly presents our novel loss function for the network along with
a corresponding explanation for its usage.
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We then demonstrate the neural network’s effectiveness by running estimations on
the ideal case, with simulated data that explicitly obey our model in Section 3.1. We briefly
review the results of denoising via the wavelet transform in Section 3.2. Then, in Section 3.3
we demonstrate the network’s ability to estimate the unknown infected population and
several unknown parameters given real data reported in U.S. states. In Section 3.3.1, we
also demonstrate that, due to the high efficiency in the network’s calculations, it may also
be used to perform estimates using a model with time-varying parameters as opposed
to simply assuming constant parameters, and no particular restrictions on the form of
time-dependence are necessary, extending the work of other attempts to allow time-varying
parameters; see, e.g., [21] or [29]. Our results suggest that when the parameters are
assumed to vary, the variance is substantial enough that over any longer time frame,
constant parameter assumptions would be unrealistic.

In Section 3.3.2, we propose a ranking of states, according to how well the states are
conducting testing by calculating the ratio of the (estimated) infected population over the
confirmed population. The intention is to give a more precise estimate on how effectively
testing is being conducted in a region, rather than simply looking at the per capita number
of infections. This can highlight population centers where infections are low, as the disease
has only entered it recently, but testing is low even relative to the number of infections.
If a region with poor testing can be recognized early, then the problem can be addressed
before it reaches a major outbreak. Finally, in Section 4, we briefly review our results and
propose several possible directions of future research. We discuss some of the limitations
of the model and network, as well as several methods to expand the work to address those
limitations.

2. Materials and Methods
2.1. The SICRD Model

In modeling the development of COVID-19, we focused on U.S. states as our pop-
ulation centers due to the relative ease of access to epidemiological statistics. In each
state, we used a modification of the SIR model [21] by introducing two new population
compartments: the death cases and the confirmed cases [21]. This gives the SICRD model,
a compartmental model in which the population is divided into susceptible (S), infectious
(I), confirmed (C), recovered (R), and dead (D) individuals; see also Figure 1. Note that
each compartment refers to the current count and not the total cumulative number of cases.

Figure 1. Schematic of the modified-PINN model. We assume here that I and the parameters R0, α,
and β are not known.
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This model reflects the real-life situation in which an infectious person may recover
without receiving a formal diagnosis, as well as accounting for the effect of testing for the
disease and quarantining. The model is defined explicitly by the following ODE system:

Ṡ = −R0

TL

SI
N

(1)

İ =
R0

TL

SI
N
− 1

TL
I

Ċ =
α

TL
I − 1

TR
C

Ḋ =
β(1− α)

TL
I +

β

TR
C

Ṙ =
(1− β)(1− α)

TL
I +

1− β

TR
C

Here, N = S + I + C + D + R is the total population size. R0 is the basic reproductive
number, which refers to the the average number of cases directly infected by one infectious
case in a completely susceptible population. TL is the average number of days from first
becoming infectious to confirmation, recovery, or death. TR is the average number of days
from being confirmed as infected to recovery or death. α is the proportion of confirmed
cases among all cases transferred from the unconfirmed infectious state. Finally, β is the
fatality rate. The deaths (D) and recoveries (R) stem from either the infectious compartment
(I) or from the confirmed infection one (C). We also note that we assume individuals
who have been confirmed to be infectious sufficiently quarantine and do not infect any
further individuals.

Our goal is to estimate the unknown infected population I(t), along with the unknown
parameters α, β, and R0. We wish to perform an estimation using only our accessible data,
the count of confirmed cases C(t), deaths D(t), and the more directly estimable time scale
parameters TL and TR. The reasons for this precise formulation of the SICRD model are
discussed further in Section 2.3.

We note that other, much more complex compartmental epidemiological models with
more compartments such as those presented in [18] were also considered; here, inspired
by the latter work, we present a reduced version of the model for reasons also relating
to identifiability, as discussed below. Furthermore, this more straightforward model was
chosen to test the capabilities of our neural network approach without added complications,
while the testing of more detailed models is left to be considered in future work.

SICRD with Time-Dependent Parameters

The assumption that the parameters in Equation (1) are constant (i.e., time-independent)
is a highly restrictive and unrealistic one for long-enough time scales. In a real-world
scenario, many of these parameters are changing as time passes, due to factors such as
mutations of the virus and a shifting government policy; the latter is well-known to modify
social interactions in the case of nonpharmacological interventions and hence affect factors
such as R0 [6,18]. In this case, we update the model in (1) to replace α, R0, and β with
α(t), R0(t), and β(t), while TL and TR are left fixed as they are relatively well-known, stable
parameters. In the case of mutations, it is not unreasonable to expect variations of these
parameters too, but for the cases under consideration, we expect such variations to be small
and anyway secondary to the above effects. This gives the alternate model:
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Ṡ = −R0(t)
TL

SI
N

(2)

İ =
R0(t)

TL

SI
N
− 1

TL
I

Ċ =
α(t)
TL

I − 1
TR

C

Ḋ =
β(t)(1− α(t))

TL
I +

β(t)
TR

C

Ṙ =
(1− β(t))(1− α(t))

TL
I +

1− β((t)
TR

C

To perform an estimation on the vector of parameters p(t) = (R0(t), α(t), β(t)), we
first estimate a constant value for the parameters over a time interval of length ∆t. We then
perform the estimation of p(∆t + t) with a simple “rolling window” approach, where we
take the constant parameter estimation over the interval [t, t + ∆t] to approximate p(∆t + t).
This method allows an estimation of the parameter values which does not presume any
particular form for their time dependence. This expands on the interesting, very recent work
of [29]. The primary potential issue is the costliness of performing so many estimations,
but we demonstrate in Section 3.3 that our network performs efficiently enough to make
this scheme feasible.

2.2. Data Set

All nonsimulated data on COVID-19’s development used in this paper were pulled
from the tool developed in [33]. The tool aggregates data from a variety of data sources
including the WHO, each state’s individual department of health, and the CDC. The data
used included reports on case counts, active cases, and deaths within each individual U.S.
state. The usage of these data is expanded upon in Sections 3.2, 3.3.1 and 3.3.2.

2.3. Identifiability
2.3.1. Identifiability Definitions

In order to reasonably use Equation (1), we need to verify the identifiability of the
model. Identifiability is the ability to uniquely identify the model parameters from the
known variables. We know from the results of [18,20,34] that many compartmental epi-
demiological models have potential issues with identifiability. To be concrete, we recall the
precise definition of the term.

Consider an n-dimensional ODE system. We let p ∈ Ωp ⊂ Rnp be the vector of
constant parameters for the ODE system where Ωp is our allowable parameter space. We
note that the initial values of the variables in the system are also considered parameters.
We let m(t, p) ∈ Rnm be all the assumed known (measured) variables of the system and
h(t, p) ∈ Rnh be all the assumed unknown (hidden) variables of the ODE system, with
nm + nh = n. Then, the ODE system can be represented by [20]:

ṁ = f (m, h, p) (3)

ḣ = g(m, h, p).

Note that the same ODE system may be treated with different separations into m and
h depending on what variables are assumed known. Given such a system and a choice of
known variables, we say that it is structurally globally identifiable if

m(t, p) = m(t, p̂), ∀t ≥ 0 =⇒ p̂ = p. (4)

The interpretation is that the measured variables uniquely determine the values of the
constant parameters for the ODE system. In such a case it is not possible for two distinct
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choices of parameters to give precisely the same values for the measured variables. Note
though, from a practical perspective, that this does not disallow the possibility of p and
p̂ with very different values, resulting in m(t, p) ≈ m(t, p̂). Whether a narrow range for
the parameter values can be determined from an uncertain value for m is the question
of whether the system is practically identifiable or not. Basic global identifiability needs
to be verified first though, as the practical identifiability of a system is dependent on the
particular values chosen for the parameters and the range of the variables [20]. For an
interesting example where the range of variables may play a crucial role in the practical
identifiability, see, e.g., the very recent work of [35].

It is also possible for a system to fail to be globally identifiable, but still be “locally
identifiable” meaning that no unique choice of parameters may be determined from m(t, p),
but that there are finitely many choices of p that can be made. We obtain in Section 2.3.2
that no cases of local but not global identifiability for any parameters are found for our
considered systems.

For Equation (1), we always assume that C and D are known and thus m(t, p) = (C, D).
I is, by definition, not directly known, while S and R both require knowledge of I to be
known and thus h(t, p) = (I, S, R). (Reported data on recoveries are available but this
information is only on recoveries from confirmed cases and thus is not actually the same
quantity as R in our model.) We want to guarantee that our model at least satisfies structural
global identifiability, meaning it is possible to estimate the parameters from C and D alone.

2.3.2. Numerical Results on Identifiability

The precise calculation of structural identifiability results for a given ODE system is
usually infeasible to perform by hand for all but the simplest of systems. There exist many
software applications to perform this type of calculation, such as the differential algebra
techniques of [34]. We elected to use the SIAN (Structural Identifiability ANalyser) package
to test the identifiability of our model and several slight variations of the model [36].
The code runs a Monte Carlo algorithm to verify both local and global identifiability for
an ODE system to within a high degree of certainty (>99%). The following models were
tested using the code.

The first model is the system of equations given in (1) without modifications. The sec-
ond model matches (1) for Ṡ, İ, and Ċ with the following equations for Ḋ and Ṙ

Ḋ =
β

TR
C (5)

Ṙ =
(1− α)

TL
I +

1− β

TR
C

It is relevant to note that in (1), we allow deaths to occur from the unknown infected
cases I, but that we assume the rate is the same as that for C, as well as allowing these
deaths to be known. This is intended to reflect circumstances where a person is diagnosed
posthumously, or extremely close to death. Meanwhile, in (5), we assume each fatality to
occur in a case where the individual is first diagnosed. While (1) makes some stronger
assumptions, it will soon be apparent that these or similar assumptions are necessary for
identifiability. We thus need this for the parameters of the model to be capable of estimation
from known data.

The third case is a slight modification of (1), now allowing C and I to have two distinct
death rates, referred to as β1 and β2, respectively. Explicitly, the changed equations are

Ḋ =
β2(1− α)

TL
I +

β1

TR
C (6)

Ṙ =
(1− β2)(1− α)

TL
I +

1− β1

TR
C
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Finally, we consider the case of (6) but with the death information recorded separately,
assigning, D1 to C and D2 to I. Here, we consider both to be known as the case where only
D1 is known was found to have only β1 identifiable and the case where only D2 is known
is unreasonable, as confirmed-case-induced deaths are naturally expected to be known.

Ḋ1 =
β1

TR
C (7)

Ḋ2 =
β2(1− α)

TL
I

Ṙ =
(1− β2)(1− α)

TL
I +

1− β1

TR
C

Each of the models, with varying assumptions on the assumed known parameters,
were run through the SIAN code. In each case there were no instances of parameters which
were locally, but not globally identifiable. We also note that in cases where C(t) was the
only known variable, α, β, and R0 were all not identifiable.

In each case, R(0) was not identifiable, due to the fact that the current value for R did
not affect the rate at which any compartment was changing. It can be estimated though,
if each of the other variables’ initial value is estimated and the total population is known.
We see from Table 1 that under even the worst cases, TL and TR may be estimated, which
aligns with the common assumption that they can be more straightforwardly inferred from
known incidence data. To estimate any other parameter requires either knowledge of the
death rate for I, or for I and C to be assumed to have the same death rate. In the cases where
the identifiability of parameters failed, not even local identifiability held, meaning that an
infinite number of parameter combinations could give rise to the exact same solution for the
known variables. Thus, in order to numerically estimate the parameters we moved forward
with model (1), as it had the best conditions for parameter estimation, while still having
reasonable underlying assumptions. A similar approach would also work for models with
hospitalization data. There, hospitalizations take on a similar role to the deaths in providing
indirect information on the unknown case numbers.

Table 1. Comparing Model Identifiability.

Model Known Variables Known Parameters Globally Identifiable Not Globally Identifiable

(5) C(t), D(t) TL, TR, β [C(0), D(0)] [α, R0, S(0), I(0), R(0)]

(5) C(t), D(t) none [TL, TR, β, C(0), D(0)] [α, R0, S(0), I(0), R(0)]

(1) C(t), D(t) none [TL, TR, α, β, R0, S(0), I(0), C(0), D(0)] R(0)

(6) C(t), D(t) TL, TR, β1 [C(0), D(0)] [I(0), S(0), α, β2, R0, R(0)]

(6) C(t), D(t) TL, TR, β2 [α, β1, R0, S(0), I(0), C(0), D(0)] R(0)

(6) C(t), D(t) TL, TR, β1, β2 [α, R0, S(0), I(0), C(0), D(0)] R(0)

(7) C(t), D1(t), D2(t) TL, TR, β1 [C(0), D1(0), D2(0)] [α, β2, R0, S(0), I(0), R(0)]

(7) C(t), D1(t), D2(t) TL, TR, β2 [α, β1, R0, S(0), I(0), C(0), D1(0), D2(0)] R(0)

(7) C(t), D1(t), D2(t) TL, TR, β1, β2 [α, R0, S(0), I(0), C(0), D1(0), D2(0)] R(0)

As an additional remark, the properties of model (5) are worse than those of (1)
because for the former the time derivative of D essentially provides information for C
(which is known) and hence does not assist towards identifying I. The latter identification
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is, apparently, possible within (1). In the case of (6), β2 is needed to allow for identifiability
(once again to allow for the detection of I), while β1 connected with the confirmed cases
does not suffice. It also may not be reasonable to know D1 and D2 separately as generally,
only total death counts are in the reported information. The combination of these factors,
as well as the knowledge that even with both death counts, the identifiability only holds
in this model when β2 is known, which is unreasonable if it is assumed distinct from β1,
supports that model (6) is not as useful practically.

While having two distinct values of β would be more realistic, we see that it creates
fundamental issues with the identifiability of the model. We thus made the assumption of a
single β value here, in order to use it as a test case for our network. There may be potential
methods to resolve these issues while retaining identifiability, but in the present work our
intention was to keep the assumptions of the model relatively simple while testing the
novel loss function introduced in Section 2.5. The application of the network to a more
complex model is left to future work.

2.4. Data Processing—Denoising of Data Using a Wavelet Transform

Before feeding our data to the neural network we constructed, we first processed the
data using a wavelet transform to separate the noise of the signal from its primary features.
Our usage of this process was motivated by many other works where the denoising
of an input signal for a neural network using a wavelet transform produced notable
improvements [37–39]. We implemented code from the PyWavelets package to perform our
wavelet analysis and denoising on our signal [40]. We considered the following framework
for our data: in our model, each piece of measured signal data can be mathematically
expressed as

f(t) = ftrue(t) + ε, ∀t ∈ [0, T] (8)

where ftrue ∈ RT is the true data that would have been obtained in ideal measuring
conditions and ε comprises the adverse effects of the local environment or faulty activity
for the feature, and is referred to as “noise”. To avoid dealing with the noise in the data set,
we applied a wavelet transform to denoise the data.

Wavelet theory provides a mathematical tool for hierarchically decomposing signals
and, hence, constitutes an elegant technique for representing signals at multiple levels of
detail [41]. In general, the wavelet transform is generated by the choice of a single “mother”
wavelet ψ(t). In our implementation we used “Symlets 5” as our choice of mother wavelet
(details can be found in the code documentation of [40]). Wavelets at different locations and
spatial scales are formed by translating and scaling the mother wavelet. The translation and
dilation of the mother wavelet are written with the operator U(u, v) acting as follows [42]:

Uu,vψ(t) = e−u/2ψ(e−ut− v)

Essentially, we can treat the “daughter” wavelets above, generated by rescaling and
shifting the “mother” wavelet, as analogous to the sinusoidal functions of the Fourier
transform. The advantage is that the rescaling and shifting allow the wavelets to capture
more local behavior. This is performed by taking wavelets with small scales u, and shifting
across the considered time range using varying values of v. A potentially very robust
analysis of signals may be conducted in this way, though for our purposes the goal was to
use the wavelets to decompose the signal into high and low frequency components, then
discard the especially high frequency components as noise.

Now, for a given signal f , the wavelet transform of f , Φψ f (u, v), at scale u and location
v, is given by the inner product:

Φψ f (u, v) =
∫ ∞

−∞
f (t)(Uu,vψ(t))∗ dt =< f , U(u, v)ψ >
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Here, star represents the complex conjugate. This is known as the continuous wavelet
transform or CWT. To ensure that the inverse CWT is well-defined, we need the follow-
ing inequality

Cψ :=
∫ ∞

0

|ψ̂(ξ)|2
ξ

dξ < ∞ (9)

Here, ψ̂(ξ) is simply the Fourier transform of ψ. This inequality is referred to as
the admissibility condition [42]. One interpretation of this is that the choice of a mother
wavelet must have no zero frequency component, i.e., no nonzero constant component.
The finiteness of this integral guarantees that the result of the CWT always has a finite L2

norm. Generally, once this integral is verified to be finite, the mother wavelet is rescaled by
it so that the inverse CWT may simply be defined as

f (t) =
∫ ∞

−∞

∫ ∞

−∞
Φψ f (u, v)U(u, v)(ψ(t)) dudv.

This method of constructing the wavelet transform proceeds by producing the wavelets
directly in the signal domain, through scaling and translation. When the signal frequency
is higher, the wavelet base with a higher time domain resolution and a lower frequency
resolution is used for the analysis. Conversely, when the signal frequency is lower, a
lower time domain resolution and higher frequency resolution are used. This adaptive
resolution analysis performance of the wavelet transform can effectively distinguish the
local characteristics of the signal and the high-frequency noise, and accordingly perform
the noise filtering of the signal.

The general steps of the wavelet transform threshold filtering method are as follows:

(1) Perform the multiscale wavelet decomposition on noisy time series signals; this process
can be continued until the “noisy” or detailed component of the signal is sufficiently
low in variance (see Section 3.2);

(2) Determine a reasonable cutoff threshold and eliminate the high-frequency coefficients
at each scale after decomposition;

(3) Perform a wavelet signal reconstruction from the wavelet coefficients after the zeroing
process to obtain the filtered denoised signal.

The original signal f can be decomposed into f = A1 + D1 with A1 being a lower
frequency approximation and D1 a high frequency signal. Essentially we are decomposing
the original signal into a sum of wavelet terms of the form Uu,vψ(t), with gradually
decreasing values of u and suitable values of v. After reaching a cutoff for u, we reassemble
the function using the approximation via lower-frequency and larger-scale wavelets, giving
A1, and the remaining portion of the function is represented as D1. The process may be
repeated, treating A1 as the new “original” signal, to get the decomposition A1 = A2 + D2.
The process may be repeated for several iterations.

In addition to the removal of noise, filtering also smooths the data out as well. This
smoothing does not substantially change the actual numerical values or trends, but it does
help achieve a better fit for the model. As an ODE, the SICRD model assumes each of the
variables is at least continuously differentiable, thus smoothing the inherently nondiffer-
entiable accessible data helps the network perform an analysis on it. This decomposition
allows us to obtain a denoised signal, while still retaining information about the exact
nature of the filtered noise. With a method to appropriately process a noisy signal and
prepare it as a training set, we can now define the network intended to analyze our data.

2.5. Setup of the Neural Network

The ability of neural networks to act as universal approximators is well known [43] but
the ability to perform accurate estimations in reasonable time frames is a central element of
their increasing appeal. A variety of network structures have been developed to suit the
features of particular problems. For example, recurrent neural networks, such as the long
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short-term memory (LSTM) network, have been used to improve pattern recognition in
data that have historical dependencies [44].

For our approach, we implemented a new “modified” “Physics Informed Neural
Network” (PINN) to learn the values of the parameters and the unknown variable I(t)
in our model 1. The PINN approach involves the changing of the loss function for the
network, rather than any particular change in the network architecture itself, and in fact is
compatible with a wide variety of possible architectures [13,22]. The concept of the PINN
is to incorporate some physical law that must be obeyed by the system, and to introduce
an extra term into the loss function which becomes smaller the closer the network output
adheres to the law [27]. The approach was developed to estimate parameters and do
forecasting in cases where data are only available at relatively sparse time intervals. The
method is also robust to issues of overfitting, making it particularly useful for studies in
limited-information regimes such as disease modeling [27]. While the method has been
applied to more complex network architectures [22], we considered only the fully connected
feed-forward network in our work as we tested our “proof of concept” modification.

Initially, this concept was introduced in the context of nonlinear partial differential
equations, though we see that our case of a nonlinear ordinary differential equation still
falls into the applicable category (and other studies have also indeed used them in this
context [28,45]). The common approach is to simply take the difference of the differential
equations’ sides and introduce that as an extra term to minimize in the loss function.

This is sufficient for many applications but we found it unable to generate acceptable
results in our case. This was largely due to the entirely unknown variables S, I, and R in
our model. We also only had a single time series from the system to use in estimating the
parameters, whereas in many attempts to estimate system parameters using PINN methods,
an entire ensemble of starting conditions and subsequent trajectories is used. For example,
the DeepXDE deep learning method was used to attempt to estimate the parameters of
a Lorenz system but needed to take a large collection of different starting trajectories to
achieve good estimates [46]. Many methods of augmenting the PINN with other approaches
exist [22], but generally the core structure of the loss function, the defining feature of the
PINN, is not adjusted to improve training. Once a choice of modeling equation is made,
it is directly used for the loss terms. The work of [29] is an appealing recent example
with a reformulation of the original two-dimensional ODE system with an equivalent
one-dimensional second-order ODE. Their goal was to formulate a more straightforward
expression for the infection rate parameter, though the inherent effect of the approach on
the network training was not considered.

To address our case, we developed a new method, changing the structure of the loss
function to that in Equation (14). The new terms still constituted the “physical law” for our
system, but were of a form where the network’s gradient descent was far more stable. This
novel approach, in our view, nontrivially extends PINN methods, and hence that is why we
refer to it as a “modified” PINN system. This reveals the importance of tailoring the loss
function not only to each system, but to the specific circumstances of accessible variables
and parameters for a given problem. The tests on artificially generated data in Section 3.1
were extremely promising, with accurate estimations of the unknown parameters R0 and α.
This was performed with only a single time series of C(t) and D(t) being used to perform
the estimation. The network architecture was also the simple fully connected feed-forward
network, yet it still performed well. This attests to the efficiency of this suitably chosen
loss function.

Before we precisely define our modified approach, we first review the standard PINN
implementation. Generally, although many forms of PINN systems have been used, the loss
function is basically of the same form [13,22]. To give a precise definition for the ODE case,
consider an n-dimensional ODE system defined by

Ẋ = f (X, p), (10)
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where f := f (X, p) is some function of all our variables X, and the given system parameters
are p. The loss term Losspinn,1 may then be defined by

Losspinn,1 :=
n

∑
i=1

MSEt( fi(Xest, pest)− (Ẋest)i). (11)

where (Xest, pest) are the estimated values of the variables and parameters output from
the neural network. MSEt is the mean square error up until time t. This loss essentially
measures how well the output of the neural network is obeying the physical laws that
govern the system. Note that the estimated values of the system parameters appear in f
and thus may be learned using this loss term.

The PINN loss is then combined with the standard loss function, with Xtest being the
given test data:

Lossmse,1 =
n

∑
i=1

MSEt((Xest)i − (Xtest)i). (12)

Thus, we have the total loss:

Loss1 = Losspinn,1 + Lossmse,1 (13)

Our initial testing essentially implemented the above scheme using the “Disease
Informed Neural Network” code as a base [45]. Our version of Lossmse,1 could only include
C and D, due to these being (assumed to be) the only known variables, but otherwise the
loss function was the same. It was found that the network consistently led to incorrect
values for all variables and parameters. The existence of unknown variables created several
complications: the network had a fundamental gap in its training data, and the network was
trying to estimate the unknown variables (S, I, R) in addition to estimating the unknown
parameters. The presence of so much unknown information created substantial problems
in the network’s ability to minimize loss for any particular term from fi, without creating
significant losses in another element of the equations fi. The standard PINN loss terms also
varied quite substantially in magnitude. The size of Ḋ was much smaller than Ċ, and thus
might impact the network’s learning less substantially, despite how crucial the death data
were (as seen in our analysis in Section 2.3).

Motivated by these deficiencies, we developed a modified interpretation of the PINN
concept in the following way. If our variables for an ODE system are given by the vector
X(t), we choose functions gi(Xest, p) (where we recall p is the vector of parameters for the
system) which should each be 0 if the time series Xest precisely obeys the ODE system.
Concretely, we consider the SICRD model and derive the following functions gi from
Equation (1):

g1 = (1− α)Ċ− αḊ/β + C/TR (14)

g2 =
αI
TL
− Ċ− C

TR

g3 = İ + Ṡ + Ċ + Ḋ/β

g4 = R0 IS− NTLṠ.

Notice that these expressions involve suitable modifications of the dynamical equa-
tions through (linear) combinations thereof. We can then use these functions to define
the term:

Losspinn =
i=4

∑
i=1

MSE(gi). (15)

Then, the total loss function is given by

Losstotal = Lossmse + Losspinn, (16)



Viruses 2022, 14, 2464 13 of 27

where
Lossmse = MSE(Cest − Ctest) + MSE(Dest − Dtest). (17)

Some issues with the performance of the code were found when trying to use ratios or
log scales to try to equalize the terms in the MSE loss, but ultimately the performance of
the network worked well enough with the standard form. Alternative approaches with
these methods of equalizing could be considered though. With these new loss functions,
the network converged quickly and accurately when tested on artificially generated data
(results in Section 3.1).

Part of the motivation for this choice is that it excludes from consideration the re-
covered population for which there are always unidentifiable features (such as R(0)) and
focuses on the rest of the populations, including an effective rewrite of the conservation
law associated with the total population. We also note that in our new equations, we tried
to reduce how frequently multiple unknown quantities appeared together. To illustrate this
point, g1 involves only known quantities except for α, if we assume β to be known. This
allows this equation to be used to learn one parameter. If α is in principle known from g1,
then all quantities except I are known in g2, and thus I can be well estimated. Then, all
quantities except Ṡ are in principle known in g3, letting Ṡ and S themselves be estimated.
Finally g4 can then estimate the basic reproduction number R0.

Practically, this is not precisely what is happening, as each term is being minimized
simultaneously by the network. This is just meant to illustrate in principle how this
structure reduces the interference of multiple competing unknown quantities (a detail
known to cause issues in the training of some networks [47]). We also note that all of the
equations are of similar order, whereas in the standard PINN network, the quantity Ḋ is
substantially smaller than any other derivatives appearing in the system. In that light,
the present restructuring of the equations systematically builds the optimization of the
system parameters.

This approach is in no way unique to our particular choice of system either. It shows
that the concept of the PINN can be made broader than the standard choice of how to in-
corporate information from the original set of differential equations a system is assumed to
obey. Various different ODE or PDE systems could have alternatively derived formulations
that can then be used to train a neural network. The most crucial point of our example
is that it shows the existence of a case where the standard PINN approach is insufficient,
but the modified approach is extremely effective.

As far as the structure of the network itself is concerned, we note that it is a simple fully
connected neural network, constructed with some minor modifications of the base code
of [45]. The hidden dimension and learning rate initially presented in [45] created some
issues, due to the original work assuming that all of the population compartments were
known. This assumption allowed the original code to still converge reasonably well with a
much lower learning rate, as well as a lower hidden dimension. In our implementation, we
created 6 layers for our fully connected linear neural network, with hidden dimension 64.
The nonlinear activation function in each layer was chosen to be the usual ReLu function,
defined as: ReLu(x) = x, if x > 0, and ReLu(x) = 0 otherwise. The learning rate was taken
to be lr = 0.0001, while the optimizer used was Adam [48].

3. Results
3.1. Artificial Data Testing

In order to test the validity of our estimation method, we first tested it on a set of
artificially generated data. With artificial data, we can know the “hidden” variables and
parameters while the network is only fed the corresponding information known in the
real case. Then, the network’s resulting estimates can be compared with the true values to
evaluate its performance, unlike with real data where this information is unknown. We
assumed the real system corresponded at least roughly to the description of (8), behaving
on average as the ODE system (1) prescribed, with some random noise.
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We tested the neural network on artificial data with no noise, i.e., the ideal case,
to verify its baseline capabilities. We generated the time series X(t), our vector of variables
for the SICRD model, using a standard ODE solver. We then fed only the “known” variables
C(t) and D(t) to our network with our new loss function (17), to generate an estimated
time series and parameter values. We could then measure MSEt(Iest, Itest), as well as
the difference between the estimated parameters and the true values. Small MSE values
suggested that so long as our base assumptions about the system were reasonable, our
method accurately estimated the infected population and unknown parameters.

For our testing, we fixed the known values TL = 8.3, TR = 9.2, and β = 0.05. R0 = 2
and α = 0.8 were chosen for the unknown parameter values. We ran over a time interval of
40 days with 400 data points distributed evenly. The code was run for 50,000 epochs and
executed in 3 h. We see in Figure 2 that the correct values for the unknown parameters were
converged to quite rapidly and in a stable fashion. The oscillations in the loss function were
not unexpected, as we noted that the oscillations were small due to the logarithmic scale.
This was essentially just the process where once the loss was small enough, the network
could no further diminish the loss without passing through regions where the loss increased
temporarily while the Adam optimizer ran.
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Figure 2. (a) The learned parameters R0 = 2 and α = 0.8 in the artificial data testing. (b) The log-loss
curve for the training process as a function of the number of Epochs.
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Moreover, the total MSE loss along the time series we obtained was:

S total loss : 0.09977; I total loss : 0.00069;

D total loss : 0.00262; C total loss : 0.00093

Visually, we can see in Figure 3 how each learned time series (the dotted lines) over-
lapped almost precisely with the true time series. Clearly, in this example, the modified
PINN performed quite sufficiently in identifying both the parameters and the unavailable
time series information.

Figure 3. Artificial data time series compared with the network estimated values for each quantity;
see the legend for each of the relevant comparisons. Note that the network only had access to the
data for C and D. The true curves for I, R, and S were unknown to the network.

We also present the results from the standard PINN, i.e., directly using the form from
Equation (11) for the PINN loss. Testing was performed under the same conditions as for
the modified PINN, with the results presented in Figures 4 and 5. We note with an initial
value of α as 0.82, as we did in the modified PINN, α decreased directly to 0.7 during the
training, as seen in the first graph. Moreover, the fitted values for C and D were quite
poor, as seen in Figure 5 despite these being known quantities. Without modification,
the PINN gave results which were not merely poor, or took substantial time to converge
but the results also consistently converged to entirely incorrect values. Our modification
was crucial towards recovering accurate estimates of I, α, and R0.

3.2. Wavelet Denoising Results

With the testing of the network on artificial data concluded, the next step involved
the application to real data sets. The given time series, C(t) and D(t), each had noticeable
noise. We applied the wavelet decomposition defined in Section 2.4 before applying the
network to the filtered signal in Section 3.3.

We demonstrate several layers of wavelet decomposition from the original signal,
illustrated in Figure 6. Note that the overall shape and scale of the signal was preserved in
this smoothing process. Ai for higher values contained less of the precise information, but
that information was preserved in the corresponding sequence of Di. A further analysis
which incorporated the signal information for Di could have been performed, but we did
not pursue that avenue.
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Figure 4. The learned parameter α (with real value α = 0.8) using the standard PINN loss function.

Figure 5. Estimated C and D using the standard PINN loss function.
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Figure 6. Wavelet decomposition of confirmed case data for Alabama starting 1 May 2020. The origi-
nal time series and the subsequent five layers of decomposition into approximations (Ai) on the left
and high-frequency signal (Di) on the right are shown.
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The A1 approximation was used for the training of our network, as this gave a rea-
sonable balance between being smoothed out well enough for ease of training, while still
retaining substantial details of the original sequence.

3.3. Real Data Testing

After verifying the effectiveness of the network at testing on artificial data and pro-
cessing via the wavelet transform, the next step was to perform testing on real data. Only
C and D were known variables with the real data though, so it was not possible to evaluate
the network based on its ability to estimate the unknown variables. It was still possible to
at least measure how well the network was able to fit the available data while generating
estimates for the unknown variables and parameters. The network was trained on reported
data from Alabama for 90 days starting on 1 May 2020, with the resulting estimation the
network produced for C, D, and I given in Figure 7.
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3.3. Real Data Testing

After verifying the effectiveness of the network at testing on artificial data and pro-
cessing via the wavelet transform, the next step was to perform testing on real data. Only
C and D were known variables with the real data though, so it was not possible to evaluate
the network based on its ability to estimate the unknown variables. It was still possible to
at least measure how well the network was able to fit the available data while generating
estimates for the unknown variables and parameters. The network was trained on reported
data from Alabama for 90 days starting on 1 May 2020, with the resulting estimation the
network produced for C, D, and I given in Figure 7.

The estimated values for the assumed unknown parameters were R0 = 1.8162,
β = 0.0098, and α = 0.8762. The values TL = 8.3 and TR = 9.2 were assumed based
on medical record results [21].

We see that the network was able to generate very close fits to the known variables
C and D over the 90-day time span, despite the relatively noisy data. We did not train
over longer intervals of time as the assumption of constant parameter values became more
unrealistic. A potential approach using time-varying parameters is tested in Section 3.3.1,
whereas here, testing was constrained to constant parameter values in order to perform our
initial verification.
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3.3. Real Data Testing

After verifying the effectiveness of the network at testing on artificial data and pro-
cessing via the wavelet transform, the next step was to perform testing on real data. Only
C and D were known variables with the real data though, so it was not possible to evaluate
the network based on its ability to estimate the unknown variables. It was still possible to
at least measure how well the network was able to fit the available data while generating
estimates for the unknown variables and parameters. The network was trained on reported
data from Alabama for 90 days starting on 1 May 2020, with the resulting estimation the
network produced for C, D, and I given in Figure 7.

The estimated values for the assumed unknown parameters were R0 = 1.8162,
β = 0.0098, and α = 0.8762. The values TL = 8.3 and TR = 9.2 were assumed based
on medical record results [21].

We see that the network was able to generate very close fits to the known variables
C and D over the 90-day time span, despite the relatively noisy data. We did not train
over longer intervals of time as the assumption of constant parameter values became more
unrealistic. A potential approach using time-varying parameters is tested in Section 3.3.1,
whereas here, testing was constrained to constant parameter values in order to perform our
initial verification.
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Figure 7. (a) The estimated value for infected cases, with corresponding fitted values for confirmed
cases, compared with the actual confirmed count. (b) The fitted values for death cases, compared
with the actual death count. In each case the mean absolute percentage error (MAPE) is included.
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The estimated values for the assumed unknown parameters were R0 = 1.8162,
β = 0.0098, and α = 0.8762. The values TL = 8.3 and TR = 9.2 were assumed based
on medical record results [21].

We see that the network was able to generate very close fits to the known variables
C and D over the 90-day time span, despite the relatively noisy data. We did not train
over longer intervals of time as the assumption of constant parameter values became more
unrealistic. A potential approach using time-varying parameters is tested in Section 3.3.1,
whereas here, testing was constrained to constant parameter values in order to perform our
initial verification.

Thus, so long as the model had a reasonable fit to the assumption of Equation (8) with
our SICRD model, the estimates for I(t) and the unknown parameters should be relatively
accurate in their determination. Note that the general modification concept could easily be
applied to other models as well, though new functions serving the role of the equations
in (14) would have to be derived.

3.3.1. Time-Dependent Parameter Estimation

Our next step was to perform an estimation using the time-dependent parameter
model of Section 2.1. We found that our modified PINN was able to effectively and
efficiently minimize loss over a scale of about 60–90 days. We present an example estimation
of varying values for the parameters using available data in Alabama from 1 May 2020
to 31 December 2020, with a rolling window of 90 days, using the approach described in
Section 2.1.

We present our estimates of the time-dependent parameters in Figures 8 and 9. If the
true values were constant, or close to constant, we would not expect to see such substantial
variation in the graphs, so it seems that realistically the parameters should be assumed
to vary for long-enough timescales. The value of R0 seems relatively stable, which may
suggest that there were no substantial social distancing efforts implemented. Meanwhile,
the variation of the confirmation rate α seems to indicate a difficulty in keeping testing up
with infections at first, though some eventual adaptation takes place. The highly “noisy”
look of α may be due to artifacts of how confirmed cases are reported. The most substantial
variation though is the drop in β, which may reflect improvements in the treatment of
severe cases of COVID-19. Care has to be taken in interpreting the values though, as
uncertainties in the measured information and accuracy of the model are always present.

The results are suggestive of the viability of the use of this network approach on
systems with time-varying parameters. In the following section, we restrict ourselves to a
90-day time window with the assumption of fixed parameters to make estimations on all
50 U.S. states more feasible.

Figure 8. Cont.
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Figure 8. Learned values of the time-dependent parameters α and β as a function of time from 1 May
2020 for Alabama.

Figure 9. Learned values of the time-dependent parameter R0 as a function of time from 1 May 2020
for Alabama.

3.3.2. Ranking States by Testing

Now that we have a network that is able to, with reasonable effectiveness and efficiency,
estimate these unknown quantities, we consider a concrete question this information can
help us answer: “Which states have the worst relative rates of testing?”. This is an important
piece of information for federal policymakers, as it determines which areas would be in the
most dire need of additional federal aid in the form of (limited) testing supplies. The sense
of “worst relative testing rate” can be quantified by finding which states have the highest
ratio of I to C, averaged over a given time interval. Explicitly, we selected our corresponding
diagnostic to be:

A(t) =
1
t

t

∑
k=1

I(k)
C(k)

(18)

The importance of A(t) is that it lets us estimate which areas of the country are strug-
gling the most to efficiently test their populations, relative to the prevalence of the disease.
The idea of this particular metric is that it gives more specific information than just simply
taking the estimation for the unknown infected population. Taking the infected population
alone might just give information on locations that happen to have an exceptionally high
number of infections occurring. A(t) more directly identifies areas (in our case: states)
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where information is scarce relative to current levels of infection. This could be vital for
identifying population centers that may not have a high number of infections currently,
but are highly vulnerable to potential outbreaks due to poor testing infrastructure. The in-
formation from our direct estimates for I(t) as well as for A(t) together give a more robust
measure of the current testing situation.

The importance of early intervention in the spreading of COVID-19 is already known [21],
so the potential for this metric to provide an early warning is highly valuable. Even with
limitations in estimating I(t), as long as the network is able to distinguish population
centers of major need from ones of minor need, then it is still useful as a tool for policy-
making.

The confirmed case counts over 90 days starting from 1 May 2020, for the states with
the top 3 and bottom 3 estimated A(t) values are given in Figure 10. The case counts over 6
months starting from same date are given in Figure 11. The values of A(t) over a 90-day
interval starting on 1 May 2020, estimated by our network, are given in Tables 2 and 3, as
well as the estimated values for the unknown parameters. We see that the estimated value
for A(90) did not correlate in a direct and simple way with the values of the parameters.
Thus, the metric did appear to provide extra information that could not be extrapolated
simply from the parameter estimates alone.

Figure 10. For 90 days starting from 1 May 2020, we plotted the confirmed cases of the bottom 3
estimated A(t) values, corresponding to states PA, NH, and OH, as well as the top 3 estimated A(t)
values, corresponding to states ID, AK, and MO. We can see that ID, AK, and MO had a smaller
number of cases in May 2020. Their confirmed case counts significantly grew after the middle of
June though.
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Figure 11. Six months of confirmed cases for these 6 states. We see that the trend for ID, AK, and MO
continues for months past the time period over which we estimated A(t).
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Table 2. States organized by ranking values estimated over 90 days starting at 1 May 2020.

State A(90) R0 β α

Pennsylvania 1.011 1.8139 0.0375 0.8598

New Hampshire 1.0296 1.8125 0.0475 0.83

Ohio 1.0547 1.8093 0.0089 0.9099

New York 1.0549 1.7952 0.0032 0.8898

South Dakota 1.0656 1.8015 0.0237 0.8037

Maine 1.0722 1.8028 0.0238 0.8288

Indiana 1.0768 1.8107 0.0212 0.9268

Massachusetts 1.0771 1.8033 0.0126 0.9134

Nebraska 1.0771 1.8159 0.0069 0.8671

New Jersey 1.0848 1.7946 0.0139 0.8585

Connecticut 1.0895 1.7966 0.0102 0.8884

Rhode Island 1.096 1.7964 0.0091 0.9046

Michigan 1.1105 1.8059 0.0188 0.8416

Delaware 1.1361 1.8026 0.014 0.8804

District of Columbia 1.1662 1.7992 0.0077 0.9101

Iowa 1.1779 1.8039 0.0172 0.8872

Wisconsin 1.2021 1.8038 0.0179 0.8872

Minnesota 1.2078 1.8166 0.0417 0.841

Colorado 1.2115 1.8068 0.0052 0.8836

Maryland 1.232 1.8022 0.006 0.8888

North Dakota 1.2371 1.8085 0.0183 0.8802

New Mexico 1.2607 1.8063 0.0142 0.9054

North Carolina 1.2708 1.8063 0.019 0.9193

Wyoming 1.2844 1.8081 0.0123 0.8875

West Virginia 1.286 1.809 0.0133 0.8939

Virginia 1.3242 1.8127 0.0051 0.8745

Illinois 1.3434 1.8022 0.014 0.8022
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Table 3. States organized by ranking values estimated over 90 days starting at 1 May 2020.

State A(90) R0 β α

Utah 1.3906 1.8144 0.0072 0.8667

Louisiana 1.3956 1.8112 0.0165 0.8968

Vermont 1.4032 1.8264 0.0024 0.7205

Kentucky 1.4166 1.8184 0.0066 0.873

Tennessee 1.4332 1.8156 0.0106 0.8761

Mississippi 1.4338 1.814 0.0259 0.9032

Alabama 1.4714 1.8162 0.0098 0.8762

Oklahoma 1.4979 1.8119 0.0182 0.9009

Arkansas 1.505 1.8058 0.0181 0.9048

Kansas 1.5718 1.8142 0.0017 0.7393

Oregon 1.6298 1.8142 0.0054 0.8221

Washington 1.6314 1.8081 0.0188 0.8081

Nevada 1.6836 1.8097 0.0043 0.7946

Missouri 1.6889 1.8028 0.0069 0.9101

Texas 1.7384 1.8037 0.0201 0.9028

Georgia 1.7721 1.8125 0.0077 0.83

Arizona 1.7958 1.8063 0.0078 0.8814

California 1.8618 1.8618 0.0091 0.8898

South Carolina 1.8715 1.8124 0.0118 0.8866

Hawaii 2.0421 1.8235 0.0054 0.7464

Puerto Rico 2.0655 1.8159 0.0139 0.8037

Florida 2.1034 1.8139 0.0375 0.9134

Montana 2.1703 1.8167 0.0132 0.8808

Alaska 2.7863 1.8165 0.0022 0.7136

Idaho 2.8028 1.8127 0.0036 0.7543

At the highest extreme, Idaho had a roughly 2.8 to 1 ratio for infected to confirmed. We
note that while the time frame for this type of statistics was early in the pandemic, a state’s
ranking may be suggestive towards subsequent effects. During the tested period, Idaho
neglected to implement mask mandates in the summer of 2020 [49], later facing extreme
overburden of its medical system by December 2020 [50], and further on having the lowest
vaccination level later in September 2021 [51], features that appeared to be in line with
our findings (although, of course, a further exploration of such case examples is useful to
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consider in future efforts). Pennsylvania, on the other hand, had the lowest ranking, with a
ratio of 1.011, just barely more cases of unknown infections estimated than confirmed cases.
Pennsylvania had already instituted some mask mandates in April 2020 [52], and these
mandates were substantially expanded in July 2020 [53]. Universities within the state also
began declaring that classes would be moved online for the fall semester [54], with all of
these features indicating a higher degree of preparedness to address the pandemic. This
once again suggests the relevance of further consideration of this type of diagnostic.

Overall, the existence of such a substantial disparity between states supports that this
type of analysis may be interesting to consider and explore further. While we do not intend
to reach any definitive conclusions in this connection since, realistically, there are many
factors that may interfere with an accurate picture of this estimate, the consideration of the
case examples that we have examined suggests that a further examination of such ideas
and diagnostics would be worthwhile.

4. Discussion

In the present work, we chose a modified version of the SIR model for the time evolu-
tion of COVID-19, motivated by the features of the disease and the nature of available data.
The model allowed the distinguishing of confirmed and unconfirmed cases, as well as a
recording of the number of fatalities due to the disease. Upon verification of the identifia-
bility of the unknown quantities within the model (based on the practically available data),
we were able to use our modified PINN approach to analyze available data, with a special
loss function tailored to the lack of available information.

The most striking result was the substantial improvement that our modification made,
as it was not obvious that a reformulation of the governing equations should have such
an impact on the network’s learning. In principle the equations of (14) and (1) with
N = S + I + C + D + R contain the same information. The exact nature of this dependence
has likely gone unnoticed due to the basic implementation of the PINN being sufficient
for most applications. This kind of circumstance though, performing inference when some
variables are unknown, is not a rare one. The PINN was originally developed to be effective
for inference with sparse data [27] but our work demonstrates that it extends to even
incomplete data effectively, when appropriately modified.

There are, of course, many further refinements that could be made to our methods.
The SICRD model could always be further separated into more distinct population com-
partments relevant to the spread of the disease. Compartments for exposed, though not
yet infectious individuals, explicitly asymptomatic individuals, hospitalized individuals,
and more could be included, and we discussed some principles on the basis of which
such considerations could be explored. Additional topics that are quite relevant are the
consideration of aspects of age stratification [15,18,55], as well as the incorporation of the
role of vaccines and immunity waning (for later time frames than the ones considered
herein, during which a vaccine was available) [9,56–58]. We could also consider cases
where confirmed individuals may still infect others, albeit at a reduced rate.

Our current framework, however, was intended to be used to study the development
of the disease on relatively short time frames in the early pandemic stages, mitigating the
effect of immunity loss as individuals would most likely still have immunity. Within this
time frame, we could also disregard vaccinations, though, as stated earlier, the inclusion
of vaccination effects could be incorporated if later times were considered. Instances
of confirmed individuals spreading infection were assumed to be an exception as most
individuals followed appropriate quarantining procedures on a positive test result.

The crucial role of the death data (or hospitalization data in an SEAHIR model [16])
for estimation does raise the important issue of the validity of such data. The existence of
underreporting, delays, and misattribution (namely, the important concern about “death
from COVID” vs. “death with COVID” [59]) can create potential issues that warrant further
examination. Nevertheless, we consider it to be the most relevant starting point for the
study conducted herein and certainly a far more reliable one than the total case count,
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as has been explained also earlier in connection to studies from the CDC; see [18] for a
relevant discussion.

Indeed, it is also relevant to point out that, as demonstrated in Section 2.3, the un-
known infected population is impossible to estimate from recorded case counts alone.
Hospitalization case information has also been incorporated into other methods of disease
modeling with effective results so there is an existing precedent [16]. Such issues exist in
models of waterborne illness, where the presence of difficult-to-track pathogens in water
creates similar complications to our asymptomatic cases [34]. Further work can and should
include further data to improve the model’s robustness. What the present work does is
provide a mathematical basis and a computational implementation such that, even with a
more complicated model, the PINN approach will still be reasonably applicable. Before our
modification, it was not clear that a PINN could feasibly work even with our simpler model,
in the presence of multiple unknown variables.

Ultimately the simplifications made for the model, as well as for the architecture of
the neural network, were taken so that the evaluation of the novel loss function could be
performed with minimal complications. Future work could naturally focus on expanding
both the model’s complexity as mentioned above as well as incorporating more nuanced
network structures. The work of [25] on graph neural networks gives a very promising
direction for future work in both directions, with a natural extension of the model to
incorporate human mobility, paired with the natural choice of a graph neural network
architecture. Indeed, the study of such metapopulation models of wide appeal within the
modeling of COVID-19 [4,21], in conjunction with some of the technical approaches and
methodologies presented herein, constitutes a promising direction for future study.

The approach could also be suitably adapted to some form of recurrent neural network
(RNN) as well. RNNs have already been used in disease modeling [26] and the combination
of the LSTM, a specific form of RNN, with the PINN concept has been attempted in other
works with notable success [22]. A limitation of our current work is the inability to estimate
more of the unknown parameters simultaneously. The modified PINN still struggles to
perform well if it must estimate parameters TL and TR in addition to R0, β, and α. There
are simply too many simultaneous unknowns for the network to perform estimation
efficiently. Indeed, this issue of numerous local minima that perform equally well has been
encountered in various other studies; see, e.g., [18]. An RNN approach could be efficient
enough to allow this broader parameter estimation.

A particularly relevant direction, in terms of how widely it may expand our results,
would be a rigorously proven criterion for alternate PINN loss terms. We gave an informed
explanation of why the choice of Equation (14) led to better performance, but without a
formalized proof. A natural future goal could be to formally prove that an alternate set of
loss terms with fewer unknowns generally leads to faster or more accurate convergence.
Some analysis on this concept of a network’s difficulty to balance multiple competing
objectives does exist [47], so it would be reasonable to expect a form of generalized criteria
to hold. If such a proof could be made, it would allow our approach to be applied extremely
broadly with a general recipe for how to adapt it to a particular problem. It should also be
added the very recently proposed idea of incorporating causality into the loss function of
the PINNs [60] may also be quite relevant to consider in the present context. In addition,
one could extend the study using graph neural networks [61].
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