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Abstract: Dengue is a major vector-borne disease worldwide. Here, we examined the spatial distribu-
tion of extreme weekly dengue outbreak risk in Singapore from 2007 to 2020. We divided Singapore
into equal-sized hexagons with a circumradius of 165 m and obtained the weekly number of dengue
cases and the surface characteristics of each hexagon. We accounted for spatial heterogeneity using
max-stable processes. The 5-, 10-, 20-, and 30-year return levels, or the weekly dengue case counts
expected to be exceeded once every 5, 10, 20, and 30 years, respectively, were determined for each
hexagon conditional on their surface characteristics remaining constant over time. The return levels
were higher in the country’s east, with the maximum weekly dengue cases per hexagon expected
to exceed 51 at least once in 30 years in many areas. The surface characteristics with the largest
impact on outbreak risk were the age of public apartments and the percentage of impervious surfaces,
where a 3-year and 10% increase in each characteristic resulted in a 3.8% and 3.3% increase in risk,
respectively. Vector control efforts should be prioritized in older residential estates and places with
large contiguous masses of built-up environments. Our findings indicate the likely scale of outbreaks
in the long term.

Keywords: dengue; extreme value theory; max-stable model; transmission risk

1. Introduction

Infectious diseases commonly place the highest strain on health systems at the peak
of outbreaks [1,2]. A large rise in the number of cases leads to an increased demand for
healthcare services and potentially an exceedance of the capacity of healthcare institutions.
Therefore, the appropriate management of infectious disease outbreaks is crucial for public
health and outbreak preparedness. To achieve this, it is important to pre-empt outbreaks
by forecasting and understanding their likely scale in order to mitigate their impending
impacts [3].

Infectious disease control is conventionally augmented with methods of forecasting fu-
ture epidemics. The ability to forecast accurately provides an early warning of an imminent
outbreak and allows authorities to plan ahead and optimize resource allocation. Specific
examples include the use of regression tools [4–6] or epidemic models [7,8] to predict future
disease case counts or incidence. These models are suitable for anticipating and forestalling
disease outbreaks but are unable to characterize the likely long-term behavior and scale of
these outbreaks due to the forecasts being reliant on modeled conditional means and the
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occurrence of extreme events, such as the peak of disease outbreaks that are often fat-tailed
in nature [9].

Modeling extreme events and the tail risk relies on the extreme value theory (EVT)
framework, which makes use of appropriate statistics of extremes [9]. While several
studies have used the EVT framework to model extremes in infectious disease transmis-
sion [1,10,11], few have considered exploiting spatial information to model extremes, with
applications mainly limited to spatial extremes in weather phenomena such as precipi-
tation [12], temperature [13], and wind speed [14]. In the context of infectious diseases,
modelling their extremes across space can help policy makers formulate targeted interven-
tions in areas with exceptionally high risk [1,2]. This is especially important for long-term
resource planning and control efforts during outbreaks when resources for interventions
are limited [3]. In this paper, we used Singapore as a case study to examine the utility of
modeling the spatial risk of extreme dengue outbreaks in a densely populated city.

Dengue is a major vector-borne arboviral disease affecting much of the world, with an
estimated 105 million infections annually [15]. Like most other countries in Southeast Asia,
dengue is hyperendemic in Singapore, with all four serotypes in circulation [16,17]. This is
attributed to the tropical climate, high connectivity with the rest of the world, and fully
urbanized population, all of which facilitate the growth of dengue virus’s main vector, the
Aedes aegypti mosquito [16,18]. Intense vector control efforts since the 1960s have sharply
reduced the Aedes population in Singapore, which has led to a drop in the incidence of
dengue. However, since the 1980s, low herd immunity has contributed to a resurgence of
dengue in the city-state [19]. Like many other infectious diseases, dengue cases are often
clustered spatially [20–22], as has been demonstrated in Singapore [23,24]. Differences in
urban density, the age profile of buildings, and the presence or absence of natural vegetation
contribute to spatial heterogeneity in Ae. aegypti distribution and, consequently, the spatial
heterogeneity of dengue incidence [16].

Despite the importance of understanding disease transmission spatially, historical
interest has largely been focused on the extreme behavior of the process without a consid-
eration of spatial variation [2,25]. Standard EVT methods assume that observations are
independent and identically distributed with no spatial autocorrelation. However, these
assumptions render standard EVT methods inappropriate for characterizing extremes in
the transmission of infectious diseases, which are often influenced by adjacent locations
due to contagion. As such, we considered a class of extensions for standard EVT tools—
max-stable processes—to characterize spatial heterogeneity in dengue extremes and allow
for the characterization of its spatial dependency.

Here, we examined the utility of max-stable processes in analyzing the spatial distri-
bution of extreme dengue outbreak risk in Singapore from 2007 to 2020. We accounted for
possible associations between surface characteristics and dengue outbreak risk by modeling
trend surfaces using said characteristics in the models. We then determined the return lev-
els at different sites, which represented the weekly dengue case counts that were expected
to be exceeded once every specific number of years, while taking into account changes in
the trend surfaces.

2. Materials and Methods
2.1. Data

Dengue is a legally notifiable disease under the Infectious Diseases Act in Singapore,
and the notification of all laboratory-confirmed cases to the Ministry of Health is mandated.
We obtained data on all dengue infections aggregated by onset date from 2007 to 2020 from
the Ministry of Health. Epidemiological information such as the residential addresses and
onset dates of all laboratory-confirmed dengue cases were anonymized. We divided the
land area of Singapore into regular hexagons, each with a circumradius of 165 m and an
average area of 0.072 km2, and obtained the weekly counts of dengue infections for each
hexagon. This radius was selected as it provided a fine enough resolution for data to be
collected in Singapore, similar to [26]. We then obtained the annual maximum weekly
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counts of dengue cases for each hexagon between 2007 and 2020 inclusive (i.e., each block
represented a year, and the block maximum was the maximum weekly dengue count in a
particular year). We retained all hexagons with at least one instance of non-zero case counts
during the study period. Hexagons with zero case counts throughout the study period
were excluded from analysis, as these were non-residential areas and dengue transmission
did not occur there.

Using land surface data mainly from 2018, we calculated the percentage of each land
surface type in each hexagon. The land surface data was obtained from high-resolution
satellite imagery from the Worldview 2 and 3 and Quickbird satellites [27]. These satellite
data were classified into several land surface types, including: (i) marine, (ii) freshwater,
(iii) impervious surfaces, (iv) non-vegetated pervious surfaces, (v) freshwater swamp and
marsh, (vi) mangrove, (vii) vegetation with structure dominated by human management
(with tree canopy), (viii) vegetation with structure dominated by human management
(without tree canopy), (ix) vegetation with limited human management (with tree canopy),
and (x) vegetation with limited human management (without tree canopy). We assumed
that the land cover types remained constant throughout the study period.

Apartment blocks built by the Housing and Development Board (known as “public
apartments”) make up the majority of residential housing in Singapore. We computed the
median age of public apartments as of 2020 in each hexagon using the lease commencement
year. We also obtained the aggregated population size in each hexagon from the Urban
Redevelopment Authority (URA), Singapore.

We obtained nationally representative climate data between 2007 and 2020 from Mete-
orological Services Singapore (MSS). We aggregated the daily climate readings collected by
each of the 11 weather monitoring stations located across mainland Singapore by week, and
computed the arithmetic mean values across all stations to derive overall weekly measures
of mean, maximum, and minimum ambient temperature; mean relative humidity; and
total rainfall. We derived weekly measures of absolute humidity (AH) from the mean
temperature and relative humidity (RH) (see supplementary information). Weather data
were included as temporal covariates in the max-stable models (Table S1).

2.2. Max-Stable Processes

Consider observations of infectious disease case counts I1:t,j =
{

I1,j, I2,j, . . . , It−1, j, It,j
}

measured at some fixed interval for time points 1 to t, and locations j = {1, 2, . . . , J}. Our
goal was to model the peak of dengue outbreak risk from tools derived from EVT, which
allowed us to group our observations into separate blocks denoted by n1, n2, . . . , nm for
some fixed size N to yield the block maxima set of observations z1:nm by taking the largest
order statistic, denoted by the subscript (N) in each block:

I1:t, j =
{

I1, j, I2, j, . . . , It−1, j, It, j
}

=
{

I1, j, n1 , I2, j, n2 , . . . , Ik−1, j, n1 , Ik, j, n2 , Ik+1, j, n2 , . . . , It−2, j, nm , It−1, j, nm , It, j, nm

}
=
{

In1, j, In2, j, . . . , Inm , j
}

z1:nm, j =
{

In1, (N), j , In2, (N), j , . . . , Inm , (N), j

}
where z1:nm, j represents the block maxima set of observations.

Max-stable processes are widely used for modeling spatial extremes, such as the
observations z1:nm, j above. Briefly, let

{
Sj
}∞

j=1 be the points of a Poisson process on

R+ with intensity ds/s2, and let
{

Wj(z)
}∞

j=1 be independent replicates of some stationary

process W(x) to be ascertained later, satisfying the condition E
[
max

{
0, Wj(o)

}]
= 1, where

o denotes the origin. We can then define:

Z(x) = max
j

Sjmax
(
0, Wj(x)

)
(1)
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where Z(x) is a max-stable process and z = z1:nm, j represents the block maxima set of
observations. In our study, Sj was interpreted as governing the probability of observing
the maximum weekly dengue case count at a particular location j, while Wj(x) governed
the spatial relationship of all the (maximum) weekly dengue case. Different choices for the
process W(x) resulted in different max-stable models. We explored three commonly used
max-stable models, namely the Smith, Schlather, and Brown–Resnick models, for modeling
spatial extremes of dengue. The restrictions they impose on Wj(x) are presented in Table 1
and outlined in the following paragraphs.

Table 1. Max-stable models and corresponding restrictions on stochastic function. GP denotes a
Gaussian process.

Model Restriction

Smith Wj(x) = g(x− Xj)

Schlather Wj(x) =
√

2π max(0, ε j(x)), where ε j(x) ∼ GP(0, ρ)
Brown–Resnick Wj(x) = exp(ε j(x)− σ2(x)/2), where ε j(x) ∼ GP(0, ρ)

2.2.1. Max-Stable Models: Smith Model

Firstly, we took Wj(x) = g
(
x− Xj

)
, where g denotes a probability density function

to be defined and Xj a homogeneous Poisson process. We could interpret the value of the
max-stable process at x as the maximum over a space of the maxima of dengue outbreaks,
centered at the random points Xj and of magnitude Sj. The effects at x were given by
Sjg
(

x− Xj
)
. We arrived at the Smith model when taking g to be a (multivariate) normal

distribution, with covariance matrix Σ [28,29].
Then, considering any two magnitudes z1 and z2 for dengue outbreaks in locations x1

and x2, respectively, we obtained the following bivariate cumulative distribution function
parameterizing their spatial dependence structure under the Smith model:

Pr{Z(x1) ≤ z1, Z(x2) ≤ z2} = exp[− 1
z1

Φ (
a
2
+

1
a

log
z2

z1
)− 1

z2
Φ (

a
2
+

1
a

log
z1

z2
)] (2)

where a2 = (x1 − x2)
′ ∑(x1 − x2) is the Mahalanobis distance between locations x1 and x2,

and Φ denotes the standard normal cumulative distribution function.

2.2.2. Max-Stable Models: Schlather Model

The Schlather model considers a more flexible class of max-stable processes by taking
Wj(x) =

√
2π max

(
0, ε j(x)

)
, where ε j are independent copies of a standard Gaussian process

with correlation function ρ. The bivariate cumulative distribution function is given by:

Pr{Z(x1) ≤ z1, Z(x2) ≤ z2} = exp[−1
2

(
1
z1

+
1
z2

)
(1 +

√
1− 1 + ρ(x1 − x2) z1 z2

(z1 + z2)
2 )] (3)

where flexibility may be obtained from the various correlation functions ρ allowed under
the Gaussian process formulation.

2.2.3. Max-Stable Models: Brown–Resnick Model

Lastly, the Brown–Resnick model takes Wj(x) = exp
{

ε j(x)− σ2(x)/2
}

, where ε j
are independent copies of a centered Gaussian process with stationary increments, such
that var{W(x)} = σ2(x) for all x ∈ X. Then, considering any two magnitudes z1 and
z2 for dengue outbreaks in locations x1 and x2, respectively, their bivariate cumulative
distribution is conveniently given by (2), but with a2 = var{W(x1 − x2)}. Max-stable
models were fitted using the pairwise likelihood approach, which maximized the weighted
sum of likelihoods between all possible location pairs under our specifications, as described
in [28,29].
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2.2.4. Modeling Trend Surfaces

First, note that each pointwise distribution of Z is the generalized extreme value
distribution of the form:

Pr(Z(x) ≤ z|µ, σ∗, ξ) = exp
(
−(1 + ξ

z− µ

σ∗
)−1/ξ

)
, (1 + ξ

z− µ

σ∗
) > 0 (4)

where µ, σ∗, and ξ, respectively, denote the location, scale, and shape parameters [29]. We
further incorporated the spatial dependence of dengue outbreaks through other covari-
ates for each location by fitting each pointwise GEV distribution using their respective
parameters (location µ, scale σ∗, and shape ξ parameters), as well as other related spatial
characteristics, through the following linear equations [28,29]:

µ(x) = βµ, 0 + βµ, 1Q1(x) + · · ·+ βµ, qQq(x)

σ∗(x) = βσ∗ , 0 + βσ∗ , 1Q1(x) + · · ·+ βσ∗ , qQq(x)

ξ(x) = βξ,0

where Q1:q(x) represents the respective spatial observations which may influence z lin-
early through the regression coefficients β1:q at location x. We wrote βµ,σ∗,ξ,0 to denote
the respective intercept terms for each marginal GEV parameter and restricted ξ(x) to a
spatial constant due to the large uncertainty surrounding the parameter as per the existing
literature [29]. We considered a large group of spatial parameters which have been hypoth-
esized to either affect dengue transmission dynamics or vector ecology [16]. The pointwise
structure was chosen using pairwise deviance and empirical characteristics of local data
after fitting a wide range of plausible models.

The r-year return level for location x denoted ẑr(x) could then be estimated by in-
verting (4) and computing the following using the estimated parameters

{
µ̂(x), σ̂∗(x), ξ̂

}
:

ẑr(x) = µ̂(x) +
σ̂∗(x)
−ξ̂

[(−log(1− r−1))−ξ̂ − 1] (5)

where ẑr(x) provides the estimated weekly dengue case counts expected to be exceeded
once every r years at location x and can be interpreted as the long-term extreme risk
associated with dengue. To further determine the impact of some spatial covariate on
the return level, we assumed that the covariate Qh increases by some w unit. Given the
estimated parameters for the regression equations, we computed the new values for the
GEV parameters at each location post hoc:

µ(x)′ = β̂µ,0 + β̂µ,1Q1(x) + · · ·+ β̂µ,j(Qh(x) + w) + · · ·+ β̂µ,qQq(x)

σ(x)′ = β̂σ∗ ,0 + β̂σ∗ ,1Q1(x) + · · ·+ β̂σ∗ ,j(Qh(x) + w) + · · ·+ β̂σ∗ ,qQq(x)

The hypothetical r-year return level given the increase in the respective covariate could
then be taken as:

ẑr(x)′ = µ̂(x)′ +
σ̂(x)′

−ξ̂
[(−log(1− r−1))−ξ̂ − 1] (6)

and compared against estimates obtained using (5). For exposition, we examined the
impact of a 1%, 5%, and 10% increase in the land cover proportions and the total population
on the 30-year return level from the final model used. Similarly, for the median age of
public apartments, we examined the impact of a 1, 2, and 3 year increase in age on the
30-year return level relative to the baseline.

2.2.5. Model Assessment

We considered various permutations of marginal pointwise structures under different
max-stable models using pairwise deviance as the model selection criteria. The max-stable
fitting procedure substituted the full likelihood for the pairwise likelihood due to the large
number of locations present in the spatial data [30]. The pairwise deviance was therefore
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computed under the maximum pairwise likelihood estimator. After fitting the max-stable
process, we assessed if the marginal distributions were appropriately modeled and whether
the spatial dependence structure was satisfactory in the final model. We conducted model
assessment in two ways: with a quantile–quantile (QQ) plot (Figure S1) and an extremal
coefficient estimates plot from the F-madogram (Figure S2). The QQ plots compared the
observed pairwise maxima for each block and those obtained by simulations from the fitted
model. To further assess if spatial dependence was adequately modeled in the final model,
we empirically estimated the pairwise extremal coefficient between each pair of sites from
the binned F-madogram. The extremal coefficient function θ(.) is a statistical tool used to
diagnose the dependence in the context of max-stable processes, where θ(h) is defined as
the measure of the dependence of a pair of sites separated by the distance h [28].

2.2.6. Model Fitting

We fitted max-stable models using the R package ”SpatialExtremes” [31]. Three types
of models, the Smith, Schlather, and Brown–Resnick models, were fitted, and a variety of
specifications for each of their parameters was tested. The location µ and scale σ parameters
of each model were allowed to vary spatially via the inclusion of trend surfaces and be
influenced by the land cover covariates from the satellite images (Figure S3) [27]. The
specifications of the four most favorable models are provided in Table 2.

Table 2. Pairwise deviance from the four most favorable max-stable models.

Model 1 Trend Surfaces 2 Relative Deviance 3

Brown–Resnick
(M1)

µ(x) = βµ, 0 + βµ, 1X + ∑
q
i=2 βµ, iQi(x)

σ∗(x) = βσ∗ , 0 + βσ∗ , 1X + βσ∗ , 2Y + ∑
q
i=3 βµ, iQi(x)

1

Schlather
(M2)

µ(x) = βµ, 0 + βµ, 1X + ∑
q
i=2 βµ, iQi(x)

σ∗(x) = βσ∗ , 0 + βσ∗ , 1X + βσ∗ , 2Y + βσ∗ , 3X ∗Y + ∑
q
i=4 βµ, iQi(x)

1.007

Schlather
(M3)

µ(x) = βµ, 0 + βµ, 1X + ∑
q
i=2 βµ, iQi(x)

σ∗(x) = βσ∗ , 0 + βσ∗ , 1X + βσ∗ , 2Y + ∑
q
i=3 βµ, iQi(x)

1.022

Brown–Resnick
(M4)

µ(x) = βµ, 0 + βµ, 1X + ∑
q
i=2 βµ, iQi(x)

σ∗(x) = βσ∗ , 0 + βσ∗ , 1X + βσ∗ , 2Y + βσ∗ , 3X ∗Y + ∑
q
i=4 βµ, iQi(x)

1.427

1 Estimated max-stable models under the pairwise likelihood approach; 2 trend surfaces denote the pointwise
distribution imposed on each spatial unit where dengue case counts were collected. X, Y denote the horizontal and
vertical coordinates, respectively, and Q refers to the spatial covariates as described in Section 3.1. No restrictions
were imposed on the scale parameter ξ; 3 the relative deviance is given by the ratio of the pairwise deviance for
the model of interest over the best model (M1).

3. Results
3.1. Descriptive Results

A total of 1618 hexagons were included for analysis; these contained at least one in-
stance of non-zero dengue case counts from 2007 to 2020. The distribution of the 1618 block
maxima by year is shown in Table 3. To visualize the spatial distribution of block maxima,
we calculated the average block maxima in each hexagon between 2007 and 2020 before
plotting those averages on a map. The average block maxima ranged from 0 to 9 cases (to
the nearest whole number) with a mean of 1.3 cases (Figure 1A).

There were varying proportions of the different types of land cover throughout Singa-
pore. Built-up areas (impervious surfaces) occupied most of the main island (Figure 1C),
comprising an average proportion of 30% in every hexagon, but trees and other forms
of vegetation were also common in those places (Figure 1E,F) and made up nearly 20%
collectively. Forests (vegetation with a tree canopy under limited human management)
were largely confined to the extreme west and center of the main island and on major
outlying islands to the northeast (Figure 1G), making up at least half of each spatial unit in
those areas specifically. The median age of public apartments (Figure 1I) was 14 years and
was higher in the east. The population size (Figure 1J) averaged 1380 per spatial unit and
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was also higher in the east compared to other parts of Singapore. The spatial distribution
of reported dengue cases largely followed that of residential areas, as expected given that
Ae. aegypti is a peri-domestic species.

Table 3. Characteristics of the 1618 block maxima by year.

Year (20XX 1)

07 08 09 10 11 12 13 14 15 16 17 18 19 20

Min. 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25th perc. 0 0 0 0 0 0 1 0 0 0 0 0 0 1
50th perc. 1 1 1 1 1 1 1 1 1 1 0.5 0 1 2
75th perc. 1 1 1 1 1 1 3 2 2 2 1 1 2 4

Max. 27 16 13 24 19 20 31 107 26 26 31 21 39 42

1 XX refers to the last two numerals indicating the year (e.g., 07, 08, . . . , 20).

Viruses 2022, 14, 2450 7 of 15 
 

 

denote the horizontal and vertical coordinates, respectively, and Q refers to the spatial covariates as 
described in Section 3.1. No restrictions were imposed on the scale parameter ξ; 3 the relative devi-
ance is given by the ratio of the pairwise deviance for the model of interest over the best model (M1). 

3. Results 
3.1. Descriptive Results 

A total of 1618 hexagons were included for analysis; these contained at least one in-
stance of non-zero dengue case counts from 2007 to 2020. The distribution of the 1,618 
block maxima by year is shown in Table 3. To visualize the spatial distribution of block 
maxima, we calculated the average block maxima in each hexagon between 2007 and 2020 
before plotting those averages on a map. The average block maxima ranged from 0 to 9 
cases (to the nearest whole number) with a mean of 1.3 cases (Figure 1A). 

Table 3. Characteristics of the 1618 block maxima by year. 

 
Year (20XX 1) 

07 08 09 10 11 12 13 14 15 16 17 18 19 20 
Min. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

25th perc. 0 0 0 0 0 0 1 0 0 0 0 0 0 1 
50th perc. 1 1 1 1 1 1 1 1 1 1 0.5 0 1 2 
75th perc. 1 1 1 1 1 1 3 2 2 2 1 1 2 4 

Max. 27 16 13 24 19 20 31 107 26 26 31 21 39 42 
1 XX refers to the last two numerals indicating the year (e.g. 07, 08, …, 20). 

There were varying proportions of the different types of land cover throughout Sin-
gapore. Built-up areas (impervious surfaces) occupied most of the main island (Figure 
1C), comprising an average proportion of 30% in every hexagon, but trees and other forms 
of vegetation were also common in those places (Figure 1E,F) and made up nearly 20% 
collectively. Forests (vegetation with a tree canopy under limited human management) 
were largely confined to the extreme west and center of the main island and on major 
outlying islands to the northeast (Figure 1G), making up at least half of each spatial unit 
in those areas specifically. The median age of public apartments (Figure 1I) was 14 years 
and was higher in the east. The population size (Figure 1J) averaged 1380 per spatial unit 
and was also higher in the east compared to other parts of Singapore. The spatial distri-
bution of reported dengue cases largely followed that of residential areas, as expected 
given that Ae. aegypti is a peri-domestic species. 

 

Figure 1. Top row from left to right: (A) average yearly maximum weekly dengue case counts
from 2007 to 2020, (B) proportion of freshwater surfaces, (C) proportion of impervious surfaces,
(D) proportion of non-vegetated pervious surfaces, and (E) proportion of vegetation with structure
dominated by human management with tree canopy. Bottom row from left to right: (F) proportion of
vegetation with structure dominated by human management without tree canopy, (G) proportion
of vegetation with limited human management with tree canopy, (H) proportion of vegetation with
limited human management with tree canopy, (I) median age of public apartments, and (J) population
size in 2020.

3.2. Model Assessment

The Brown–Resnick max-stable model best characterized the extreme dengue outbreak risk.
The four best max-stable models were selected, together with their corresponding

marginal pointwise structures using the model selection criteria of pairwise deviance
(Table 2). We obtained the model with the lowest pairwise deviance under a Brown–
Resnick process (M1). The next two most favorable models were Schlather models (M2,
M3) under a powered exponential correlation function with varying pointwise structures
(relative deviance: M2, 1.007; M3, 1.022). The fourth most favorable model followed another
Brown–Resnick process with a different pointwise structure (relative deviance: M4, 1.427).
We also considered various permutations of marginal pointwise structures under different
max-stable models (see Supplementary Material). In the following paragraphs, we refer to
the model with the lowest pairwise deviance (M1) unless stated otherwise.

3.3. Estimated Extreme Dengue Outbreak Risk across Space and Associated Spatial Drivers

Under the four most favorable model specifications (M1–M4), we generated the return
levels for return periods of 5, 10, 20, and 30 years for all hexagons included in the analysis
(Figure 2). The return levels provided the level (i.e., number of weekly dengue cases) that
was expected to be exceeded once in a pre-specified return period in a particular hexagon,
which indicated the extreme dengue outbreak risk. Across all four models, the return levels
were consistently highest in the eastern parts of Singapore, encompassing districts such as
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Ang Mo Kio, Hougang, Bedok, and Tampines, thereby indicating larger extreme dengue
outbreak risk in these areas. Unsurprisingly, the return levels increased with the duration
of the return period.
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Figure 2. Top row from left to right: return levels for M1 associated with a (A) 5-year, (B) 10-year,
(C) 20-year, and (D) 30-year return period. Second row from left to right: return levels for M2
associated with a (E) 5-year, (F) 10-year, (G) 20-year, and (H) 30-year return period. Third row from
left to right: return levels for M3 associated with a (I) 5-year, (J) 10-year, (K) 20-year, and (L) 30-year
return period. Fourth row from left to right: return levels for M4 associated with a (M) 5-year,
(N) 10-year, (O) 20-year, and (P) 30-year return period. The legend for the return level of each row is
shown on the right.

Under M1, the ranges for the estimated return levels for the 5-, 10-, 20-, and 30-year
return periods were 2–15, 4–32, 9–64, and 13–92, respectively, per hexagon (Figure 2). The
estimated return levels over the 5-, 10-, and 20-year periods across all model specifications
(M1–M4) were largely similar, with the upper limit ranges being 11–23, 24–37, and 49–64,
respectively. The 30-year return levels diverged across model specifications to a larger
extent, with the upper limit ranging between 65 and 96 (Figure 2).

Under M1, one would expect the maximum weekly dengue cases to exceed the mean
return level of 51 cases at least once in 30 years in most of eastern Singapore. Conversely,
the return levels associated with the western parts of Singapore were lower, ranging mostly
between 13 and 45 cases per hexagon. Under M1, we obtained the spatially varying
marginal parameters of the trend surfaces across hexagons, i.e., the location and scale
parameter (see supplementary information). The shape parameter was assumed to be
constant given the absence of a clear spatial pattern as well as the difficulty of estimating
this parameter [28]. While no distinct pattern could be discerned for the location parameter,
the spatial distribution of the scale parameter followed closely that of the return levels,
with higher outbreak risk in the east.

Land cover factors such as the percentages of freshwater, impervious surfaces, and
vegetation with human management and tree canopies in each hexagon, as well as the
population density and the age of public apartments, were associated with higher return
levels. For each hexagon, we computed the independent effect of a 1, 5, and 10% increase in
individual land cover factors on the return level expected for a 30-year return period under
M1 for the following factors: (i) percentage of freshwater, (ii) percentage of impervious
surfaces, (iii) percentage of vegetation with structure dominated by human management
with tree canopy, and (iv) population density in each hexagon. Additionally, we computed
the effect of a 1-, 2-, and 3-year increase in the age of public apartments on the 30-year



Viruses 2022, 14, 2450 9 of 13

return levels in each hexagon. The independent effects of a unit change in these spatial
factors on the 30-year return levels are presented in Table 4 and Figure 3. The age of public
apartments and the percentage of impervious surfaces had the largest impact on the size of
the return levels. The percentage of vegetation and freshwater surfaces and the population
size also influenced the return levels but to a smaller extent.

Table 4. Independent effects of per-unit change on the 30-year return levels under M1.

Spatial Factor Change in Return Level 1 Average Return Level % Change

3-year increase in Median age of public apartments 1.8 3.8%
10% increase in Impervious surfaces 1.6 3.3%

Vegetation 2 0.7 1.4%
Freshwater surfaces 0.3 0.7%

Population size 0.1 0.3%

1 Denotes the respective change in 30-year return levels on average over each spatial unit; 2 with human
management and tree canopy.
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Figure 3. Top row from left to right: 30-year return levels under M1 with a (A) 1 percent, (B) 5 percent,
and (C) 10 percent increase in freshwater surfaces. Second row from left to right: 30-year return levels
under M1 with a (D) 1 percent, (E) 5 percent, and (F) 10 percent increase in impervious surfaces.
Third row from left to right: 30-year return levels under M1 with a (G) 1 percent, (H) 5 percent, and
(I) 10 percent increase in vegetation with human management with tree canopy. Fourth row from left
to right: 30-year return levels under M1 with a (J) 1 percent, (K) 5 percent, and (L) 10 percent increase
in the population. Fifth row from left to right: 30-year return levels under M1 with a (M) 1-year,
(N) 2-year, and (O) 3-year increase in the median age of public apartments. The legend for the return
level of each row is shown on the right.
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4. Discussion

An increase in extreme dengue outbreak risk is likely to have a disproportionately
large impact on public health resources. Our work adds to the growing literature on dengue
risk modeling and mapping in Singapore by quantifying the scale and likelihood of extreme
dengue outbreak risk across the country. Given the localized nature of dengue outbreaks,
spatial heterogeneity has to be appropriately accounted for [24]. We achieved this through
the use of max-stable models and identified potential spatial factors that could drive the
risk of extreme dengue outbreaks. The incorporation of trend surfaces further allowed for
spatial variation in our model parameters.

Our results demonstrate that the eastern regions of Singapore, roughly corresponding
to the eastern third of the main island, have higher return levels compared to the west
in general, indicating that these regions have higher extreme dengue outbreak risk. This
could be explained by the higher population density and older age of public apartments
in this area and is supported by the higher incidence of dengue observed in these regions.
Our analysis indicated that the age of public apartments and the proportion of impervious
surfaces had the strongest influence on return levels. Under M1, a 3-year increase in the
median age of public apartments was associated with an average 3.8% increase in the
30-year return level, while a 10% increase in the percentage of impervious surfaces was
associated with an average 3.3% increase in the 30-year return level. The areas with a higher
risk of dengue outbreak were located in the east, with the return levels remaining highest
in these regions. Older public apartments are likely to exhibit increased infrastructural
degradation over time, which is conducive for water stagnation, providing more breeding
habitats for Aedes mosquitoes [32]. The amount of impervious surfaces is a proxy for
urban residential density [33], which provides favorable breeding conditions for Ae. aegypti.
Impervious surfaces, which absorb greater amounts of heat than pervious ones during
the day and release heat more slowly at night, are positively associated with the effective
reproduction number of dengue in Singapore [34]. Additionally, these surfaces have been
associated with vectorial capacity in Athens, Georgia, US [35]. These results are to be
expected given that the main vector for dengue, Ae. aegypti, is a peri-domestic species that
thrives in urban environments. It is therefore prudent for public health agencies to focus
their vector control efforts on older residential estates and localities where there are large
contiguous masses of built-up environments, as found in the eastern parts of Singapore.

We also considered how different land surface types could have influenced the extreme
dengue outbreak risk. The percentages of vegetation structurally dominated by human
management and tree canopies and freshwater surfaces, as well as the population size,
were associated with higher return levels. Vegetation and shrubs provide natural habitats
for the secondary dengue vector, Ae. albopictus [36], while freshwater surfaces are often
located near or within nature reserves in Singapore, which provide natural outdoor habitats
for Ae. albopictus and facilitate mosquito breeding. The size of the human population
is also associated with higher return levels. The close proximity between humans and
Aedes mosquitoes in areas with a higher population density encourages the mosquitoes
to consume blood more frequently. Taken together, these are factors which contribute to
favorable vector breeding conditions and the transmissibility of the dengue virus, thereby
exacerbating the estimated extreme dengue outbreak risk across localities.

EVT is gaining currency in infectious diseases modeling. It has been applied to weekly
rates of pneumonia and influenza [2], the historical distribution of pandemics [9], and
superspreading events for respiratory infections [37]. The fat-tailed nature of disease
outbreaks demonstrate that the use of statistical methods based on analyses of means to
model such phenomena have their limits, and that it would be more appropriate to utilize
statistics of extremes. Spatial heterogeneity is another characteristic of infections, with
different disease dynamics occurring at different locations dependent on variations in
the distribution of pathogens, vectors, and hosts [38,39]. Together with [1,40], our work
is one of the first to apply EVT to vector-borne disease outbreak risk and, to the best of
our knowledge, the first to incorporate spatial heterogeneity in modeling extreme dengue
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outbreak risk in Singapore. We note that there are other methods for measuring the spatial
dependence of infectious disease cases. For instance, the spatiotemporal tau statistic is a
non-parametric measure of the degree of clustering at a specific range of distances (d1, d2)
from a particular case, specifically, the ratio of the expected incidence rate of cases falling
within (d1, d2) to the average incidence rate across the entire population [41,42]. Another
method of modeling the spatial dependence of infectious diseases is Bayesian inference
through the integrated nested Laplace approach (INLA) [43]. Like max-stable models, the
spatial dependence in INLA is explicitly built into the equations for the hyperparameters.
While these and several other methods [41] are useful in modeling the spatial dependence
of infectious diseases, they do not focus on the extremes of transmission risk, which are
best analyzed using the framework of EVT and max-stable models. Our models were
able to infer the return values, which represented the extreme dengue outbreak risk, at
specific locations and varying durations into the future. Despite Singapore being a small
country, we showed that spatial disparities in extreme dengue outbreaks were driven
by variations in land surface types and other aspects of the built environment such as
building age. This demonstration of city-scale variation in extreme dengue outbreak risk,
and the possible factors associated with it, is relevant to other metropolitan areas in dengue-
endemic regions. Our work also demonstrates the importance of spatially resolved dengue
surveillance systems, as they may help public health agencies triangulate the implications
of a changing city landscape on extreme dengue outbreak risk and help guide long-term
resource and policy planning.

Nevertheless, there are several limitations to our study. Firstly, as a standalone mea-
sure, the return level might not provide a complete picture of dengue outbreak risk, since
it focuses only on the block maxima of a time series, which in our case is the maximum
weekly dengue cases in a year. The return levels could therefore be used in conjunction
with other forecasting tools that examine the mean levels of disease transmission. Secondly,
our analysis was limited to locations where dengue cases were recorded between 2007 and
2020. As a result, we did not achieve the full spatial coverage of Singapore, nor were we
able to extrapolate the outbreak risk to those areas. However, this limitation is mitigated by
the fact that no dengue transmission occurred in these areas during the period of study,
since they are not residential areas. Thirdly, the surface land cover information was based
on a single year, 2018, and was assumed not to vary over time. While this was a reason-
able assumption within our study period of 2007 and 2020, given the land-use planning
guidance in Singapore [44], it might not hold true several decades into the future if land
uses change. Lastly, we did not consider human movement in our study, which might have
influenced the transmission risk of dengue. Future studies may consider incorporating this
aspect in the modeling of extreme dengue risk.

5. Conclusions

To our knowledge, this is the first study to model the spatial risk of extreme dengue
outbreaks in Singapore. The eastern parts of Singapore were found to be more prone to
extreme dengue outbreak risk, which is consistent with the observed spatial clustering
of dengue cases. These findings provide a more comprehensive understanding of how
extreme outbreaks might be clustered across Singapore and the risk of such events. We also
identified spatial factors that might drive extreme dengue outbreak risk. Our findings can
be used to inform long-term resource planning and risk mitigation in Singapore.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14112450/s1, Supplementary Information to “Spatial methods
for inferring extremes in dengue outbreak risk in Singapore”. Figure S1: QQ plot for 9 random
locations. The dots represent the observed pairwise annual weekly maximum dengue case counts
in each year compared against the simulated fitted model; Figure S2: Extremal coefficient with unit
Gumbel margins from the best model (M1); Figure S3: (A) Location and (B) Scale parameters for
each spatial location derived from the generalized extreme value distribution under the best model
specification (M1). Table S1: Pairwise deviance from the other max-stable models.
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