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Abstract: Pregnant patients have increased morbidity and mortality in the setting of SARS-CoV-2
infection. The exposure of pregnant patients in New York City to SARS-CoV-2 is not well understood
due to early lack of access to testing and the presence of asymptomatic COVID-19 infections. Before
the availability of vaccinations, preventative (shielding) measures, including but not limited to
wearing a mask and quarantining at home to limit contact, were recommended for pregnant patients.
Using universal testing data from 2196 patients who gave birth from April through December
2020 from one institution in New York City, and in comparison, with infection data of the general
population in New York City, we estimated the exposure and real-world effectiveness of shielding
in pregnant patients. Our Bayesian model shows that patients already pregnant at the onset of the
pandemic had a 50% decrease in exposure compared to those who became pregnant after the onset of
the pandemic and to the general population.

Keywords: pregnant women; shielding during pregnancy; effectiveness; SARS-CoV-2; New York
City; dynamic model; Bayesian inference

1. Introduction

Pregnant patients make up a vulnerable patient population in any infectious disease
outbreak. When New York City became the epicenter of COVID-19 pandemic in March
2020, the impact of SARS-CoV-2 infection on pregnant patients and their neonates was not
well understood [1]. In addition, the prevalence of the disease in the pregnant population
was difficult to capture given the lack of early testing and the presence of asymptomatic
infected patients [1,2].

During this period of uncertainty early in the pandemic, most national and regional
public health authorities and medical care professionals advocated for the enforcement of
protective measures including wearing masks, quarantining at home when possible, and
keeping social distancing. These non-pharmaceutical interventions or shielding measures
have been shown to be highly effective in mitigating epidemic curves in the larger popu-
lation especially during different “lockdown” periods in myriad countries [3–6] but the
effectiveness among pregnant patients at that time are still unknown.

Studies have shown that pregnant patients are at higher risk of getting seriously ill
from SARS-CoV-2 compared to non-pregnant patients [7,8]. A meta-analysis showed that
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compared to non-pregnant patients of reproductive age with COVID-19, pregnant patients
are at increased risk of severe disease from COVID-19, with increased risk of ICU admission
mechanical ventilation, and death [9,10]. In this study we aim to model exposure rates in the
pregnant vs. general populations and evaluate the efficacy of both shielding and behavior
changes during pregnancy on reducing both infection exposure and its ramifications for
morbidity and mortality to SARS-CoV-2 among pregnant patients. The estimation of
effectiveness of shielding during pregnancy relies on the comparison of estimates of past
exposure to infection between pregnant patients and the general population. Serology
tests can identify past infections and enable estimation of the number of total infections.
However, naturally formed immunoglobulins targeting the virus (i.e., those generated by
native infection and not vaccination) have been reported to wane below the detectable level
of serological assays quite rapidly (e.g., after several months) [11,12]. The cumulative level
of exposure to SARS-CoV-2 in a population therefore is not directly measurable and has to
be inferred through modeling. Here, we propose a new method to estimate the cumulative
exposure of SARS-CoV-2 among pregnant patients and employ a peer-reviewed model to
estimate the cumulative exposure among general population in New York City, accounting
for expected levels of antibody waning (seroreversion). These results have implications on
future infectious disease prevention strategies in pregnancy.

2. Materials and Methods
2.1. Pregnant Patients Data

Pregnant patients giving birth at a single New York City hospital between 20 April
2020 and 27 December 2020 were included in this study. 2682 pregnant patients with clinical
data capture and sample capture could have had either RT-PCR testing or serology testing
or were untested (unknown). Among these 2682 patients in terms of RT-PCR, 97.7% were
tested and 2.3% were unknown; in terms of serology tests, 89.9% were tested and 10.1%
were unknown. For testing results breakdown: 10% were RT-PCR negative but serology
unknown; 0.3% were both RT-PCR and serology unknown; 8.1% were RT-PCR negative
and serology positive, 0.075% were RT-PCR unknow and serology positive, 2.1% were
both RT-PCR and serology positive, 77.18% were both RT-PCR and serology negative, 2.0%
RT-PCR unknown and serology negative, and 0.56% were RT-PCR positive and serology
negative. The demographics of these 2682 pregnant patients can be found in Table 1. After
screening the distribution of unknown tests results for PCR and serology on the calendar
week, 2196 pregnant patients were included in the mathematical modelling.

The serology was detected in the serum or plasma from peripheral blood collected
during admission for delivery. The serology test was performed using the clinical testing
Pylon 3D platform (ET HealthCare, Palo Alto, CA). The Pylon 3D platform [13] utilizes
a fluorescence-based reporting system that allows for the semiquantitative detection of
antie-SARS-CoV-2 IgG and IgM with a specificity of 98.8% and 99.4%, respectively. In this
paper, we denoted the serology status of every pregnant patient as positive if either IgG or
IgM was positive and as negative if both IgG and IgM were negative.

Pregnant patients underwent RT-PCR testing for SARS-CoV-2 using nasopharyngeal swabs.
The observed cross-sectional data for pregnant patients is restructured into four

trajectories for model fitting: weekly proportion of RT-PCR and serology negative time-
series, weekly proportion of RT-PCR positive and serology negative time-series, weekly
proportion of RT-PCR positive and serology positive time-series and weekly proportion of
RT-PCR negative and serology positive time-series.
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Table 1. Demographics table for women who giving birth prior to August 2020 and from August
2020 onwards.

Total
Women Giving
Birth Prior to
August 2020

Women Giving
Birth from August

2020 Onwards
Test p-Value

n = 2682 n = 1781 n = 901

Ethnicity Chi Square: 5.82 0.324

Not Hispanic or Latino
or Spanish Origin 1769 (66%) 1173 (65.9%) 596 (66.1%)

Hispanic or Latino or
Spanish Origin 219 (8.2%) 142 (8%) 77 (8.5%)

African American 1 (0%) 1 (0.1%) 0 (0%)
Multi-racial 1 (0%) 0 (0%) 1 (0.1%)

Declined 600 (22.4%) 396 (22.2%) 204 (22.6%)
Unknown 92 (3.4%) 69 (3.9%) 23 (2.6%)

Race Chi Square: 11.49 0.244

White 1346 (50.2%) 876 (49.2%) 470 (52.2%)
Asian 336 (12.5%) 224 (12.6%) 112 (12.4%)

Black or African
American 169 (6.3%) 118 (6.6%) 51 (5.7%)

American Indian or
Alaska Nation 6 (0.2%) 2 (0.1%) 4 (0.4%)

Nat. Hawaiian/Oth.
Pacific Island 3 (0.1%) 2 (0.1%) 1 (0.1%)

Ashkenazi Jewish 2 (0.1%) 1 (0.1%) 1 (0.1%)
Multiple races reported 15 (0.6%) 7 (0.4%) 8 (0.9%)
Other combinations not

described 258 (9.6%) 170 (9.5%) 88 (9.8%)

Declined 464 (17.3%) 319 (17.9%) 145 (16.1%)
Unknown 83 (3.1%) 62 (3.5%) 21 (2.3%)

Mom Age (SD) years t-test: −0.47 0.636

34.4 (5.0) 34.4 (5.0) 34.5 (5.0)

Gestational Age at
delivery (SD) weeks t-test: 1.53 0.126

38.8 (2.1) 38.8 (2.0) 38.7 (2.4)

2.2. General Population Data

The seroprevalence data for general population in New York City Metro Area (includ-
ing Manhattan, Bronx, Queens, Kings and Nassau) from February 2020 to December 2020
and the daily total (including confirmed and probability) mortality data were extracted
from US Department of Health and Human Services Centers for Disease Control and
Prevention CDC Data Tracker [14]. Details of the seroprevalence data used here can be
found elsewhere [12,15].

2.3. Exposure Inference in Pregnant Patients

We first develop a dynamic model diagramed in Figure 1 for the temporary changing
status of RT-PCR and serology among pregnant patients based on the COVID-19 disease
progression. Transmission parameters specific to pregnant patients are defined in the
dynamic model (Table 3). A set of ordinary differential equations (ODEs) describing the
time evolution of X00, X10, X11, X01 and Z00 can be written as follows:

dX00(t)
dt = −λτ(t)X00

dX10(t)
dt = λτ(t)X00 − τX10

dX11(t)
dt = τX10 − σX11

dX01(t)
dt = σX11 − βX01

dZ00(t)
dt = βX01

(1)
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The initial conditions of X00, X10, X11, X01 and Z00 at t = 0 are denoted as y00, x10, x11,
x01 and z00. Here, t = 0 refers to 20 April 2020 (calendar week 17 in 2020) when the first
data of pregnant patients was collected. The minimum time step in the ODEs is one week.
We reparametrize the initial conditions as follows

x10 = k10(1− y00)
x11 = k11(1− y00 − k10(1− y00))
x01 = k01(1− y00 − k10(1− y00)− k11(1− y00 − k10(1− y00)))
z00 = 1− x10 − x11 − x01

(2)

where {k10, k11, k01} are tool parameters and constrained between 0 and 1 so that
{x01, x11, x10, z00} can be constrained between 0 and 1. This is mainly for the convenience
of MCMC implementation in Rstan. The posterior estimates of {k10, k11, k01} in each model
can be found in Figure 4.

In Equation (1), {λτ(t)} is the force of infection. We first assume λ11(t) is constant
over time (17 ≤ t ≤ 53) in Model 1 and then relax it by assuming a piece-wise constant at a
fixed time step. To test the sensitivity, we try several different steps including 18 weeks in
Model 2, {

λ21, 17 ≤ t < 35
λ22, 35 ≤ t ≤ 53

(3)

12 weeks in Model 3, 
λ31, 17 ≤ t < 29
λ32, 29 ≤ t < 41
λ33, 41 ≤ t ≤ 53

(4)

and 9 weeks in Model 4, 
λ41, 17 ≤ t < 26
λ42, 26 ≤ t < 35
λ43, 35 ≤ t < 44
λ44, 44 ≤ t ≤ 53

(5)

and then compare main model results. We denote the numerical solutions of ODE system
defined in (1) as X̂00, X̂10, X̂11, X̂01 and Ẑ00.

Following the dynamic model, we develop a Bayesian measurement model to model
the data observation process so that the parameter estimation and model fitting can be con-
ducted simultaneously using MCMC in Rstan [16]. The model with associated parameters
(Table S1) is described as follows:

λij ∼ uni f orm(0, 1), λij ∈ [0, 1]
σ ∼ uni f orm(0, 1), σ ∈ [0, 1]
τ ∼ gamma(4, 3), τ ∈ [0.5]
β ∼ uni f orm(0, 1), β ∈ [0, 1]
y00 ∼ beta(8, 2), y00 ∈ [0, 1]

(6)

(
xobs

00 (t), xobs
10 (t), xobs

11 (t), xobs
01 (t)

)
∼ Multinomial

(
N(t), X̂00(t) + Ẑ00(t), X̂10(t), X̂11(t), X̂01(t)

) (7)

where xobs
00 (t), xobs

10 (t), xobs
11 (t) and xobs

01 (t) are the measured numbers of pregnant patients
at calendar week t who were (a) both RT-PCR and serology negative, (b) RT-PCR positive
and serology negative, (c) both RT-PCR and serology positive and (d) RT-PCR negative
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and serology positive respectively. X̂10(t), X̂11(t), X̂01(t) are ODE-predicted individuals at
calendar week t who were in RT-PCR positive and serology negative, RT-PCR positive and
serology positive, RT-PCR negative and serology positive respectively. X̂00(t) + Ẑ00(t) is
the ODE-predicted total number of pregnant patients at calendar week t who were either
both RT-PCR and serology negative.

We use Bayesian inference (Hamiltonian Monte Carlo algorithm) in RStan to fit the
model to RT-PCR and serology data by running four chains of 20,000 iterations each (burn-in
of 10,000). We use 5% and 95% percentiles from the resulting posterior distributions for 90%
CrI for the parameters. The Gelman–Rubin diagnostics (R̂) given in Table S3 show values
of 1, indicating that there is no evidence of non-convergence for either model formulation.
Furthermore, the effective sample sizes (ne f f ) in Table S3 are all more than 5000, meaning
that there are many samples in the posterior that can be considered independent draws.

2.4. Exposure Inference in General Population

For general population in New York City, we collected morality and seroprevalence
time-series data as described in the Data Description section and fitted a published model
under the assumption of constant infection fatality ratio [11]. In the meanwhile, we
got the estimates of cumulative exposure over time and two parameters related to the
general population of New York City: they are infection fatality ratio, α and antibody
decaying ratio, ω (Table S2). Through comparing the exposure level to SARS-CoV-2 among
pregnant patients and general population, we estimated the effectiveness of shielding
during pregnancy.

3. Results
3.1. Dynamic Model of SARS-CoV-2 Infection

The time course of SARS-CoV-2 infection among pregnant patients can be recon-
structed utilizing both RT-PCR and serology testing results by following the timeline of a
typical SARS-CoV-2 infection. Most individuals, once infected, experience an incubation
period before developing some symptoms of COVID-19 infection, while some individu-
als will remain asymptomatic throughout. The onset of RT-PCR positivity varies across
individuals and types of clinical specimens [17] but systematic review studies showed that
the highest percentage virus detection was from nasopharyngeal sampling between 0 and
4 days post-symptom onset at 89% (95% confidence interval (CI) 83% to 93%) dropping
to 54% (95% CI 47 to 61) after 10 to 14 days [18]. In addition to testing SARS-CoV-2 RNA
load using RT-PCR testing SARS-CoV-2-specific IgM and IgG antibody (in the absence of
vaccination) is another method for identifying history of infection. Although the precise
timing of IgM and IgG antibody detectability depends on the testing kits and varies across
different individuals [19,20], on average the viral RNA is detectable one or two weeks
earlier by RT-PCR than the antibody detectable by serological assays [20,21].

Assuming that the RT-PCR is positive before serology positivity, we divided the population
of pregnant patients into five compartments: (1) RT-PCR negative and serology negative without
previous exposure (X00, naïve); (2) RT-PCR positive and serology negative (X10, early phase
infected); (3) RT-PCR positive and serology positive (X11, middle-phase infected); (4) RT-PCR
negative and serology positive (X01, late-phase infected), and (5) both RT-PCR and serology
negative with history of previous infection (Z00, past infected) (Table 2).

We next defined four transmission quantities or parameters to link these above men-
tioned 5 time-based compartments: force of infection, λτ ; average time lag between virus
detectability by the RT-PCR test and antibody detectability by the serology assay, 1/τ; aver-
age time lag between antibody detectability by the serology assay and virus undetectability
by the RT-PCR assay, 1/σ; and antibody decay rate, β (Figure 1).
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Table 2. A list of patient compartments or model variables and their definitions.

Variables Definition

X00
proportion of naïve population who are both RT-PCR and serology
negative and never exposed

X10
proportion of early phase infected population who are RT-PCR positive
but serology negative

X11
proportion of middle-phase infected population who are both RT-PCR
and serology positive

X01
proportion of late-phase infected population who are RT-PCR negative
but serology positive

Z00
proportion of past infected population who are both RT-PCR and
serology negative but previously exposed

The whole length of infectious period for pregnant patients can be therefore approx-
imated by the sum of time delay between virus detectability and antibody detectability
and the average time lag between antibody detectability and virus undetectability. We
developed a dynamic model to study temporal changes of both RT-PCR and serology status
in pregnant patients (Figure 1) with associated variables (Table 2) and parameters. Further
details about the model can be found in the Methodology Section.

3.2. Longitudinal Cross-Sectional RT-PCR and Serology Results

We modeled the exposure of 2196 pregnant patients who delivered at a New York
City hospital from 20 April 2020 through 27 December 2020 based on SARS-CoV-2 testing
performed on discarded samples obtained from birth admission using data from quantita-
tive real-time polymerase chain reaction (RT-PCR) testing for SARS-CoV-2 viral infection,
or serology studies assaying levels of Immunoglobulin (Ig)G and IgM as a marker of the
immune response to SARS-CoV-2 infection. Of the 2196 patients that had both RT-PCR
and serology results available, 2.7% were positive and 97.3% were negative for RT-PCR
testing results; and 11.2% were positive and 88.8% were negative and for serology testing
results. For both tests combined, 2.2% were both positive for RT-PCR and serology, 0.5%
were RT-PCR positive and serology negative, 9.0% were RT-PCR negative and serology
positive, and 88.3% were both RT-PCR negative and serology negative.

3.3. Fitting Data from Pregnant Patients to the Dynamic Model

The test results of RT-PCR and serology allow us to divide our population of pregnant
patients into four data-driven categories: (a) both RT-PCR negative and serology negative;
(b) RT-PCR positive and serology negative; (c) both RT-PCR positive and serology positive;
and d) RT-PCR negative and serology positive. The challenge in getting from test results
to dynamic model compartments is that the first compartment (X00, naïve) and the last
compartment (Z00, past infected) in the dynamic model (Figure 1) both manifest as both
RT-PCR and serology negative, and are thus indistinguishable. To overcome this challenge,
we developed a Bayesian measurement model to fit the test result data, which connects
model predictions of the five time-based modeling-compartments to the measurements of
the four data-driven categories.

Different models (1–4) were used to analyze different assumptions about the force
infection among pregnant patients. In model 1, we assumed the force of infection is constant
over time, and then relaxed the assumptions by assuming a time-varying force of infection
in models 2–4 (for details of how these models differ, see the parameters in Table 3). Model
fitting results showed that predictions from all four dynamic models have good agreement
with measurements from the data-driven categories each calendar week (Figure 2).
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Table 3. Parameter estimates (associated 90% credible intervals) among pregnant patients for each
model fit.

Parameter (Unit) Definition Model Median 5% 95%

τ−1 (days)
average time lag between virus detectability

and antibody detectability

1 7 4 18

2 5 3 16

3 5 3 10

4 6 4 13

σ−1 (days)
average time lag between antibody

detectability and virus undetectability

1 22 14 37

2 18 11 32

3 17 11 27

4 18 12 28

β−1 (days)
average time lag between seroconversion

and seroreversion among pregnant patients

1 152 84 336

2 118 64 270

3 110 65 208

4 117 66 240

y00(−) proportion of patients who were giving birth
and not exposed by 20 April 2020

1 0.87 0.79 0.90

2 0.86 0.76 0.90

3 0.86 0.74 0.89

4 0.85 0.74 0.89

λτ

λ11(−)

force of infection

1 0.0052 0.0022 0.010

λ21(−)
2

0.0063 0.0028 0.013

λ22(−) 0.0079 0.0025 0.0182

λ31(−)

3

0.0041 0.0052 0.019

λ32(−) 0.011 0.0052 0.019

λ33(−) 0.0077 0.0030 0.019

λ41(−)

4

0.00013 0.000088 0.00072

λ42(−) 0.0095 0.0051 0.016

λ43(−) 0.0070 0.0013 0.0178

λ44(−) 0.0083 0.0033 0.019

3.4. Transmission Parameters of COVID-19 in Pregnant Patients Are Estimated to Be Consistent
with Those Estimated for General Population

Data fitting allowed for the estimation of the transmission parameters. The posterior
estimates of parameters for pregnant patients from the four models were summarized in
Table 3. The model also estimated the proportion of patients who were giving birth but not
exposed to SARS-CoV-2 (y00) by the beginning of our study in April 2020.

We found that the estimates of the time difference between RT-PCR positivity and
serology positivity, and the duration of the infectious period for pregnant patients are very
robust, on average 5.5 days (95% Credible Interval, CrI (3.3, 16.7) days), and 18.8 days (95%
CrI (11.3, 34.3) days), respectively. These estimates are largely comparable with those for
the general population [17,22–26]. After seroconverting, seropositivity is estimated to be
maintained for 124 days on average (95% CrI: (63, 320) days) among exposed pregnant
patients. This relatively rapid seroreversion is consistent with estimates from the corre-
sponding observational study, where analysis of the relationship between the elapsed time
from the date of symptom onset and the antibody levels for pregnant patients demonstrated
that the IgG positivity status could last approximately 110 days on average with a lower
bound of the 95% confidence interval of 82 days but with an upper bound that is uncertain
and possibly very large [2].
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Figure 2. Time evolution measurements and fitted test-result model estimates of the SARS-CoV-2
RT-PCR and antibody status among patients who gave birth between 20 April 2020 and 21 December
2020. Panel (A–D), respectively, shows the model fitting results for four data-driven categories:
(A) both RT-PCR negative and serology negative; (B) RT-PCR positive and serology negative; (C) both
RT-PCR positive and serology positive; and (D) RT-PCR negative and serology positive. In each
panel, the orange solid circles and black error bars represent the measured proportion of patients
who were giving birth and in one of the four RT-PCR and serology categories and their credible
intervals respectively. The green, orange, purple and pink lines in each panel show the median of
estimates from Model 1–4, for proportions of patients who were giving birth in each of the four
categories, while the shaded areas correspond to the 90% credible intervals. The models differ in
the time-dependence of the force of infection; Model 1 assumes a constant force of infection while
Models 2–4 assume time-varying force of infection.

3.5. Estimated SARS-CoV-2 Exposure in Pregnant Patients Is Higher than Seropositivity Rates
Would Suggest

The estimated seroprevalence (proportion of pregnant patients who are seropositive)
from each of the dynamic models (Figure 3) match that of our data (Figure 2B–D). We next
estimated the exposure to SARS-CoV-2 in the pregnant patients and found that exposure is
estimated to be much higher than serology positivity (Figure 3). Due to the rapid decline in
antibody levels after natural infection confirmed in both experimental analyses [27–29] and
modelling analyses [11,12], there is a gap between seropositivity and the cumulative level
of exposure; furthermore, this gap increases with time due to increasing exposure levels
over time (Figure 3).
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Figure 3. Time evolution of SARS-CoV-2 exposure and seroprevalence among patients who gave
birth between 20 April 2020 and 21 December 2020. The orange solid circles and black error bars
represent the measured proportion of patients who were giving birth and serology positive and
their credible intervals respectively. The green, orange, purple and pink lines show the median
estimates of exposure for patients who were giving birth from Model 1, Model 2, Model 3 and
Model 4 respectively; shaded areas correspond to 90% credible intervals. The light green, yellow,
brown and grey lines show the median estimates of seroprevalence for patients who were giving
birth from Model 1, Model 2, Model 3 and Model 4 respectively; shaded areas correspond to 50%
credible intervals.

3.6. SARS-CoV-2 Exposure in Pregnant Patients at the Time of Birth Rose from Half That of the
General Population to Equal That of the General Population by Late 2020

We next compared cumulative level of exposure among pregnant patients with of
the general population of New York City from the same time period. In brief, the levels
of exposure in general population were estimated by applying our previously published
inference methodology [11] to the epidemic data including mortality and seroprevalence in
general population of New York City (model fitting and parameter estimation results for
the general population can be found in Figure S1 and Table S2 respectively). The level of
exposure in pregnant patients during April and May of 2020 is estimated to be around half
of that in December 2020 in all four models (Figures 3 and 4). This means that the exposure
estimates of pregnant patients approaches that of the general population by November and
December of 2020 (Figure 4).
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pink line shows the median estimates of exposure from Model 1, Model 2, Model 3 and Model 4 for
patients who were giving birth, respectively, while the deep and shadow shaded areas correspond to
the 50% credible intervals.

Our model was structured to recapitulate the average course of SARS-CoV-2 infection
with turning RT-PCR positive occurring before becoming serology positive. However,
not all disease courses follow this linear model structure. It is also possible that the
state of pregnancy may alter the susceptibility to SARS-CoV-2 infection, although current
evidence does not support that pregnancy increases the susceptibility of infection. In
addition, the antibody decaying rate may differ during pregnancy. We should note that the
thresholds of seropositive and seronegative assignment might vary between assays, and the
performances of assays (including sensitivity and specificity) are different. Our study is not
set up for longitudinal follow-up of our cohort, thus our data is not sufficient to evaluate
the impact of pregnancy on the antibody decaying rate. While more detailed longitudinal
serological data could be collected and modelled during pregnancy, incorporating antibody
kinetics into transmission models may hinder the applicability of estimates resulting from
different assays [11].

In summary, we used a novel model to evaluate SARS-CoV-2 exposure levels in
different populations using seroprevalence data and RT-PCR data, comparing exposure
levels in pregnant patients in New York City to the levels in the general City population.
This permits us to quantify the impact of shielding measures in preventing exposure during
pregnancy across the first year of the pandemic. We estimate the impact of self-protection
on reducing the level of exposure among pregnant patients during early 2020 who gave
birth in this New York City hospital to be approximately 50%. These results, showing time-
varying differences in exposure to SARS-CoV-2 in pregnant compared to non-pregnant
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populations, may have led to significant reduction in maternal morbidity and mortality
in the early months of the pandemic. The estimated total exposure in pregnant patients
and general population of New York City are both more than double the latest serology
positive measurements.

4. Discussion

Positive results from RT-PCR testing and serology testing can both be used to identify
infected or recently infected individuals. While an infected individual turns RT-PCR
positive and then RT-PCR negative within the span of days to a week, a positive serology
test result can serve as a maintained marker of infection that last for months. By capturing
this dynamic effect of antibody waning in our models, we found that SARS-CoV-2 exposure
estimates were much higher than the seroprevalence estimates for our sample of pregnant
patients and the general public in New York City. These results confirm that previous
studies looking at RT-PCR positive testing rates or seroprevalence alone will substantially
underestimate population-level and subgroup exposure to SARS-CoV-2.

We found that patients who gave birth between April and August of 2020 had lower
levels of exposure to SARS-CoV-2 compared to the general population. In fact, in the first
months of the pandemic (April and May 2020), the exposure levels of pregnant patients
were half of the exposure levels of the general population in New York City, and half of
the exposure levels in pregnant patients who gave birth by the end of 2020. To understand
the possible variables that contribute to this lower exposure level in pregnant patients who
gave birth early in 2020, we must take into account the distinctions between the experience
of pregnant patients who gave birth in early 2020 vs. late 2020. Patients that gave birth
before August 2020—before the level of exposure in pregnant patients became comparable
to that of non-pregnant patients—were all at least in their mid to late first trimester by the
time that the pandemic hit New York City. This means that most of these patients had a
high probability of knowing about their pregnancy at the onset of the pandemic, and it is
possible that this knowledge of pregnancy led to behavior changes that made them more
cautious than the general population. In contrast, the patients giving birth towards the
end of 2020 were not pregnant and/or did not know of their pregnancy before the onset
of the pandemic and may not have behaved differently than the general population; in
other words, they could be considered part of general population in early 2020. During the
early part of the pandemic, the population only had access to shielding measures and other
non-pharmaceutical measures for prevention of disease exposures (since vaccinations only
became available for the general population in early 2021). Thus, the reduction of exposure
in pregnant patients by about half early in the pandemic may be attributed to effectiveness
of shielding measures (Table S4). Our current data do not address whether pregnant
patients (especially those that gave birth early in the pandemic) were more stringent than
the general population in following recommendations for behavioral changes and other
non-pharmaceutical interventions, or whether they had additional means of improving the
efficacy of shielding in preventing exposure. It is less likely that biologic differences from
the state of being pregnant contributed to exposure differences as the pregnant patients
that gave birth later in 2020 had similar exposures to the general population.

Such a high-level reduction of exposure might have been associated with a reduction in
infection and especially a reduction of severe COVID-19 illness and, consequently, in mortality
in pregnant patients. A large-scale retrospective analysis from a database that covers about
20% of the American population and includes 406 446 patients hospitalized for childbirth (6380
(1.6%) of whom had COVID-19) compared outcomes for pregnant patients with and without
COVID-19 from April–November 2020 [30]. It concluded that in-hospital maternal death was
rare, but rates were significantly higher for patients with COVID-19 (141/100,000 patients,
95% CI 65–268) than for patients without COVID-19 (5/100,000 patients, 95% CI 3.1–7.7). The
estimate of maternal death rate is consistent with the study from the UK AAP SONPM registry,
where a perinatal maternal mortality rate of 167/100,000 (for patients who have COVID-19
around the time of birth) was estimated [9,31]. Further calculation shows that the 40% to 50%
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reduction on exposure to SARS-CoV-2 estimated by our study might have led to the prevention
of 70 (95% CI 26–134) per 100,000 maternal deaths in New York City.

After the period included in our study, additional SARS-CoV-2 preventative measures
in the form of vaccinations were introduced in 2021 although strict quarantine regulations
were also lifted from the city by then. Pregnant patients were not included in studies testing
the safety and efficacy of COVID-19 vaccines. Studies conducted since the start of vaccina-
tion distribution including those looking at the real-word implementation of vaccination
have confirmed the safety and effectiveness of vaccines specifically for pregnant patients,
their placentas, and their neonates [13,32–35]. In fact, one study showed that vaccinated
pregnant patients had almost 50:1 lower odds of severe COVID-19 infection [13]. Our data
highlights the utility of shielding measures, and argues for an integrated intervention as
suggested by CDC and NHS guidelines, which includes a combination of vaccination and
shielding to reduce the morbidity and mortality of COVID-19 during pregnancy.

Our study has several important strengths, the two most important of which are robust
data on a cohort of pregnant patients assessed over an extended period of time tested with
both RT-PCR and serology throughout 2020, and the use of a novel model for reproducibly
calculating disease exposure from testing data. While the lacuna in data capture in May and
June could potentially influence the performance of parameter inference, varying model
assumptions on the force of infection (as detailed in the Materials and Methods) found the
estimated parameters and level of exposure to be robust and therefore clarified the likely
minimal impact caused by missing data.

While the pregnant patient population is from a single NYC institution which may
not be representative of the broader population, this population allowed for uniformity in
testing and the study of a large cohort of patients.
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