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Abstract: Coronavirus disease 2019 is a rather heterogeneous disease caused by severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2). The ongoing pandemic is a global threat with increasing
death tolls worldwide. SARS-CoV-2 belongs to lineage B β-CoV, a subgroup of Sarbecovirus. These
enveloped, large, positive-sense single-stranded RNA viruses are easily spread among individuals,
mainly via the respiratory system and droplets. Although the disease has been gradually controlled
in many countries, once social restrictions are relaxed the virus may rebound, leading to a more
severe and uncontrollable situation again, as occurred in Shanghai, China, in 2022. The current global
health threat calls for the urgent development of effective therapeutic options for the treatment and
prevention of SARS-CoV-2 infection. This systematic overview of possible SARS-CoV-2 therapeutic
strategies from 2019 to 2022 indicates three potential targets: virus entry, virus replication, and the
immune system. The information provided in this review will aid the development of more potent
and specific antiviral compounds.
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1. Introduction

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). It has spread worldwide and become a major health crisis [1,2].
Patients infected with SARS-CoV-2 display major symptoms that include fever, dyspnea,
cough, and sore throat, while some patients show minor symptoms, such as dysgeusia,
anosmia, gastrointestinal symptoms, headache, and skin lesions [3–6]. The condition
of some patients may subsequently deteriorate rapidly, with multiple organ failure or
even death within a short time [7]. Data regarding predictors of mortality in patients
with COVID-19 are still scarce but are being actively investigated [8]. Person-to-person
contact and respiratory droplets are the two major routes of transmission of COVID-19
infection to humans [9]. Angiotensin-converting enzyme 2 (ACE2) presented on the surface
of alveolar cells in the lungs is the receptor for SARS-CoV-2 cell entry. ACE2 is also
found on the mucosal cells of intestines, tubular epithelial cells of kidneys, and epithelial
cells of renal tubules, which is presented as a variety of susceptible targets to SARS-
CoV-2 infection [10,11]. Several studies suggested that patients with COVID-19 who use
angiotensin-converting enzyme inhibitors/angiotensin receptor blockers had an increased
risk of respiratory failure and death, but further randomized trials are needed to answer
the question [12,13]. To date, COVID-19 has been reported from more than 200 countries;
this human health threat has become the focus of global attention [14]. Actually, more than
six hundred million cases have been reported with more than 6 million deaths [15].

The widespread occurrence of SARS-CoV-2 has been gradually controlled in many
countries. However, once social restrictions are relaxed, the virus may rebound. This can
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lead to a more severe and uncontrollable situation again, such as has occurred in Shanghai,
China, in 2022 [16,17]. Understanding the pathogenesis and potential targets of the virus
to prevent SARS-CoV-2 infections is a global research priority. Numerous medicines have
been investigated for the treatment of COVID-19 in previous studies in different parts of
the world. Molnupiravir, nirmatrelvir/ritonavir, and remdesivir have been recognized
as promising antiviral agents to manage COVID-19 and have been approved in different
parts of the world. Moreover, some monoclonal antibodies, such as sotrovimab, casiriv-
imab/imdevimab (Ronapreve®), and tixagevimab/cilgavimab (Evusheld®), have shown
effective inhibition against COVID-19 and have permitted emergency use authorization
and approval in many countries [18–20]. However, the benefit of these drugs is still a matter
of debate due to less safety and efficacy and the variants of SARS-CoV-2.

This paper comprehensively reviews the effective recent therapeutic strategies pro-
posed for the treatment and prevention of SARS-CoV-2 infections. Our aim is to provide
insights into the development of potent and specific antivirals.

2. Infection Mechanisms of SARS-CoV-2

The coronavirus (CoV) genome ranges in length from 26 to 32 kilobases. It is the
largest known viral RNA genome. Until now, seven types of CoVs that can cause fatal
respiratory tract infections have been identified [21]. Among these, two are classified as
α-CoV (229E and NL63) and five as β-CoV (OC43, HKU1, SARS-CoV, SARS-CoV-2, and
Middle East Respiratory Syndrome (MERS)-CoV) [22]. SARS-CoV-2 belongs to lineage B of
the β-CoVs, a subgroup of Sarbecovirus. SARS-CoV-2 is an enveloped, large, and positive-
sense single-stranded RNA virus. It shares an 80% sequence identity with SARS-CoV and a
50% sequence identity with MERS-CoV. The genome of SARS-CoV-2 comprises 14 open
reading frames that encode 27 proteins. These include major structural proteins: the spike
(S) protein, membrane (M) protein, envelope (E) protein, and nucleocapsid (N) protein
(Figure 1A).

Viruses 2022, 14, 2346 2 of 21 
 

 

more than six hundred million cases have been reported with more than 6 million deaths 

[15]. 

The widespread occurrence of SARS-CoV-2 has been gradually controlled in many 

countries. However, once social restrictions are relaxed, the virus may rebound. This can 

lead to a more severe and uncontrollable situation again, such as has occurred in Shang-

hai, China, in 2022 [16,17]. Understanding the pathogenesis and potential targets of the 

virus to prevent SARS-CoV-2 infections is a global research priority. Numerous medicines 

have been investigated for the treatment of COVID-19 in previous studies in different 

parts of the world. Molnupiravir, nirmatrelvir/ritonavir, and remdesivir have been recog-

nized as promising antiviral agents to manage COVID-19 and have been approved in dif-

ferent parts of the world. Moreover, some monoclonal antibodies, such as sotrovimab, 

casirivimab/imdevimab (Ronapreve® ), and tixagevimab/cilgavimab (Evusheld® ), have 

shown effective inhibition against COVID-19 and have permitted emergency use author-

ization and approval in many countries [18–20]. However, the benefit of these drugs is 

still a matter of debate due to less safety and efficacy and the variants of SARS-CoV-2. 

This paper comprehensively reviews the effective recent therapeutic strategies pro-

posed for the treatment and prevention of SARS-CoV-2 infections. Our aim is to provide 

insights into the development of potent and specific antivirals. 

2. Infection Mechanisms of SARS-CoV-2 

The coronavirus (CoV) genome ranges in length from 26 to 32 kilobases. It is the larg-

est known viral RNA genome. Until now, seven types of CoVs that can cause fatal respir-

atory tract infections have been identified [21]. Among these, two are classified as α-CoV 

(229E and NL63) and five as β-CoV (OC43, HKU1, SARS-CoV, SARS-CoV-2, and Middle 

East Respiratory Syndrome (MERS)-CoV) [22]. SARS-CoV-2 belongs to lineage B of the β-

CoVs, a subgroup of Sarbecovirus. SARS-CoV-2 is an enveloped, large, and positive-sense 

single-stranded RNA virus. It shares an 80% sequence identity with SARS-CoV and a 50% 

sequence identity with MERS-CoV. The genome of SARS-CoV-2 comprises 14 open read-

ing frames that encode 27 proteins. These include major structural proteins: the spike (S) 

protein, membrane (M) protein, envelope (E) protein, and nucleocapsid (N) protein (Fig-

ure 1A). 

 

Figure 1. The infection of SARS-CoV-2 into human cells. (A) Structure of SARS-CoV-2; (B) structure 

of the S protein. S1 includes an NTD and RBD. S2 plays a role in promoting cell entry in membrane 
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Figure 1. The infection of SARS-CoV-2 into human cells. (A) Structure of SARS-CoV-2; (B) structure
of the S protein. S1 includes an NTD and RBD. S2 plays a role in promoting cell entry in membrane
fusion and contains an FP domain, two seven-step repeat domains (HR1 and HR2), a TM domain,
and a CT domain; (C) schematic representation of the infection of SARS-CoV-2 into human cells and
toxic effects. S protein: spike protein; NTD: N-terminal domain; RBD: receptor-binding domain; FP:
fusion peptide; TM: transmembrane; CT: C-terminal; SARS-CoV-2: severe acute respiratory syndrome
coronavirus 2.
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ACE2 is responsible for allowing viral entry into cells via interactions with the S pro-
tein [23]. The S protein includes the S1 and S2 subunits, with the receptor-binding domain
(RBD) on the tip of the S1 subunit. The proprotein convertase (PPC) site is discovered
through the S-protein gene sequence of SARS-CoV-2, and it is the cutting point between S1
and S2 of SARS-CoV-2 (Figure 1B) [24]. Receptor binding induces the dissociation of S1
and ACE2, which elongates the structure of the S2 subunit so that the fusion peptide on it
attaches to the host cell from the sub-fusion state to the fusion state. This sequence of events
drives human infection. Another cellular factor important for viral entry is transmembrane
protease serine 2 (TMPRSS2), which can cleave the protease ADM117 of ACE2 and activate
the S protein for membrane fusion [25]. ACE2 and TMPRSS2 are mainly expressed in
epithelial cells. Of these lung cells, 6.7% of type II cells express ACE2 and 3.8% co-express
ACE2 and TMPRSS2 [26].

SARS-CoV-2 uses ACE2 as its receptor and mainly infects ciliated bronchial epithelial
cells and lung cells [27]. When SARS-CoV-2 enters the respiratory tract, it irritates and
damages tracheal mucosal cells. The resulting symptoms include coughing, fevering,
fatiguing, etc. Along with the severe infections, especially after the gradual damage to the
bronchioles and alveoli, the surrounding connective tissues can also be damaged due to
inflammation. This can result in the leak of a large amount of protein-rich inflammatory
exudate into the alveoli, occupying the space that normally holds air. Consequently, a
carbon dioxide and oxygen exchange is difficult in the limited space, directly leading to
difficulty in breathing and serious and life-threatening damage to the liver, kidney, nervous
system, and other organs (Figure 1C) [28–35].

In the initial stage, the condition of SARS-CoV-2 patients is not serious. Later, failure
of multiple organs may occur, and the severity of the disease may be related to the cytokine
storm [36]. The specific molecules involved are still unclear.

3. Potential Therapeutic Strategies

COVID-19 is a public health emergency of global concern. A large number of SARS-
CoV-2-infected patients exhibit a mild-to-moderate illness, about 5–10% of the infections
occur serious and life-threatening cases, and the mortality rate is about 2% [37]. The
number of new confirmed patients continues to increase, highlighting the importance of
the development of rapid and effective therapeutic strategies by the design of new specific
drugs or the repurposing of existing drugs [38]. Herein, we summarize the therapeutic
effects of the existing drugs and substances from three aspects based on potential targets:
virus entry, virus replication, and the immune system (Figure 2). We also update the latest
research on potential therapeutic strategies to provide new methods and ideas for future
treatment methods development.

3.1. Entry of SARS-CoV-2

The S protein of SARS-CoV-2 binds to ACE2 in host cells to form the S protein–ACE2
complex. The complex is internalized by endocytosis and facilitates the entry of each virion
into the cytoplasm. Inhibiting the binding of the S protein and ACE2 receptor to block the
entry of SARS-CoV-2 into the host cells is an attractive approach.

3.1.1. S Protein of SARS-CoV-2

The trimer-shaped S protein with its’ S1 and S2 subunits on the surface of the virus
harbors an RBD in the S-protein fusion active center [39]. When the S protein is fused, it
undergoes structural reorganization with the RBD moving upward, leaving the area for
receptor binding [40]. In this process, the S1 subunit falls off and the S2 subunit adopts the
fused state [41–43]. Therefore, based on the idea that the S-protein RBD is the key binding
site in human infection, a variety of strategies for the treatment of SARS-CoV-2 have been
proposed (Figure 3).
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Anticancer drugs may be beneficial for the treatment of SARS-CoV-2. Of the Food
and Drug Administration (FDA)-approved anticancer drugs, four drugs (capmatinib,
pemiginib, selpercatinib, and tucatinib) completely dock with the S protein of SARS-CoV-2.
The docking prevents receptor binding, preventing virus infection [44].
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Monoclonal antibodies (mAbs) therapy is another efficient approach for the treatment
of SARS-CoV-2, given the 17 residue positions for antibodies that have been discovered in
the RDB [45]. Various monoclonal antibodies have been screened for the RDB target of the
S protein [46–48]. Sotrovimab is a recombinant human monoclonal immunoglobulin GI
antibody that targets RBD epitopes outside the receptor-binding motif [49,50]. A COMET-
ICE clinical trial demonstrated an 85% reduction in the primary endpoint of hospitalizations
(more than 24 h) or death for those receiving sotrovimab compared to placebo. On 26 May
2021, sotrovimab was approved by the FDA for the treatment of mild and moderate
symptoms of CoV-2 in people 12 years and older [51]. However, the efficacy of sotrovimab
for the different new mutant strains would remain to be studied. Recently, the Omicron
variant has become the dominant variant of SARS-CoV-2 globally, and bebtelovimab, which
was shown to be effective against the different Omicron subvariants, was authorized in
adults, those aged 12 years or older, and pediatric patients [52,53]. The emergence of
virus-escape mutants and the development of antibody resistance have made the combined
use of two or more antiviral monoclonal antibodies against different epitopes a critical
aspect to improve efficacy. Casirivimab/imdevimab (REGN-COV2, Ronapreve), a cocktail
of human antibodies against the S-protein RBD of SARS-CoV-2, was first authorized
by the FAD for emergency use to treat patients with mild-to-moderate COVID-19 [54,55].
Evusheld (tixagevimab/cilgavimab), isolated from COVID-19 patients, can bind to different
locations of the receptor-binding region of the SARS-CoV-2 S protein to neutralize SARS-
CoV-2 [56,57]. These mAbs have indicated high effectiveness in trial studies with a decrease
of 70–85% in hospitalization or death [58].

Nanobodies, which are composed of single-heavy-chain dimers, were first discovered
in the serum of camels [59]. They are smaller, more soluble, stable, and permeable, with a
higher affinity compared to traditional antibodies [59,60]. Nanobodies in the alpaca heavy-
chain antibody library can bind to the RBD of the S protein, as demonstrated by surface
plasmon resonance. The binding site is the same as that of ACE2. A stable nanobody–RDB
complex is generated via a hydrogen bond or bivalent salt linkage with RBD residues. The
complex can neutralize SARS-CoV-2 and has preventive and therapeutic effects on virus
infection [61,62]. Wu et al. prepared a SARS-CoV-2 nanobody that can simultaneously bind
to the RBD to block human infection [63].

An aptamer is a single-stranded oligonucleotide. The oligonucleotide is small, safe,
and has been widely used to treat COVID-19. The ideal aptamer has excellent structural
dynamics and blocking behavior, ensuring optimal affinity to the RBD of SARS-CoV-2. The
prevention and treatment prowess of the aptamer rely on its ability to compete with ACE2.
Aptamer CoV2-6 can compete and substitute with ACE2 in binding to the S-protein RBD.
To improve the stability, affinity, and inhibition efficacy, CoV2-6 was further shortened and
engineered as a circular bivalent aptamer, termed CoV2-6C3 [64]. Other oligonucleotide
aptamers containing a conserved sequence motif that can block the interaction of the
RBD-ACE2 have been designed to prevent infection [65].

3.1.2. ACE2 Receptor for SARS-CoV-2

ACE2 is comprised of an extracellular-facing N-terminal domain and a C-terminal
transmembrane domain with a cytosolic tail. The N-terminal portion of the protein contains
the claw-like protease domain (PD), which can recognize the SARS-CoV-2 RBD via polar
residues. The C-terminal domain is termed the Collectrin-like domain. The SARS-CoV-2
RBD combines with the ACE2 PD to form an RBD-PD complex (Figure 3). Therefore, as
the receptor of SARS-CoV-2, ACE2 is a possible therapeutic target that needs to be studied
in depth.

In the treatment of SARS-CoV-2, in addition to drugs and antibodies developed against
the virus target, drugs with a high affinity to ACE2 have also been discovered. Dalbavancin,
in the peptide drug library, can directly bind with ACE2 through the action of ACE2
amino acids. This binding prevents ACE2 from interacting with the viral S protein [66].
Although dalbavancin has not been extensively investigated in clinical trials, there is great
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hope for its future application. Telmisartan has been evaluated in clinical trials as an
angiotensin receptor blocker [67]. Chlorogenic acid can stably bind to the Glu329/Gln325
and Gln42/Asp38 sites in ACE2 as a potential inhibitor of COVID-19 [68]. Researchers
envision administering an antibody or single-chain antibody fragment that can bind the
host cell membrane ACE2 protein and inhibit the interaction of the S protein with ACE2 [69].
OM-85 (a standardized lysate of human airway bacteria) and B2R (the kinin B2 receptor)
are antagonists that can reduce the expression level of ACE2 in humans and prevent
the transmission of signaling pathways [70]. Wei et al. reported that the exogenous
supplementation of ACE2 via mesenchymal stem cells (MSCs) had better therapeutic
effects, which might be due to the increased activities of the secretory ACE2 [71]. Despite
the increasing attention paid to ACE2, there is scant literature on the therapeutic strategies
and efficient drugs that target ACE2. Further information is critical to establish effective
prevention and control actions.

3.2. Preventing SARS-CoV-2 Reproduction

SARS-CoV-2 enters the host cell and replicates in the target cells. The SARS-CoV-2
genome is large and harbors two open reading frames (1a and 1b) at the 5′ end. These
encode two large polyproteins, polyprotein 1a (pp1a) and polyprotein 1ab (pp1ab). The
two polyproteins are cleaved and translated into a mature non-structural protein (NSP),
which is responsible for the replication and transcription of the sub-genomic RNAs. The
main protease, the 3C-like serine-type protease (3CLpro or Mpro) encoded by NSP5 and
the papain-like proteinase (PLpro) encoded by NSP3, are important in the cleavage of
polyproteins. PLpro cleaves the NSP1/2, NSP2/3, and NSP3/4 boundaries. The RNA-
dependent RNA polymerase (RdRp; also known as NSP12) is a core component of the virus
replicase–transcriptase complex responsible for the replication and transcription of viral
RNA. Mpro, PLpro, and RdRp have indispensable roles in SARS-CoV-2 replication and are
promising targets for drug design (Figure 4).

Mpro is essential for the cleavage of the viral polyprotein pp1ab at 11 discrete sites [72].
The released NSPs form a replicase–transcriptase complex, which in turn is responsible for
viral replication [73]. The antineoplastic drug carmofur and anti-hepatitis C virus (HCV)
drug boceprevir are approved drugs that are capable of inhibiting SARS-CoV-2 by targeting
Mpro [74]. The carbonyl-reactive group of carmofur and trichostatin A can covalently
bind to catalytic Cys145, while boceprevir occupies the substrate-binding pocket of Mpro

and combines with the catalytic Cys145 to form a covalent bond [75,76]. Narlaprevir is a
potent second-generation drug based on boceprevir. It inhibits the HCV NS3 protease and
also has moderate inhibitory activity against SARS-CoV-2 Mpro by binding to the active
site of Mpro through a C-S covalent bond with catalytic Cys145 [74]. 5-((1H-Imidazol-1-
yl) methyl) quinolin-8-ol (DD1) is a derivative formed by the action of chloroquine and
hydroxychloroquine. DD1 binds to the active residues in Mpro 6Y84 (GLN127, PHE223,
and others) through hydrogen bond affinity. This can hinder the activity of the Mpro and
inhibit the translation process [77,78]. Three modified dipeptides (11a, 11b, and 13b) were
designed to inhibit the activity of Mpro. These compounds covalently block Cys145 by
the formation of hemithioacetal/ketal [78,79]. The bioavailability of 11a was 87.8% in
animal experiments [78]. Recently, two novel bicycloproline-containing Mpro inhibitors
(MI-09 and MI-30) with excellent antiviral activity in cell-based assays were designed and
synthesized. The inhibition modes of MI-09 and MI-30 are similar to that of 11a [80]. The
only difference is that these compounds contain two cycloproline moieties, which obviously
increase the exposure of the drugs in the body. Besides covalent inhibitors, baicalein is
identified as a non-covalent inhibitor of SARS-CoV-2 Mpro. Baicalein occupies the core of
the substrate-binding pocket, acting as a ‘shield’ in front of the catalytic dyad Cys145 to
prevent the peptide substrate approaching the active site [81,82]. Through a combination
of a structure-based drug design, Jin et al. analyzed over 10,000 compounds and 6 of
those compounds (ebselen, shikonin, tideglusib, PX-12, disulfiram, and carmofur) were
shown to inhibit Mpro [83]. Moreover, some drugs developed to treat HIV infections were
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studied as potential agents for COVID-19 [84]. Lopinavir/ritonavir (LPV/r), which is
a prescription medicine approved by the FDA for the treatment of HIV infection, was
proposed as a candidate agent due to its well binding to the SARS-CoV-2 Mpro [85]. In
addition, nirmatrelvir/ritonavir (Paxlovid®) was approved on December 24, 2021, by the
FDA for the emergency treatment of COVID-19 [86–88]. Nirmatrelvir inhibits the protein
cleavage reaction of the Mpro of SARS-CoV-2, thereby inhibiting viral replication. Ritonavir
acts as a booster by inhibiting a drug-metabolizing enzyme cytochrome p450 [89]. Paxlovid®

would reduce the risk of hospitalization or death in 90% of subjects with mild-to-moderate
disease [90].
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SARS-CoV-2 PLpro is responsible for the cleavage of the N-termini of replicase polypro-
teins, which is critical in protein maturation. Compared with SARS-CoV-2 Mpro, there
are fewer studies on SARS-CoV-2 PLpro inhibitors. Rut et al. used a combinatorial sub-
strate library to perform a comprehensive activity profiling of SARS-CoV-2 PLpro. Two
inhibitors (VIR250 and VIR251) designed to target SARS-CoV-2 occupy the S4-S1 pockets
of the substrate-binding site, with high selectivity for SARS PLpro [91]. Naphthalene-based
derivatives also inhibit SARS-CoV-2 replication by binding to the residues in the BL2 ring of
PLpro [92]. A screen of a library of approved compounds revealed the activity of GRL0617
in preventing SARS-CoV-2 infection by binding to the catalytic domain and inhibiting the
deacylation activity of PLpro [93]. Multiplexed enhanced protein dynamics (MePROD)
revealed that the translation inhibitors cycloheximide and emetine can significantly inhibit
the replication of SARS-CoV-2 [94]. MePROD can determine the changes in the proteome
and translator in human cells. Cycloheximide is a translation extension inhibitor that can
bind to the E site to block eEF2-mediated tRNA translocation. Emetine is a 40S ribosomal
protein S14 inhibitor that inhibits the formation of peptide chains [95].

In addition, several drugs targeting virus RdRp have shown therapeutic potential
against SARS-CoV-2. These drugs include favipiravir [96], sofosbuvir [97], ribavirin [98],
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galidesivir [99], remdesivir [100], molnupiravir [101], and so on. Among those, remdesivir,
which was initially used to treat Ebola virus infections [100,102], is the first approval of the
FDA for the emergency treatment of COVID-19 [103]. Remdesivir leads to the retention
of the RNA 3′-nucleotide at the substrate-binding site of the RNA polymerase, which
interferes with the entry of the next nucleoside triphosphate and consequently inhibits
RNA polymerization [104,105]. Up to now, although the drug has been approved for severe
patients, the benefits of remdesivir for the treatment of COVID-19 remain debated as some
clinical trials have shown discordant results [106–108]. The WHO recommends against the
use of remdesivir for all patients, based on the results of the solidarity trial, which failed to
observe the improvement in clinical mortality [109,110]. A meta-analysis concluded that
there is a high probability that remdesivir reduces mortality for nonventilated patients
with COVID-19 requiring supplemental oxygen therapy [107]. Similarly, molnupiravir,
a prodrug for the ribonucleoside analogue β-d-N4-hydroxycytidine (NHC; EIDD-1931),
has recently been approved in some countries for the patients with mild-to-moderate
COVID-19 [18,111]. It was the first approval for oral drugs which have a major advantage
over injectable drugs (remdesivir) against COVID-19 [112]. Suramin has stronger elec-
tronegativity than RNA polymerase and so can compete for binding to the gene sequence
of the virus [113]. Suramin occupies two sites for RNA replication. One site prevents the
primer from binding to the template strand [114]. The other site prevents the extension of
the primer chain and hinders ATP from entering the catalytic site to provide energy [115].
Suramin is 20 times more powerful than remdesivir [114]. However, it is difficult to de-
termine if the clinical benefits of suramin outweigh its toxic effects [116]. The suramin
derivative NCTU-Alan-2026 is a small molecule that has less toxic effects. It is designed and
synthesized to block protein interactions to inhibit cell proliferation [117]. The development
of NCTU-Alan-2026 has provided new insights for the future development of antiviral
drugs. Clofazimine also inhibits RNA replication by affecting the unwinding of RNA
polymerase (NSP13) [118], which is essential for the CoV replication [119]. Interestingly,
as an inhibitor of SARS-CoV-2 RdRp, Zn(II) may be a promising candidate, with direct
inhibitory effects on the replicative cycle of SARS-CoV-2 [120]. In addition, some molecular
docking studies showed that tenofovir and lamivudine, which are widely used to treat HIV
infection, could be used effectively against SARS-CoV-2 [84].

In particular, during the replication process of SARS-CoV-2 in host cells, membrane and
membrane-less organelles are formed to ensure the smooth progress of various biochemical
processes [121]. Liquid–liquid phase separation (LLPS) is the basis for the formation of
membrane-less organelles [122]. Protein and nucleic acid are condensed into a liquid-
like condensate through LLPS and are assembled or disassembled in a spatially and
temporally controlled manner [123]. Based on these findings, (−)-gallocatechin gallate, a
green tea polyphenol, was recently discovered to efficiently prevent SARS-CoV-2 replication
by blocking the LLPS of the N protein caused by RNA and affecting RNA and protein
assembly [124].

3.3. Immunomodulatory Effects

An important feature of COVID-19 is immune regulation disorder, which manifests
as excessive inflammation. When SARS-CoV-2 infects the human body, it stimulates the
body’s immune response line of defense. There are no serious clinical manifestations
in the early stage of COVID-19 in patients who become critically ill or die. In the late
stage, the viruses in the human body stimulate immune cells that include macrophages,
dendritic cells, T cells, and white blood cells to activate anti-inflammatory factors that
jointly respond to the invasion of viruses (Figure 5). The proinflammatory feed-back loop
caused by SARS-CoV-2 infection could generate a massive production of chemokines,
which orchestrate immune cell infiltration and the secretion of cytokines. The rapid rise
of the concentrations of cytokines within a short period of time leads to a cytokine storm
and acute respiratory distress syndrome. Some possible immune signatures in patients
with COVID-19 and the targets for the treatment of the disease have been proposed. These
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include janus kinase (JAK), interleukins, tumor necrosis factor (TNF), and others [125]. The
cytokine storm disrupts the immune function and is an important cause of severe illness
and death. The production of SARS-CoV-2 symptoms is not clear, but it is closely related to
specific cytokines [126,127]. The effective suppression of the cytokine storm should be an
efficient way to prevent severe disease and death.
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Figure 5. Schematic representation of cytokine storm. 1© A large number of viruses infect host cells
and stimulate macrophages to fight the virus. 2© Phagocytes can secrete cytokines to attract white
blood cells to inhibit SARS-CoV-2. 3© Leukocytes secrete specific cytokines to stimulate cell pathways
to attract the arrival of dendritic cells to reduce the number of viruses. 4© Dendritic cells degrade the
virus into specific proteins and nucleic acids. 5© Dendritic cells also secrete IL-12 and IL-18, which
activate signal molecules to stimulate T-cell proliferation and enhance immune effects. 6© Virus-
specific proteins and nucleic acids induce B cells to differentiate into effector B cells that can secrete
specific antibodies to fight the virus. IL: interleukin; IFN: interferon; TNF: tumor necrosis factor.

Clinical observations indicate that COVID-19 patients manifest an acute elevation of
serum levels of inflammatory mediators, such as IL-6, IL-1, TNF-α, and JAK [128]. These
elevations are associated with disease severity and progression. Therefore, the therapeutic
strategies targeting IL-6, IL-1, TNF-α, and JAK have been proposed to quell the cytokine
storm caused by SARS-CoV-2. A series of biologics have been designed that target IL-6, a
key cytokine in the mediation of fever and the acute-phase response (Table 1). Among those,
tocilizumab, which has been mainly used for the treatment of rheumatoid arthritis [129],
is suggested to have beneficial effects in reducing the inflammatory response in severe
COVID-19 patients. A meta-analysis of randomized clinical trials showed that tocilizumab
was associated with a lower mortality rate in COVID-19 patients [130]. Moreover, the
intravenous and subcutaneous forms of administration of tocilizumab almost have the
same stability in treating patients with COVID-19 [131–133]. Sarilumab, a high-affinity
anti-IL-6 receptor antibody, which has been approved for rheumatoid arthritis treatment
by the FDA, has also showed efficiency in patients with COVID-19 [134]. Gremese et al.
studied 53 patients who were treated with sarilumab, and the results showed that 89.7%
of the patients significantly improved, 70.6% were discharged from the hospital, and
85.7% no longer needed oxygen therapy [135]. In addition, the same results were con-
cluded by Benucci et al. [136]. Sarilumab is considered as an alternative regimen for the
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treatment of COVID-19 [137]. However, recently, some randomized trials showed that sar-
ilumab treatment did not improve outcomes in patients with moderate-to-severe COVID-19
pneumonia [138,139]. So, further clinical studies with larger sample sizes and long-term
follow-up are needed to assess the efficacy and safety of this drug. In addition, some
traditional Chinese medicine, such as Glycyrrhizae Radix et Rhizoma (Gancao) and Pinelliae
Rhizoma (Banxia), may act by suppressing the IL-6 amplifier and have been used to treat
some moderately ill COVID-19 patients [140]. IL-1 is another important cytokine associated
with inflammation. It is mainly produced by the activated mononuclear phagocytes. IL-1
can induce other proinflammatory cytokines, such as IL-6 and TNF-α. Several inhibitors
that target IL-1, including canakinumab and anakinra, are effective for the treatment of the
cytokine storm (Table 1) [141]. One report described patients from Saint Joseph’s hospital
in Paris, France, who received anakinra treatment. The mortality rate and the need for
invasive mechanical ventilation in the ICU were clearly reduced [142].

TNF-α is a key inflammatory factor that triggers a cytokine storm and is involved in
mediating the inflammatory response in acute respiratory distress syndrome. Therefore,
TNF-α inhibitors are expected to have promising therapeutic effects. A variety of TNF-α
inhibitors, including adalimumab, etanercept, vitamin D, emapalumab, and infliximab,
have been designed. Their effectiveness has not been proven in actual treatment (Table 1).
JAK is an intracellular tyrosine kinase that mediates signals from cytokines, hormones,
and growth factors. By blocking cytokine signaling and reducing excessive inflammatory
responses, JAK inhibitors play an important role in the control of the cytokine storm in
COVID-19 patients. Several JAK inhibitors, including baricitinib, ruxolitinib, tofacitinib,
and fedratinib, are being studied for the treatment of severe COVID-19 (Table 1). Recently,
two large clinical trials of baricitinib, involving 2558 patients hospitalized with COVID-19,
showed significant clinical and survival benefits. Baricitinb has been recommended for
clinical practice by multiple guidelines [143].

In addition to IL-6, IL-1, TNF-α, JAK, and other inflammatory mediators, such as
the granulocyte-macrophage colony-stimulating factor (GM-CSF) and the complement
protein C5, have been developed as therapeutic targets against the cytokine storm caused by
SARS-CoV-2. GM-CSF is a cytokine with a cardinal role in the modulation of inflammation.
Mavrilimumab is an anti-GM-CSF receptor-α monoclonal antibody that has improved
clinical outcomes in patients with COVID-19. Earlier discharge from the hospital and no
progression to death after mavrilimumab treatment were described [144]. Moreover, the
complement system may be a valuable target for COVID-19 therapy, as it is an integral
component of the innate immune response to virus infection. Eculizumab, a humanized
mAb with a high affinity to complement factor C5, is developed for use in the treatment of
COVID-19 [145,146].

Table 1. Immunosuppressive agents are used to treat COVID-19 inflammatory phase.

Target and Drugs Initial Target Administration Mode Results References

IL-6
Tocilizumab Rheumatoid arthritis Injection Reduced mortality. [147]

Babaodan Infectious viral hepatitis Oral A large number of IL-6 and C-reactive
proteins were eliminated in patients. [148]

Methylprednisolone Rheumatic disease Injection
Patients with oxygen saturation

improved rapidly and survival time
became longer.

[149]
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Table 1. Cont.

Target and Drugs Initial Target Administration Mode Results References

Olokizumab Rheumatoid arthritis Injection The body temperature dropped to
normal levels. [150,151]

Sarilumab Rheumatoid arthritis Injection

A total of 89.7% of inpatients
experienced significant improvement

in symptoms and
70.6% were discharged.

[135]

Siltuximab Castleman’s disease Injection Reduced mortality. [152]

Clazakizumab Rheumatoid arthritis Injection
Symptoms, oxygen demand, radiologic
findings, and inflammatory indicators

improved markedly.
[153]

IL-1

Canakinumab Rheumatologic disorders Injection Improved oxygenation, decreased
serum C-reactive protein levels. [154]

Anakinra Rheumatoid arthritis Injection Relieved clinical signs in critically
ill patients. [155,156]

TNF-α

Infiximab Rheumatoid arthritis Injection Reduced serological response to
SARS-CoV-2. [157,158]

Etanercept Psoriatic arthritis Oral Delayed the development of olfactory
and taste dysfunction in patients. [159,160]

Adalimumab Rheumatoid arthritis Injection Radiological improvement of the lung
without any complications. [161,162]

Vitamin D Anti-rickets -
Inhibited the expression of

proinflammatory cytokines and
reduced viral load.

[163]

Emapalumab Hemophagocytic - Effective in a refractory, persistent, and
progressive cytokine storm. [164]

JAK

Ruxolitinib Myelofibrosis Oral
The cytokine content was reduced, and

the patient’s chest CT improved
by 80%.

[165]

Fedratinib Myeloproliferative tumor - Reduced patient mortality. [166]

Tofacitinib Rheumatoid arthritis Injection Respiratory symptoms were relieved
after 5 days. [167]

Baricitinib Rheumatoid arthritis Oral Accelerate improvement in clinical
status and reduce 28-day mortality. [168–170]

IL (IL-1, IL-3, IL-2, IL-5, IL-6, IL-8) and TNF-α

Glucocorticoid SARS; MERS Injection Significantly reduced risk of death
by 62%. [171,172]

Lidocaine/dexamethasone - -
Showed anti-inflammatory capacity on

SARS-CoV-2-triggered
immune pathways.

[173]

Fluvoxamine Antidepressant Injection Reduced the need for advanced disease
care in this high-risk population. [174]

IL-6, IL-8, TNF-α
Azithromycin Macrolide antibiotics Oral Low mortality. [175,176]

Melatonin Immune system - Effectively improved inflammation. [177]

Cyclosporine A Hepatitis B virus - Reduced mortality in patients with
moderate-to-severe disease. [178]

GM-CSF

Mavrilimumab Refractory rheumatoid
arthritis Injection Improved clinical outcomes, well

tolerated without discomfort. [144]

C5

Eculizumab Orphan disease Injection
Reduced inflammatory responses and

improvedlung function and
lymphocyte recovery.

[145,146]

Abbreviations: TNF-α, tumor necrosis factor-α; IL, interleukin; JAK, Janus kinase; GM-CSF, granulocyte–
macrophage colony-stimulating factor; CCR5, C–C chemokine receptor type 5.

4. Conclusions and Perspectives

The development of effective treatments for SARS-CoV-2 remains an urgent priority.
This review summarizes possible treatment strategies that target the entry of the virus, virus



Viruses 2022, 14, 2346 12 of 20

replication, and the immune system. The aim is to inform the development of efficacious
prevention and treatment strategies. The consideration of targeted treatment to prevent
SARS-CoV-2 entry into human cells and the development of symptoms will hopefully bring
novel insight into the treatment of COVID-19.

Some antiviral drugs have specific effects against SARS-CoV-2. The efficacy and safety
of these promising candidate drugs in the treatment of SARS-CoV-2 need to be confirmed.
Moreover, some monoclonal antibodies have demonstrated efficacy against COVID-19 and
have been approved in some countries for the treatment and prevention of COVID-19, but
the emergence of variant lineages is now one of the most difficult obstacles to controlling
the COVID-19 pandemic.

The infection by SARS-CoV-2 may cause disseminated intravascular coagulation and
venous thromboembolism in patients with some critically ill disease. Some research has
demonstrated that anticoagulant therapy, mainly with low-molecular-weight heparin,
has been associated with better outcomes in severe COVID-19, especially in the early
treatment [179,180]. However, the use of anticoagulation or high doses of heparin is still
controversial.

In addition, several studies showed the use of immune-suppressive drugs combined
with the natural immune suppression caused by the virus can lead to increasing secondary
bacterial and fungal infections [181–183], but more research about antimicrobial resistance
and its correlation with antibiotic misuse in COVID-19 patients is required [184]. Moreover,
the high rate of multidrug-resistant organisms among hospitalized patients alerted that it
is urgent to use the antibiotics with a higher potential for resistance and to evaluate trends
in antibiotic resistance [185].

With the rapid spread of SARS-CoV-2, as well as the rising global mortality rate of
COVID-19, research has focused on the development of potential vaccine candidates for
protection against SARS-CoV-2. To date, the total number of vaccine doses administered
globally has reached 90.9 billion. Along with the virus spread, several mutant strains have
emerged. These mutant strains may result in epitope changes that reduce the affinity of
antibodies produced by neutralizing antibody therapy or vaccines. Therefore, developing
effective, specific, and general antiviral drugs is crucial to end the COVID-19 pandemic
and to prevent future social and economic hardships.
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