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Abstract: Bovine coronavirus (BCoV) has spilled over to many species, including humans, where the
host range variant coronavirus OC43 is endemic. The balance of the opposing activities of the surface
spike (S) and hemagglutinin-esterase (HE) glycoproteins controls BCoV avidity, which is critical
for interspecies transmission and host adaptation. Here, 78 genomes were sequenced directly from
clinical samples collected between 2013 and 2022 from cattle in 12 states, primarily in the Midwestern
U.S. Relatively little genetic diversity was observed, with genomes having >98% nucleotide identity.
Eleven isolates collected between 2020 and 2022 from four states (Nebraska, Colorado, California,
and Wisconsin) contained a 12 nucleotide insertion in the receptor-binding domain (RBD) of the
HE gene similar to one recently reported in China, and a single genome from Nebraska collected in
2020 contained a novel 12 nucleotide deletion in the HE gene RBD. Isogenic HE proteins containing
either the insertion or deletion in the HE RBD maintained esterase activity and could bind bovine
submaxillary mucin, a substrate enriched in the receptor 9-O-acetylated-sialic acid, despite modeling
that predicted structural changes in the HE R3 loop critical for receptor binding. The emergence of
BCoV with structural variants in the RBD raises the possibility of further interspecies transmission.
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1. Introduction

Bovine coronavirus (BCoV; family Coronaviridae, genus Betacoronavirus, subgenus
Embecovirus lineage A, species Betacoronavirus 1) is an economically important pathogen
that causes enteric and respiratory infections in cattle worldwide. Mebus and colleagues
first described BCoV in the early 1970s as a cause of neonatal calf diarrhea [1]. BCoV is
now recognized to be involved in the etiology of at least three distinct clinical syndromes:
enteric disease with high mortality in neonatal calves, winter dysentery with hemorrhagic
diarrhea in adult cattle, and respiratory tract infections in cattle of all ages (reviewed
in [2]). Respiratory infections also contribute to the development of the polymicrobial
disease known as bovine respiratory disease complex (BRDC), which is one of the most
economically important infectious diseases in cattle, and costs the U.S. alone more than a
billion dollars annually [3]. Neonatal calf diarrhea is also of great economic significance
and is estimated to be responsible for more than half of the calf mortality in dairies [4].

The BCoV genome is a single-stranded, non-segmented, positive-sense RNA of ap-
proximately 31 kb [5]. The 5’ two-thirds of the genome consists of two large overlapping
open reading frames (ORFs), ORFla and ORF1b, which encode the nonstructural replicase
polyproteins (pp) la and pplab. Expression of pplab occurs due to a short ‘slippery’
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sequence (UUUAAAC) in the RNA followed by a pseudoknot structure that is believed
to direct a —1 RNA-mediated ribosomal frameshift during translation [6]. These two
polyproteins are then proteolytically processed by virus-encoded proteases into several
non-structural proteins involved in RNA synthesis. The 3'-proximal end of the genome
encodes five structural proteins, including hemagglutinin-esterase (HE), spike (S), small
membrane/envelope (E), integral membrane (M), and nucleocapsid (N), as well as five
ORFs encoding the accessory proteins ns2, ns4.9, ns4.8, ns12.7, and protein I, whose ORF is
located entirely within the N gene [5,7].

Similar to other RNA viruses, coronaviruses can adapt rapidly to changing ecological
niches due to high mutation rates and recombination frequencies [8,9]. This plasticity
may help BCoV overcome host barriers to infect other species and genetically adapt to
a new host environment. For example, BCoV-like viruses have been detected in many
species of wild and domestic ruminants as well as camelids [10-17]. Furthermore, BCoV
cross-species transmissions have led to the establishment of separate virus lineages in
humans (human coronavirus OC43), pigs (porcine hemagglutinating encephalomyelitis
virus), horses (equine coronavirus), and dogs (canine respiratory coronavirus) (reviewed
in [18]). Given the high genetic and antigenic relatedness of this group of viruses, they have
been grouped into a single virus species named Betacoronavirus 1 (b1CoV). These viruses
display diverse genome structures in the accessory genes encoding ns4.9 and ns4.8. While
the functions of these accessory proteins are unknown, they have been hypothesized to be
niche-specific and play a role in virus tropism [19-21]. The hemagglutinin-esterase (HE)
protein may also increase the host range of BCoV by expanding the number and/or types
of cells the virus can infect [22].

The presence of HE is unique to the Embecovirus lineage of betacoronaviruses and was
presumably acquired in a recombination event with influenza C virus [23]. Both HE and S
proteins are found on the surface of the viral particle and are involved in binding to host
cells through engagement of the 9-O-Acetylated-Sialic acid (9-O-Ac-Sia) on the cell surface.
HE also possesses an esterase domain, which has receptor-destroying enzymatic activity
capable of removing 9-O-Ac-Sia from the surface of cells [24]. Cleavage of the receptor is
important for virus release as it allows newly formed virions to disseminate from the cell
surface. Thus, HE and S are functionally interdependent and have co-evolved to balance
attachment and release from host cells [25]. The S protein alone, however, mediates cell
infection, suggesting that receptor destruction is the major function of HE [26,27].

Adaptive mutations in HE also contribute to shifts in host and tissue tropism and
contribute to host selectivity following zoonotic events [28,29]. For example, human coron-
avirus OC43 HE lost receptor binding function in a progressive accumulation of mutations
as the virus adapted to replication in human airways [28]. This was also accompanied by a
change in HE-mediated receptor destruction. The most dramatic change in HE occurred
in the murine betacoronaviruses where receptor specificity changed from 9-O-Ac-5ia to
4-O-Ac-Sia through modest changes in the architecture of the receptor binding site [29,30].
Thus, the evolution of HE reflects viral adaptation to novel hosts with altered host specificity
and tropism.

The HE gene in BCoV has evolved by both the accumulation of amino acid changes and
recombination. In 2019, a novel BCoV strain with a recombinant HE gene was first detected
in dairy cattle in China [31]. In 2020, Abi et al. [32] further described the emergence of a
novel BCoV variant in China with a 4-amino acid insertion in the receptor-binding domain
(RBD) of the recombinant HE gene. This variant was first detected in samples collected in
2018 from dairy cattle with diarrhea. The biological consequence of this insertion remains
unknown; however, this variant may have altered receptor binding, host range, and/or
tissue tropism [32]. Despite being an economically important pathogen with zoonotic
potential, the global genetic and antigenic diversity of BCoV is poorly characterized. Thus,
the global distribution of this variant is unknown. Our laboratories have had an interest in
BCoV for some time and had been generating complete genome sequences directly from
clinical samples collected from U.S. cattle with respiratory or enteric disease. Here, we
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report the genetic characterization of 78 genome sequences with complete coding sequence,
including the identification of 11 isolates with a 4-amino acid insertion in HE similar to
that first reported in China, and a single isolate with a 4-amino acid deletion in the HE
RBD. Biological characterization revealed that these variants maintain esterase activity and
binding to 9-O-Ac-Sia.

2. Materials and Methods
2.1. Samples and Ethics Statement

Respiratory and enteric samples used in this study came from the US Meat Animal
Research Center (USMARC) cattle population (Clay Center, NE, USA) or samples submitted
for diagnostic testing to veterinary diagnostic laboratories at the University of Nebraska-
Lincoln, Nebraska Veterinary Diagnostic Center (NVDC) or South Dakota State University
(SDSU). The USMARC cow-calf herd includes approximately 7000 cows managed in smaller
herds across 34,000 acres of land. Until 2020, the USMARC cattle were managed as a closed
herd. Nasal and fecal samples collected at the USMARC were done under the approval of
multiple projects to study BCoV infection dynamics and immunity (Institutional Animal
Care and Use Committee approval numbers: 24, 63, 74, and 97). The procedures for
handling cattle complied with the Guide for the Care and Use of Agricultural Animals in
Agricultural Research and Teaching (FASS, 2010). Samples were stored at —80 °C until
prepared for sequencing. Diagnostic samples were anonymized for reporting. A total
of 27 enteric samples (25 fecal, 2 intestinal) and 51 respiratory samples (49 nasal swabs,
2 lungs) were collected from cattle in 12 states in the U.S., though most of the samples
(61/78) were from Nebraska (Table S1). Calves at USMARC did not receive a BCoV-
containing vaccine, however, samples from the diagnostic laboratories came from cattle
with unknown vaccination histories.

2.2. Sample Preparation and Illumina Sequencing

Real-time reverse transcription polymerase chain reaction (RT-qPCR) was used to
identify BCoV-positive clinical samples. Samples from USMARC were screened using
a previously described primer and probe set [33] alone or in a multiplexed assay [34].
Samples from the diagnostic laboratories were screened according to their protocols. For
samples from NVDC, RT-qPCR testing utilized the same primer and probe sequences as
above in a multiplexed assay. Samples with an RT-qPCR cycle threshold (Ct) of less than 30
were prepared for sequencing. For the 61 samples sequenced at USMARC (identified by
isolate names beginning with MARC/ or VDC/) the following methods were used: Fecal
samples (n = 27) were diluted approximately 1:10 with sterile phosphate buffered saline
(PBS), vortexed, and centrifuged at 10,000 x g for 2 min at 4 °C. Nasal swabs (n = 34) were
collected into minimal essential medium or viral transport medium and similarly clarified
by centrifugation at 10,000 x g for 2 min at 4 °C. Approximately 100 mg of intestinal tissue
(n = 2) was homogenized in ImL PBS using a polytron homogenizer. PBS was clarified by
centrifugation at 18,000 ¢ for 3 min at 4 °C. Clarified samples (250 uL) were treated with
20 U RNase One (Promega, Madison, WI, USA) and 30 U Turbo DNase (Ambion, Austin,
TX, USA) in 1x DNase buffer (Ambion) at 37 °C for 90 min to degrade unprotected host
and environmental nucleic acids. To ensure continuous DNase activity, 10 U of DNase was
added to the sample every 30 min during the 90 min incubation. The remaining nucleic
acids were isolated using Trizol LS (Invitrogen, Waltham, MA, USA) according to the
manufacturer’s specifications. A final DNase treatment was performed to remove final
traces of DNA from the RNA preparation.

RNA libraries were prepared as previously described [35]. Briefly, 100 nanograms of
total RNA were used as input material for the Illumina TruSeq RNA Sample Preparation
Kit (Illumina, San Diego, CA, USA). Libraries were prepared as specified by the manufac-
turer’s protocol without the initial step of poly-A selection. Libraries were sequenced at
the USMARC core facility on the Illumina MiSeq or NextSeq instrument. Raw sequence
reads were processed using Geneious Prime software (v2021.1.1; Biomatters, Auckland,
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New Zealand). Index adapters and low-quality reads were removed using BBDuk (v38.37)
as implemented in Geneious. Assembly of the viral genomic sequence was accomplished us-
ing template-assisted assembly, where trimmed reads were mapped to a reference genome
(Mebus GenBank accession number U00735). The consensus genomes were manually
inspected and annotated according to the NC_003045 BCoV-ENT genome and annotations
in the ViPR database. GenBank accession numbers for the assembled genomes are listed
in Table S1.

For the 17 genomes sequenced at SDSU, (identified by isolate names beginning with
SDSU/), the following methods were used. In brief, samples were clarified by centrifuga-
tion and digested with a cocktail of nucleases [36]. Nucleic acids were isolated using the
QIAamp Viral RNA Minikit (Qiagen, Hilden, Germany). Reverse transcription was then
performed using barcoded random hexamers using the SuperScript IlI first-strand synthesis
system (Invitrogen), followed by second-strand synthesis using Sequenase version 2.0 DNA
polymerase (ThermoFisher Scientific, Waltham, MA, USA). DNA was purified using a
Monarch PCR & DNA cleanup kit (New England Biolabs, Ipswich, MA, USA) followed
by amplification by PCR using barcode primers. Amplified DNA was purified using the
Monarch PCR & DNA cleanup kit and quantified using a Qubit 4 fluorometer (Invitrogen).
Sequencing libraries were prepared using the Nextera XT library preparation kit (Illumina)
and sequenced on a MiSeq using paired 151 bp reads. Reads were assembled de novo
using CLC Genomics version 20. Contigs were identified by BLASTx as implemented by
OmicsBox version 2.0.36. When complete coding genomes were not assembled by de novo
methods, the most similar complete BCoV genome identified by BLASTx was used as a
reference for guided assembly. Genomes were annotated as described above.

2.3. Phylogenetic Analysis

To augment the newly reported genome sequences, full-length BCoV genome se-
quences were downloaded from the GenBank database in June of 2022 (Table S2). Se-
quences were aligned using multiple methods to find the alignment giving the most
strongly supported neighbor net phylogenetic network in SplitsTree6 v 6.0 [37]. SplitsTree
was chosen for phylogenetic inference as it can accommodate recombinant genomes in the
dataset [37,38]. The complete methods are detailed on this internet site for protocol sharing
(link: dx.doi.org/10.17504 /protocols.io.kqdg3pyeql25/v3). Whole genome sequences, HE
genes, and spike genes were aligned using MAFFT v7.450 with globalpair accuracy meth-
ods using the PAM (JTT) 100 substitution matrix [39,40]. Due to variable lengths in the 5’
and 3’ untranslated regions (UTRs), these sequences were trimmed from whole genome
sequence alignments for downstream analyses. HE and spike gene alignments were dedu-
plicated so only unique sequences were included in the downstream analyses. If a unique
gene sequence was shared by more than one BCoV isolate, the sequence was designated
with a sequence identifier comprised of a concatenation of isolate names separated by a
colon or a double underscore, depending on downstream program allowances. Alignments
were analyzed in SplitsTree6 using the Hamming distances method (default settings) and
the Neighbor Net method [41] to obtain a Splits Network visualization [42]. Networks were
constructed using the “CarefulMethod” inference algorithm. A maximum likelihood tree
was also built from the whole genome sequence alignment using RaxML v.8.2.12. Statistical
support for the tree was tested using 2000 bootstrap analyses followed by a maximum
likelihood analysis. The final best tree was visualized using interactive tree of life (iToL)
version 6.5.8.

2.4. Recombination Detection in HE Gene Sequences

For recombination detection in the HE gene, two datasets were used. The first in-
cluded all Betacoronavirus HE gene sequences in the NCBI nucleotide database (September
2022) with 98% or greater coverage of the 1275 nt HE consensus sequence. To obtain these,
Geneious Prime was used to extract the consensus HE sequence from the alignment of
unique HE gene sequences from the 192 BCoV genomes analyzed in this study. A dis-
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continuous megablast search (E-expectation value 1 x 1072%) of the NCBI nt database
against the 1275 bp consensus BCoV HE gene consensus sequence retrieved 824 Betacoro-
navirus sequences, including those isolated from bovine and non-bovine hosts. Of these
sequences, 714 had approximately 98.4% or more coverage of the query BCoV consensus
sequence, thus having a minimum length of 1255 nt. Below this threshold, query coverage
dramatically dropped. HE gene sequences were deduplicated leaving 492 unique HE gene
sequences. If a unique HE gene sequence was shared by more than one coronavirus isolate,
the sequence was designated with a sequence identifier comprised of a concatenation of
GenBank accession numbers separated by a double underscore (Table S3). The 492 unique
HE genes were aligned using MAFFT with the globalpair methods using the PAM (JTT) 100
substitution matrix. Recombination detection was performed using RDP5 [43], which used
RDP [44], GENECONYV [45], Bootscan [46], Maxchi [47], Chimaera [48], SiSscan [49] and
3Seq [50] as methods for recombination detection. A full exploratory scan was run, and
recombination events were individually inspected. The second dataset included only those
Betacoronavirus HE sequences with ‘bovine coronavirus’ included in the sequence descrip-
tion. From the 714 Betacoronavirus sequences, we filtered them to 345 BCoV HE sequences.
These were deduplicated, resulting in 256 unique HE gene sequences (Table S4). These HE
gene sequences were aligned using MAFFT with the globalpair methods using the PAM
(JTT) 100 substitution matrix and analyzed in RDP5. Alignments were also analyzed in
SplitsTree6 as described above.

2.5. Expression of Wild Type and Variant Hemagglutinin Esterases

The complete HE gene from BCoV 18-25432 was synthesized with BamHI and Pacl sites
immediately adjacent to the start and stop codons, respectively, and cloned into the BamHI
and Pacl sites of pFAST-Bac. Strain 18-25432 was previously isolated from a bovine nasal
swab from a clinical disease diagnostic submission and was used for serum neutralization
assays in our SDSU laboratory. Likewise, the same HE gene was synthesized with a 12 nt
insert encoding amino acids ‘KATV’ at positions 212-215 or a 12 nt deletion of nucleotides
encoding ‘NGKF’ at positions 208-211. Plasmids were co-transfected into Sf9 cells along
with linear baculovirus DNA (AB Vector, San Diego, CA, USA) using Profectin as per the
manufacturer’s instructions. On day 5 post-transfection, 0.5mL of transfection culture
supernatants were used to inoculate 250 mL shake flasks containing 50 mL of Sf9 cells at
1 x 100 cells/mL in the Sf-900 II SFM medium (Gibco, Waltham, MA, USA). HE is a
membrane protein that is expected to be present on the surface of the Sf9 cell membrane
as well as the baculovirus membranes. Thus, crude cultures containing Sf9 cells and
baculovirus were harvested by transfer to 4 °C on day 4 when cell viability was <70%.
Esterase activity was determined using 4-nitrophenyl acetate (NPA). Cultures were diluted
1:4 before being combined with an equal volume of 0.7 mM NPA in PBS. Absorbance was
measured at 405 nm. Esterase activity was measured at 30 min and analyzed by one-way
ANOVA and Tukey’s multiple comparison tests.

2.6. Hemagglutinin Esterase Lectin Activity

HE lectin (HEL) activity was determined in a solid phase binding assay. One hundred
microliters of a 0.1 mg/mL solution of bovine submaxillary mucin (BSM) in PBS were used
to coat Immulon 2 HB 96-well plates overnight at 4 °C followed by blocking with PBS+1%
bovine serum albumin. Serial 2-fold dilutions of virus in PBS were incubated on the BSM
plates for 1 h at 4 °C followed by three washes with PBS+0.05% tween 20 (PBST). Next,
100 pL of 100 uM 4-Methylumbelliferyl acetate was added to the wells and incubated at
37 °C for 1 h before the addition of 100% ethanol. Fluorescence was measured with
excitation at 365 nm and emission at 450 nm. Lectin activities were analyzed by one-way
ANOVA and Tukey’s multiple comparison tests.
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2.7. Hemagglutinin Esterase Structure Modeling

AlphaFold v2.2.2 [51] was downloaded from the GitHub repository and installed ac-
cording to directions, as were the full databases including those supporting the AlphaFold-
Multimer model. Two identical HE protein sequences were folded as a complex for each
of the HE gene length variants: HE420 (deletion variant), HE424 (wild type), and HE428
(insertion variant) protein sequences. Briefly, for each variant, a single FASTA file was
constructed with two copies of the variant sequence, with either an _A or _B suffix used
in the sequence identifier to distinguish the two copies. For example, the HE420 variant
FASTA file was called HE420_dimer.faa with the run_docker.py script executed as described
in the AlphaFold GitHub README. In the case of the HE420 variant, the run_docker.py
script was called using —fasta_paths=<HE420_dimer.faa>, -max_template_date=2022-01-
1, -model_preset=multimer, —data_dir= <alphafold data directory> where text with < >
includes the full path to the file or directory. For each variant, the PDB structure named
ranked_0.pdb, the structure with the highest confidence, was selected to be the best repre-
sentation of the biologically relevant structure. The three HE pdb files were loaded into a
molecular graphics system (PyMOL Molecular Graphics System v2.5.3; Schrodinger, LLC,
New York, NY, USA), aligned, and rotated to view the variant region.

3. Results
3.1. Whole Genome Sequence Analysis

Seventy-eight complete or near complete genomes were sequenced and assembled
directly from enteric or respiratory samples collected between 2013 and 2022 from 27 enteric
disease cases and 51 respiratory disease cases from NE (n = 61), WY (n=1),KS (n=1), ND
n=1),0R(n=1),PA(n=1),SD(n=2),CA(n=3), TX(n=3),CO (n=1), WI (n=1), and
MN (n = 2) (Table S1). Genomes ranged from 30,682 to 31,039 nucleotides (nt) in length
with mean coverage between 16 and 125,563-fold.

Comparative analyses of the 78 BCoV genomes revealed variable lengths in seven of
the ORFs (Table S1). ORFs encoding the nonstructural proteins ns4.9 and ns4.8 had the
highest variability between genomes. The length of ns4.9 ranged from 120 nt (n = 1) to
36 nt (n = 5); with most of the genomes containing a 90 nt ORF (n = 70). All of these differ
from the reference Mebus genome which contains a 132 nt ORF. The length of ns4.8 ranged
from 24 nt (n = 12) to 129 nt (n = 7), with most of the genomes containing a 126 nt ORF
(n =56). This also differed from the reference Mebus genome which contains a 138 nt ORF.
Eleven genomes were found to have an insertion of 12 nt (AAGGC[U/CJACUGUU) in
the R3 loop of the HE gene resulting in the insertion of the amino acids ‘KATV” after F1;
(Figure 1). The R3 loop is one of five surface-exposed loops and is known to be essential
for receptor binding. These 11 sequences came from nasal swab samples (n = 10) or feces
(n =1) collected between 2020 and 2022 from the states of NE, CO, CA, and WI (Table S1).
One additional genome sequenced from a respiratory sample collected in Nebraska had a
deletion of 12 nt in the R3 loop of the HE gene resulting in the deletion of the amino acids
208NGKF;11. None of the ORF sequence variants correlated with disease type; however,
11/12 of the HE variants were from respiratory disease samples.
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Figure 1. Alignment of variant HE proteins with HE from the reference BCoV Mebus genome. Panel
A. HE protein map with domains annotated according to [28] with the signal peptide (SP) colored
white, the lectin domain colored green, the esterase domain colored blue, and the membrane-proximal
(MP) domain colored pink. The R3 loop and the receptor binding domain (RBD) are also annotated.
Panel B. Alignment of 12 HE variant proteins from this study with the HE-insertion variant from
China (GenBank accession no. MN982199, isolate BCoV-China/SWUN/A10/2018) and the reference
Mebus sequence. Amino acids divergent from the reference Mebus sequence are shown while
homologous amino acids are represented as a dot.

3.2. Phylogenetic Analysis

A total of 192 BCoV genome sequences were used for phylogenetic analyses, including
78 genomes from clinical samples as well as three vaccine strains that were sequenced for
this study. BCoV isolates could not be phylogenetically differentiated by clinical source
(respiratory or enteric) when analyzed at the complete genome level (Figures 2 and S1)
or when looking at individual ORFs (Figure 3). Rather, respiratory and enteric isolates
tended to cluster together by geographical origin and date of isolation rather than by
disease presentation.

The 11 U.S. genomes containing the 12 nt HE-insertion did not cluster together phylo-
genetically with the HE-insertion variant from China (GenBank accession no. MN982199,
isolate BCoV-China/SWUN/A10/2018) when analyzed by complete genomes (Figure 2) or
by the HE or spike gene sequences (Figure 3). Similarly, evaluation of the whole genome
RaXML maximum likelihood tree similarly suggests that the U.S. and Chinese HE variants
are evolving on distinct branches of the tree, with a bootstrap value of 88 for the branch
linking all U.S. HE-insertion variants and 100 for the grouping of Chinese genomes with
the Chinese HE variant. The bootstrap support for linking the Chinese branch to the U.S.
branch falls to 55, a value that does not support collapsing the U.S. and Chinese variants
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into a single monophyletic group, especially given the much higher bootstrap support for
the individual Chinese and U.S. variant groupings (Figure S1). These results imply that
the U.S. and Chinese genomes possessing the 12 nt insertion do not share a common most
recent ancestor. The phylogenetic analysis of only the HE gene similarly shows that the
U.S. and Chinese HE-insertion variants do not share a common most recent ancestor.

USA
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o fosunoponar S0SY/2020002/RSDSU202007R
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Figure 2. SplitsTree NeighborNet phylogenetic network of 192 BCoV genomes. The complete coding
region of 192 genomes was aligned using MAFFT and analyzed with SplitsTree6. A list of the
genomes used in this analysis can be found in Table S2. HE-insertion variants are in red and the
single HE-deletion variant is in blue. The three vaccine strains are marked with a star.
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Figure 3. SplitsTree NeighborNet phylogenetic networks of 192 BCoV HE and spike genes. One
hundred and ninety-two HE genes (A) or spike genes (B) were deduplicated, aligned using MAFFT,
and analyzed with SplitsTree6. A list of the genomes used in this analysis can be found in Table S2.
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3.3. Recombination Detection

To determine whether the 12 nt HE insertions were acquired by RNA recombination,
492 unique Betacoronavirus HE gene sequences available in the NCBI nt database, including
those from bovine and non-bovine hosts, were analyzed (Figure 4A). A total of eight recom-
bination events were detected in 25 unique HE sequences with various levels of support
(Table S5). A strong recombination signal was detected in dromedary camel coronavirus HE
gene sequences, which were previously reported to have multiple cross-species recombina-
tion events with related Betacoronaviruses [52]. A weak recombination signal was detected
in five BCoV HE sequences (Accession no. ON142319 (BCoV6/2021/CHN), ON142316
(BCoV3/2021/CHN), MW711311 (SWUN/NMG-D7/2020), M80842 (BRCV-G95), and
MK045995 (HT293)). Parental sequences and statistical support for each recombination
event are in Table S5. Given that there was no significant evidence of cross-species recombi-
nation events identified in the BCoV HE genes, recombination analyses were repeated with
a smaller dataset containing 256 unique BCoV HE genes (Figure 4B). Four unique recom-
bination events were detected in five HE gene sequences with various levels of support
(Table S6). ON142319 (BCoV6/2021/CHN) had the highest support, with the recombi-
nation event detected by four methods in RDP5. MW711311 (SWUN/NMG-D7/2020),
MK1095135 (BCOV-China/SWUN/SC1/2017), MW711317 (SWUN/NMG-8/2020), and
MK045995 (HT293) were identified as recombinant by two methods (Table S6). No U.S.
isolates sequenced in this study were identified as possessing a recombinant HE gene,
including the HE variants, nor were the 12 nt HE-insertion variants from China.
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Figure 4. SplitsTree NeighborNet phylogenetic networks of HE gene sequences used in recombination
detection. (A) NeighborNet of 491 unique Betacoronavirus HE gene sequences. GenBank accession
OK391229 was removed from phylogenetic analysis due to poor sequence quality. (B) NeighborNet
of 256 unique BCoV HE gene sequences. Stars represent the HE gene sequences flagged as potential
recombinant sequences by RDP5. HE-insertion variants are colored red and the single HE-deletion
variant is blue.
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3.4. Baculovirus-Mediated Expression of Hemagglutinin Esterase Variants in Sf9 Cells

The complete HE gene from isolate 18-25432 (HE424) was synthesized and cloned into
the baculovirus expression vector pFAST-Bac, along with isogenic alleles containing the
12 nucleotide insertion (HE428) or deletion (HE420) identified in circulating viruses. All
three baculovirus HE expression constructs had esterase activity greater than baculovirus
and Sf9 control cultures (Figure 5A), suggesting that the identified mutations in the HE
receptor binding domain did not appreciably affect enzymatic activity. However, due
to the lack of an anti-HE antibody, we were unable to normalize HE expression levels
between baculovirus preparations. The ability of the HE mutants to bind the receptor
9-O-Ac-Sia was assessed using BSM. All three baculovirus HE protein variants bound BSM
coated plates at levels greater than baculovirus and Sf9 control cultures, suggesting that
the identified mutations did not abolish the ability of HE to bind 9-O-Ac-Sia (Figure 5B).
In summary, these HE gene variants appear to maintain esterase activity and binding
to 9-O-Ac-Sia.

B 1,500,000

1,000,000

Fluorescence

500,000

Figure 5. Functional Characterization of HE gene length variants. The full-length (HE424), inser-
tional variant (HE428), or deletion variant (HE420) hemagglutinin-esterase genes were expressed in
baculovirus. Esterase activity (panel A) and ability to bind 9-O-Ac-Sia (panel B) were measured with
uninfected cells (Sf9) and cells infected with a baculovirus encoding an unrelated gene (Baculovirus)
included as negative controls. A. The esterase activity between different HE variants was measured
at 30 min after the start of the reaction. Error bars represent the standard deviation. The data were
analyzed using a one-way ANOVA that showed significant variations (p = 0.0002). Tukey’s multiple
comparison analyses showed that esterase activity of all HE variants were significantly higher than
both Baculovirus and Sf9 negative controls (p < 0.05). B. The ability to bind the 9-O-Ac-Sia was
assayed on bovine submaxillary mucin. Binding to ligand was significantly greater for all HE variants
than Sf9 and Baculovirus controls (p < 0.05).

3.5. Hemagglutinin Esterase Structural Modeling

To determine how the insertion or deletion in the HE gene sequence might affect
protein structures, the amino acid sequences for HE420, HE424 and HE428 were modeled.
Superimposition of the predicted HE proteins found structural changes limited to the
R3 loop containing the receptor binding domain (RBD). Both the insertion (HE 428) and
deletion (HE 420) variants disrupted the beta-sheet secondary structure that formed the
RBD (Figure 6).



Viruses 2022, 14, 2125

12 0f 18

RBD
lectin

membrane-
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Figure 6. Structural modeling of HE gene length variants. Structural models of the homodimeric
hemagglutinin-esterase protein (HE424) and mutants containing a 4-amino acid insertion (HE428) or
deletion (HE420) in the receptor binding domain. A. Domains of HE424 were colored according to [28]
with the lectin domain colored green, the esterase domain colored blue, and the membrane-proximal
domain colored pink. The smaller panels zoom in on the R3 loop with the residues in the receptor
binding domain (RBD) colored red. B. Sequences of the HE protein variants in the region containing
the R3 loop.

4. Discussion

In this study, we report 78 complete or near-complete BCoV genome sequences, with
12 genomes containing HE gene length variants. The HE protein has a bimodular struc-
ture with a carbohydrate-binding lectin domain and an enzymatically active esterase
domain [23,53,54] (Figure 1). The lectin domain mediates virion attachment to the re-
ceptor whereas the esterase domain results in receptor destruction and release of viral
progeny. Residues Fp11, L12, Sp13 and Npy4 in the lectin domain are essential for receptor
binding [23]. Eleven genomes sequenced in this study contained an insertion of 12 nt
(AAGGC[U/CJACUGUU) in the lectin domain, resulting in the insertion of the amino
acids ‘KATV between Fyq; and Fy5 in the receptor binding domain (RBD, Figure 1) [23,32].
The nucleotide insertion from nine of these isolates was identical to the sequence recently
reported by Abi et al., 2020 (AAGGCUACUGUU) [32] and the two isolates collected from
USMARC had a synonymous nucleotide change that did not impact the amino acid se-
quence of the insertion (AAGGCCACUGUU). These two USMARC isolates also had a
leucine to serine substitution immediately following the insertion (L1 to Sy17; Figure 1).
Ten of the genomes with the HE-insertion variant from this study were collected beginning
in 2020 from non-epidemiologically linked cases in Nebraska, Colorado, California, and
Wisconsin, and are the first report of this variant outside of China. While absent in the
48 samples collected prior to 2020, 11 out of 30 (37%) samples collected since 2020 were
positive for the HE-insertion variant, suggesting that this variant is emerging in cattle.
Interestingly, 10 of 11 HE-insertion variants were identified in samples from cattle with
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respiratory disease. However, given that the field samples used in this study were non-
randomly sourced from a limited geography, the prevalence and ecology of the HE variant
isolates in the U.S. remains uncertain.

The origin of HE variants in the U.S. and China remains unknown. Phylogenetic anal-
ysis of complete genomes and HE gene sequences revealed that the HE-insertion variants
from the U.S. are in a group distinct from those containing the Chinese HE variants. Yet, it
is still possible that the HE-insertion variants acquired this 12 nt insertion by recombina-
tion with an ancestral virus with the 12 nt insertion. Intriguingly, one U.S. HE-insertion
variant, SDSU/2022/03R, clustered near the previously reported non-recombinant HE
sequences from China (Figure 4B) [32]. However, no recombination signal was detected
the HE-insertion variants from the U.S. and China using RDP5. This contrasts with Abi
et al.,, 2020, that reported the HE-insertion variants from China contained a recombinant
HE gene [32]. However, this recombination event was observed in HE genes with and
without the 12 nt insertion, suggesting the 12 nt insertion occurred independent of, and
after, the recombination event that was detected. The recombination block in the Chinese
isolates contained two common amino acid variants: F181V and P,S158A [32]. Neither of
these amino acid variants were observed in any of the U.S. HE-insertion variants (Figure 1).
Thus, there is no evidence to support the hypothesis that one of the U.S. or Chinese isolates
identified to date serves as the ancestral isolate for the 12 nt insertion. We acknowledge that
there may be one or more underlying recombination events that give rise the phylogeny
observed, however, the high homology of BCoV HE gene sequences means that recombina-
tion signals can be difficult to confidently identify. Based on available evidence, the most
parsimonious explanation for to the 12 nt insertion occurring in two different BCoV lineages
is convergent evolution. However, we posit that because of (1) the rapid evolution of BCoV
and (2) the paucity of complete BCoV genomes from across the globe, it is possible that
the putative common ancestor of both the U.S. and Chinese HE-variants is not represented
in public databases. Therefore, additional whole genome sequencing of historical isolates
from underrepresented geographical regions will be required to understand the origin and
spread of these variants.

In addition to the HE-insertion variants, a single genome assembled from a lung
sample contained a novel 12 nt deletion in the HE receptor binding domain, resulting in
the deletion of the amino acids p0)sNGKFy;1 (Figure 1). The phenylalanine (F) at position
211 plays an essential role in forming a hydrophobic pocket that engages the receptor
(the 5-N-acetyl group of 9-O-Ac-Sia) and mutation of F;; to alanine abolished receptor
binding [23]. Interestingly, deletion of ,0sNGFK311 places Fppy immediately adjacent to Ly,
5713 and Npj4 which bind to the receptor via hydrogen bonding. Thus, we hypothesized
that the Fygy in the HE deletion variant may be able to complement for deletion of Fp1;
to allow receptor binding (Figure 1). However, given the structural changes observed in
the RBD by protein modeling (Figure 6) it was unclear if this variant would still bind the
receptor similar to the wild type HE protein.

To determine the potential impact of these HE deletion/insertion variants on recep-
tor binding and esterase activity, isogenic HE proteins containing either the insertion or
deletion in the lectin domain were cloned into a baculovirus expression vector. Prior 3D
modeling based on the crystal structure of BCoV HE [23] predicted that the four amino
acid insertion would alter the spatial conformation of the R3 loop containing the receptor-
binding site [32] which could potentially impact receptor binding. Binding assays using
BSM demonstrated that HE proteins bearing the 20sNGKF,11 deletion or the 21, KATV315
insertion were able to bind receptors similar to canonical (wild type) HE, suggesting that
the mutations do not abolish receptor binding (Figure 5). However, because we lacked an
anti-HE antibody to normalize HE expression levels between the different baculovirus-
expressed HE preparations, we cannot exclude the possibility that there are more subtle
differences in receptor binding and esterase activity. Differences in HE glycosylation by
519 cells, as compared to bovine cells, may also impact HE binding and enzymatic activity.
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Thus, whether observed or predicted changes in receptor binding and destruction may
alter tissue tropism and/or host range remains unknown.

HE and S glycoproteins both bind to the 9-O-Ac-Sia receptor; however, the S glyco-
protein enables receptor binding and membrane fusion allowing virus entry, while the HE
protein plays a critical role in viral egress from the cell, cleaving the receptor and allowing
newly formed virions to disseminate from the cell surface. The opposing effects of S and
HE have been tuned by evolutionary forces to maximize viral fitness [25]. A question
that remains is whether certain spike genotypes allow viruses with changes in the HE
receptor binding domain to remain viable. NeighborNet reconstruction revealed that while
the HE genes with the insertional variant were observed in several clades throughout the
tree (Figure 3), the spike genes from BCoV isolates containing the HE-insertion variant
appeared to cluster together in fewer clades. Analysis of additional genomes is needed
to determine whether there are certain motifs in spike that associate with HE insertional
variants. Furthermore, given that both S and HE surface glycoproteins are targeted by
neutralizing antibodies [55-57], it is also of interest to determine whether structural changes
in the HE receptor binding domain alter antibody recognition of HE epitopes, and if these
changes in antibody recognition could result in immune escape variants. Additional work
is needed to address these important questions.

An additional early goal of this work was to compare respiratory and enteric isolates
to determine whether there are genomic signatures related to respiratory or enteric tropism.
Phylogenetically, the respiratory and enteric isolates clustered together by geographical
origin and date of isolation rather than by disease presentation (Figure 2), which is consis-
tent with previous findings [58-62]. To date, no distinct genetic or antigenic markers have
been consistently identified in BCoVs associated with these distinct clinical presentations;
however, few studies have analyzed complete genome sequences that came directly from
clinical samples. In the present study, there were confounding factors (e.g., U.S. state of
origin, year of isolation, etc.) and an insufficient sampling depth to make meaningful com-
parisons between respiratory and enteric isolates when epidemiologically linked samples
were removed. Therefore, a more geographically diverse set of enteric and respiratory
BCoV genomes adequately sampled across space and time is needed in the future for com-
parisons to identify potential tropism determinants. Nevertheless, it is possible that enteric
and respiratory BCoVs are members of the same quasispecies and the outcome of infection
is impacted by route of exposure, co-infections, or other host and environmental factors,
individually or in combination, rather than specific genetic determinants of tropism [58,63].

5. Conclusions

The recent pandemic caused by SARS-CoV-2 has illustrated the importance of animal
reservoirs of coronaviruses. Bovine coronavirus in particular has shown a propensity
for interspecies transmission. Bovine coronavirus-like viruses have been detected in a
large number of domestic and wild ruminants [64], and spillover events have led to the
establishment of BCoV-like viruses in multiple species [21]. Apart from sporadic amino
acid mutations, we did not observe any deletions or insertions in BCoV HE sequences prior
to 2020. One concern is that the recent emergence of HE genes with insertions or deletions
in the HE receptor binding domain may alter the host range of BCoV. A similar insertion
into the R3 loop of the mouse hepatitis virus HE gene led to a change in receptor tropism
to 4-O-Ac-Sia from 9-O-Ac-Sia [29]. We also noted length polymorphisms within genes
encoding the 4.9 kDa and 4.8 kDa proteins, including large truncations in the predicted
open reading frames. Deletions in this region of the genome for human CoV OC43 have
been hypothesized to be associated with its adaptation to humans [65,66]. Therefore, further
investigation of BCoV evolution and in particular these novel HE variants is warranted.
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Betacoronavirus HE gene sequences from NCBI. Table S4: Sequence IDs for 256 Unique BCoV HE gene
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