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Abstract: The rapid and disorderly urbanization in the Amazon has resulted in the insertion of
forest fragments into cities, causing the circulation of arboviruses, which can involve hematophagous
arthropods and free-ranging birds in the transmission cycles in urban environments. This study
aimed to evaluate the circulation of arboviruses in free-ranging birds and hematophagous arthropods
captured in an Environmental Protection Area in the Belem metropolitan area, Brazil. Birds were
captured using mist nets, and hematophagous arthropods were collected using a human protected
attraction technique and light traps. The birds’ sera were subjected to a hemagglutination inhibition
test to detect antibodies against 29 arbovirus antigens. Arthropod macerates were inoculated into
C6/36 and VERO cell cultures to attempt viral isolation and were tested using indirect immunofluo-
rescence, subsequent genetic sequencing and submitted for phylogenetic analysis. Four bird sera were
positive for arbovirus, and one batch of Psorophora ferox was positive for Flavivirus on viral isolation
and indirect immunofluorescence. In addition, the Ilheus virus was detected in the sequencing and
phylogenetic analysis. The presence of antibodies in sera from free-ranging birds and the isolation of
Ilheus virus in Psorophora ferox indicate the circulation of arboviruses in forest remnants in the urban
center of Belem.

Keywords: arboviruses; birds; hematophagous arthropods; urbanization; Amazon

1. Introduction

Arboviruses are viruses naturally maintained in cycles involving hematophagous
arthropods and vertebrate hosts [1]. They are endemic in tropical regions, affecting animals
and humans throughout the year, due to the biotic and abiotic conditions of these areas,
which are favorable for the reproduction of hematophagous arthropods and conducive to
coexistence between vectors and vertebrate hosts in the same environment [2,3].

Hematophagous arthropods are arbovirus vectors and reservoirs. After acquiring
infection, they remain infected for life, being able to transmit these viral agents to the
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vertebrate hosts through hematophagy [4]. Several insect species of the Culicidae, Cerato-
pogonidae, and Psychodidae families are competent arbovirus vectors that are responsible
for the transmission of these viruses to humans and animals and the maintenance of sylvatic
and urban cycles of the most known arboviruses [5–7].

Birds are considered amplifying hosts for some arboviruses. They are the main source
of infection for competent arthropod vectors and participate in sylvatic enzootic cycles
of arboviruses worldwide [8,9]. Free-ranging species, especially those with migratory
behavior, play an important role for arbovirus dissemination, silently transporting these and
other infectious agents from endemic to non-endemic areas, thus characterizing themselves
as a One Health problem [10].

The environmental pressure exerted by human expansion into preserved environments,
with forest fragmentation and the formation of “wild corridors”, promotes the approxima-
tion between wild animals, vectors, and humans, allowing the emergence or reemergence of
arboviruses of medical and veterinary importance in large urban centers [11,12].

The rapid and disorderly expansion of the large cities, including forest invasion and
fragmentation, is a common problem in the Amazon, where approximately 212 arbovirus
species have already been isolated, 104 of which are exclusive to the region and 36 of which
are associated with human diseases [9,13,14]. Cities such as Belem, the capital of Pará,
have been spreading and entering adjacent sylvatic areas, leaving only forest fragments
protected by law, such as the Environmental Protection Area of the Metropolitan Region of
Belem (APA-Belem) [14,15].

APA-Belem is an Environmental Conservation Area with 74.57 km2 of extension
located in the municipalities of Belem and Ananindeua, comprising forested areas for
leisure, ecotourism, environmental preservation, and teaching and research, such as the
university headquarters of the Federal Rural University of the Amazon (UFRA) [15]. Ap-
proximately 30 arboviruses unique to the Amazon region were isolated for the first time
in the APA-Belem jurisdiction [16,17]. In addition, arboviruses of medical and veterinary
importance such as Saint Louis encephalitis virus (SLEV), Eastern equine encephalitis virus
(EEEV), Western equine encephalitis virus (WEEV), and Mucambo virus (MUCV), which
were isolated from vectors and free-ranging birds inhabiting the site [18].

This study aimed to evaluate the circulation of arboviruses by detecting antibodies in
serum samples of wild free-ranging birds and the infection in hematophagous arthropods
(Diptera, Nematocera) captured in forest fragments and urbanized environments located
in the APA-Belem jurisdiction.

2. Materials and Methods
2.1. Study Area

The study was conducted at the university campus of UFRA, Avenida Presidente
Tancredo Neves, Terra Firme neighborhood, Belem, Para, Brazil, with coordinates 1◦27′31′′

S 48◦26′04.5′′ W, and comprising an area of approximately 215,230 ha, within APA-Belem.
Thus, contemplating distinct landscapes characterized by the presence of buildings, roads,
pastures, plantations, and buildings intended for the creation of domestic production
animals and discontinuous forest fragments, composed (mostly) by secondary forest.

2.2. Ethical Consent

The procedures described below were approved by the Brazilian Institute for the Envi-
ronment and Renewable Resources (register number 63488-4 ICMBio-MMA), the Animal
Use Ethics Committees (CEUA) of the Federal Rural University of the Amazon (regis-
ter number 025/2018—CEUA; 23085.01479/2018-82—UFRA), and the Evandro Chagas
Institute (register number 16/2019 CEUA/IEC).
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2.3. Capture and Identification of Free-Ranging Birds and Hematophagous Arthropods

Four 10-day excursions to the campus were conducted to capture free-ranging birds
and collect hematophagous arthropods in rainy (February/March), rainy-dry transition
(June/July), dry (September/October) 2019, and rainy seasons (March) 2020.

The free-ranging birds were captured using single-height mist nets (2.5 m), measuring
7 to 12 m in length, armed with the aid of metal rods fixed to the ground, and arranged
in rows. Four rows were set inside a secondary forest fragment, and three armed in
a moderately urbanized environment close to the Veterinary Medicine sector (Figure 1).
Capturing started at 6:00 am and ended at 11:00 am, with inspection of the nets every 30 min
and immediate removal of trapped animals. After capture, the birds were taxonomically
identified in order, family, genus, and species by comparing their physical characteristics
with data present in physical field guides [19,20] and bird identification applications [21,22].
The nomenclature recommended by the Brazilian Committee of Ornithological Records [23]
was used for taxonomic identification.
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Figure 1. Location of the UFRA inside the APA-Belem (Pará, Brazil), with the demarcation of points
for collecting hematophagous arthropods (A and C) and capturing free-ranging birds (B and C).
A—Animal Husbandry sector. B and C—Veterinary Medicine sector.

Hematophagous arthropods with diurnal habits were collected using a human pro-
tected attraction technique [24], whereas those with afternoon/nocturnal habits were
collected using CDC light traps. Both techniques were applied at ground level and in
the tree canopy at two different points: inside a secondary forest fragment located near
the Animal Husbandry sector and inside the same forest fragment where the birds were
captured (Figure 1). Daytime activities began at 9:00 am and ended at 12:00 pm. The
traps were turned on at 4:00 pm the day before and disarmed at 9:00 am the following
day. For the taxonomic identification of individuals collected in family, genus, subgenus,
and species, dichotomous keys described by Consoli and Oliveira [13] were used. Only
arthropods belonging to the Culicidae, Ceratopogonidae, and Psychodidae families were
considered in this study.
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2.4. Sample Collection

Blood samples corresponding to 1% of the live weight of each free-ranging bird were
collected by puncturing the jugular vein to obtain the serum samples. Individuals weighing
less than 10 mg were not included in the collection. After collection, blood aliquots were
conditioned in individual gel tubes for each bird, left at room temperature, and centrifuged
at 2000 rpm/10 min, for serum separation.

To obtain the macerates of hematophagous arthropods, microtubes (lots) containing 1
to 50 individuals were added with a tungsten bead and 1 mL of 1 × D-PBS diluent (Gibco,
Waltham, MA, USA) plus 5% of fetal bovine serum, Fungizone and Penicillin/Streptomycin,
and the contents were macerated by shaking in a TissueLyser device (QUIAGEN®) at
25,000 Hz/1 min. After maceration, the suspensions were stored in a freezer (−80 ◦C/24 h),
thawed at room temperature, and centrifuged (10 rpm/10 min) to obtain the supernatant.

2.5. Hemagglutination Inhibition (HI)

Free-ranging bird serum samples were submitted to HI, following the methodology
described by Clark and Cassals [25], adapted for microplates by Shope [26], using a 1:20
cut-off. To perform the test, 50 µL of each serum sample was treated with saline solution
and acetone P.A, adsorbed on treated erythrocytes of geese (Anser cinereus) to remove
non-specific antigens, and later tested against 4 A.U of antigens of 29 different arbovirus
(Table 1), belonging to the Serology 1 Laboratory of the Department of Arbovirology and
Hemorrhagic Fever of the Evandro Chagas Institute (SAARB/IEC). Positive samples were
titrated using serial dilutions of bovine albumin up to a maximum titer of 1:1280 to obtain
the antibody titer.

Table 1. Panel of arboviruses used in the HI to detect antibodies in sera from free-ranging birds
captured in APA-Belem, Pará, Brazil.

Family Genus Virus

Togaviridae Alphavirus

Eastern equine encephalitis virus (EEEV)
Western equine encephalitis virus (WEEV)

Mayaro virus (MAYV)
Mucambo virus (MUCV)

Pixuna virus (PIXV)
Aura virus (AURAV)

Flaviviridae Flavivirus

Saint Louis encephalitis virus (SLEV)
West Nile virus (WNV)
Yellow fever virus (YFV)

Ilheus virus (ILHV)
Cacipacore virus (CPCV)
Bussuquara virus (BSQV)

Rocio virus (ROCV)
Naranjal virus (NJLV)

Peribunyaviridae Orthobunyavirus

Tacaiuma orthobunyavirus (TCMV)
Guaroa orthobunyavirus (GROV)
Maguari orthobunyvirus (MAGV)
Utinga orthobunyavirus (UTIV)

Caraparu orthobunyavirus (CARV)
Oropouche orthobunyavirus (OROV)

Catu orthobunyavirus (CATUV)
Marituba orthobunyavirus (MTBV)

Murucutu orthobunyavirus (MURV)
Oriboca orthobunyavirus (ORIV)
Itaqui orthobunyavirus (ITQV)

Phenuiviridae Phlebovirus
Icoaraci phlebovirus (ICOV)
Bujaru phlebovirus (BUJV)

Urucuri phlebovirus (URUV)

2.6. Viral Isolation in Cell Culture and Indirect Immunofluorescence Test (IIF)

For viral isolation, 150 µL of the supernatant from each macerated batch of hematophagous
arthropods was inoculated simultaneously into appropriate cell culture tubes (TPP®) con-
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taining a monolayer of Aedes albopictus intestinal cells (C6/36 ATCC: CRL 1660 clones) [27]
and African green monkey kidney cells (VERO ATCC: CCL 81 clones) [28]. The inoculated
cultures were incubated at 28 ◦C (C6/36) and 37 ◦C (VERO) for seven consecutive days
and observed daily under an inverted field microscope to verify the presence/absence of
cytopathic effects. In addition, all inoculated cell cultures were subjected to the IIF test
using the protocol adapted from Gubler et al. [29] and tested for eight distinct antigenic
groups of arboviruses (Table 2), using polyclonal antibodies belonging to the Viral Isolation
Laboratory of the SAARB/IEC.

Table 2. Polyclonal antibodies for antigenic groups of arboviruses used in the IFF test to detect viral
presence in C6/36 and VERO cell cultures inoculated with supernatant of macerated hematophagous
arthropods from APA-Belem, Pará, Brazil.

Genus Antigenic Group Virus

Alphavirus A AURAV, EEEV, MAYV, MUCV, PIXV, UNAV, WEEV,
CHIKV, Trocara virus

Flavivirus B DENV 1–4, YFV, BSQV, CPCV, ILHV, NJLV, SLEV, WNV,
ZIKAV

Orthobunyavirus Guamá
Ananindeua orthobunyavirus, Bimiti orthobunyavirus, CATUV,

Guamá orthobunyavirus, Mirim orthobunyavirus, Moju
orthobunyavirus, Timboteua orthobunyavirus.

Capim

Acará orthobunyavirus, Benevides orthobunyavirus, Benfica
orthobunyavirus, Capim orthobunyavirus, Guajará

orthobunyavirus, Bushbush orthobunyavirus, Moriche
orthobunyavirus.

Bunyamwera

Iaco orthobunyavirus, Kairi orthobunyavirus, Macauã
orthobunyavirus, MAGV, Sorocab orthobunyavirus, Tucunduba

orthobunyavirus, Taiassui orthobunyavirus, Xingu
orthobunyavirus.

Simbu OROV

Phlebovirus Phlebotomus

Alenquer phlebovirus, Ambe phlebovirus, Ariquemes
phlebovirus, Belterra phlebovirus, BUJV, ICOV, Candiru

phlebovirus, Itaporanga phlebovirus, Jacundá phlebovirus, Joá
phlebovirus, Morumbi phlebovirus, Mucura phlebovirus,

Mugunba phlebovirus, Oriximiná phlebovirus, Pacuí
phlebovirus, Salobo phlebovirus, Tapará phlebovirus, Turuna

phlebovirus, Uriurana phlebovirus, URUV.

Orbivirus Changuinola

Acatinga virus, Acurené virus, Almeirim virus, Altamira virus,
Anapú virus, Araçaí virus, Aratau virus, Aruana virus, Arawetê
virus, Assurinis virus, Bacajaí virus, Bacuri virus, Balbina virus,

Barcarena virus, Breves virus, Canindé virus, Canoal virus,
Catetê virus, Coari virus, Gorotire virus, Gurupi virus, Iopaka
virus, Ipixaia virus, Irituia virus, Iruana virus, Itaboca virus,
Jamanxi virus, Jandaia virus, Jari virus, Jatuarana virus, Jutaí

virus, Kararaô virus, Melgaço virus, Monte Dourado virus,
Ourém virus, Pacajá virus, Parakanã virus, Poranati virus,

Parauapebas virus, Parú virus, Pependana virus, Pindobai virus,
Piratuba virus, Purus virus, Rio Mutapi virus, Saracá virus,

Serra Sul virus, Surubim virus, Tapiropé virus, Tekupeú virus,
Timbozal virus, Tocantins virus, Tocaxá virus, Tuerê virus,

Tumucumaque virus, Uatumã virus, Uxituba virus, Xaraíra
virus, Xiwanga virus.

2.7. Nucleotide Sequencing and Sequence Assembly

RNA extraction was performed from the inoculated C6/36 culture supernatant, using
the Quiamp® Viral RNA mini kit, with subsequent quantification of the extracted RNA
using the Qubit RNA HS Assay kit (Invitrogen®) and Qubit 4 Fluorometer equipment,
following the manufacturer’s recommendations. Subsequently, the synthesis of the first and
second strands of cDNA was performed using SuperScript VILOTM Master Mix and NEB-
Next mRNA Second Strand Synthesis Module kits, respectively, and the cDNA purification
and quantification were performed using the PureLinkTM PCR Purification and Qubit



Viruses 2022, 14, 2101 6 of 14

DNA HS Assay kits (Invitrogen®), following the protocols described by the manufacturers.
Genomic libraries were produced using the Nextera XT DNA kit, and sequencing was
performed using the NextSeq 500 platform and the NextSeq 500/550 High Output kit v.2.5
(300 cycles), using the paired-end methodology.

To generate the R1 and R2 reads, the sequencer output data were demultiplexed
using the bcl2fastq program, and both were evaluated for quality using the FastQC pro-
gram (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed on 9 Febru-
ary 2022). The comparison of R1 and R2 readings with databases of non-redundant
proteins (nr) was performed using DIAMOND program [30], considering the values
of e-value (0.0001) and amino acid identity as parameters. Visualization of tabulated
data in DIAMOND was performed using the KRONA v.2.8 program [31]. The raw
data were processed using the programs SortMeRNA v.2.1 [32] and Trim Galore v.0.4.5
(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/, accessed on 9 Febru-
ary 2022), removing interferents such as ribosomal RNA, readings with less than 75 nu-
cleotides, adapters, and indeterminate bases (above 15 N).

The sequences were assembled using the DE NOVO methodology, using SPAdes [33] and
IDBA-UD [34] programs, considering k-mer values 21, 33, 55, 77, and 20, 40, 60, 80, and 100,
respectively. The obtained contigs were grouped and analyzed using the DIAMOND program
(e-value 0.0001), and those that showed similarity with virus sequences were analyzed by
gene prediction using the GeneMarkS program [35]. The amino acid sequences of the genes
were compared to different protein databases available in the InterProScan program (https:
//www.ebi.ac.uk/tnterproscan/dowload, accessed on 9 February 2022), and the tabulated
contigs were inspected and compared with contigs from complete arbovirus sequences using
Geneious software v.9.1.4 (https://geneious.com/, accessed on 9 February 2022).

2.8. Phylogenetic Inference

To construct the phylogenetic tree, two partial fragments corresponding to the coding
regions of the envelope proteins and NS5 of the nucleotide sequence obtained in the
present study, together with partial sequences referring to the same proteins from strains
of ILHVs available at the NCBI, were submitted to multiple sequence alignment using
the Maft program v.7 [36]. The aligned data were analyzed to identify the best nucleotide
substitution model, and the phylogenetic trees were constructed using the maximum
likelihood (MV) method [37] in the IQ-TREE v.1.6.12 program [38]. A bootstrap test was
applied using 1000 replicates [39] to add greater reliability to the clusters. FigTree v.1.4.4
(https://www.github.com/rambaut/figtree/releases/tag/v.1.4.4, accessed on 9 February
2022) was used to visualize the phylogeny, and the final image was produced using
InkScape v.1.1 (https://inkscape.org/release/inkscape-1.1/, accessed on 9 February 2022).

3. Results
3.1. HI

One hundred and twenty-eight sera from free-ranging birds were subjected to HI test.
Four (3.1%) had antibodies to one or more arbovirus antigen tested, with two (1.8%) positive
for Phlebovirus and two (1.8%) positive to Flavivirus. In addition, a sample of Ramphocelus
carbo showed a monotypic reaction to ICOV, a sample of Sclateria naevia showed a monotypic
reaction to BUJV, a sample of Dendroplex picus showed a monotypic reaction to SLEV, and a
sample of Taraba major showed a heterotypic reaction to SLEV and NJLV (Table 3).

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.ebi.ac.uk/tnterproscan/dowload
https://www.ebi.ac.uk/tnterproscan/dowload
https://geneious.com/
https://www.github.com/rambaut/figtree/releases/tag/v.1.4.4
https://inkscape.org/release/inkscape-1.1/
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Table 3. Free-ranging birds captured at APA-Belem (Pará, Brazil) were positive for the presence of
arbovirus antibodies in the HI test.

Bird (Taxon) Month/Year Arbovirus/Title

Passeriformes
Thraupidae

Ramphocelus carbo June/2019 ICOV/1:80
Thamnophilidae
Scalteria naevia July/2019 BUJV/1:80

Taraba major March/2020 SLEV/1:20; NJLV/1:40
Dendrocolaptidae
Dendroplex picus March/2020 SLEV/1:20

3.2. Viral Isolation

Four hundred and thirty-three batches of hematophagous arthropods were inoculated
into C6/36 and VERO cell cultures and subsequently processed using the IIF test. A batch
identified as BeAr865640 containing 24 individuals of Psorophora (Janthinosoma) ferox, collected
using human attraction protected and enlightened technique at ground level, next to the
Animal Husbandry sector, during the dry season, caused cytopathic effect in both strains cells
on the fourth day after inoculation, and was positive for Flavivirus in the IIF test (Figure 2).
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3.3. Nucleotide Sequencing and Phylogenetic Inference to ILHV

The supernatant of C6/36 cells inoculated with batch BeAr865640 was subjected to
nucleotide sequencing, and a sequence of 10,745 nt was identified, with 5′ and 3′ region
representing 78 and 389 nucleotides, respectively, and a coding region containing 10,278 nt,
with a high degree of identity with the complete genome of ILHV available from NCBI. The
average sequencing genomic coverage was 37,551×. The sequence of the isolated ILHV
strain was deposited in the GenBank database under identification number ON553739.

The coding region of isolate BeAr865640 was aligned and compared with the coding
regions of three complete ILHV sequences available at NCBI (Figure 3), evidencing the
nucleotide and amino acid divergence sites between them. Furthermore, the identity matrix
containing the percentage of nucleotide and amino acid similarity between the isolate
BeAr865640 and the strains MH932545, KC481679 and NC_009028, showed a high degree
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of identity between the amino acids produced by the isolate and those produced by the
sequences, with a lower degree of nucleotide identity between them (Table 4). This finding
may indicate the occurrence of synonymous mutations in the isolate, where there was a
change of one or more nucleotides in the codon without changing the amino acid produced.
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Table 4. Nucleotide and amino acid identity matrix between the complete sequence of isolate
BeAr865640 and three complete sequences of ILHV available on GenBank.

Sequence (Id. GenBank) 1 2 3 4

1 MH932545 98.48% 99.4% 2 99.4%
2 NC_0093028 99.4% 98.5% 2 98.5%
3 ON553739 * 95.5% 1 95.2% 1 99.5% 2

4 KC481679 95.1% 94.7% 95.2% 1

* Isolate BeAr865640; 1 Values corresponding to nucleotide similarity; 2 Values corresponding to amino
acid similarity.

Regarding the phylogenetic tree, the ILHV strains deposited at the NCBI formed two
distinct monophyletic groups in relation to the envelope and NS5 proteins: one group
consisting of isolates from Brazil and Central America, and the other formed by strains
isolated in Peru, Ecuador, and Brazil. The isolate BeAr865640 was found in a branch
external to the two monophyletic groups and was more closely related to the group of
isolates from Brazil and Central America (Figure 4).
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4. Discussion

Birds are natural amplifying hosts of most arboviruses and may harbor approximately
80 viral species that cause encephalitis in humans and domestic animals, such as SLEV,
ILHV, WNV, and EEEV [40,41]. At least 31 different arboviruses have been detected in the
biological samples of wild free-ranging birds in the Amazon, highlighting the importance
of these animals in the arbovirus cycle in the region [40]. The detection of antibodies in sera
from wild, free-ranging birds is an important indicator of arbovirus circulation and can be
applied to monitoring these agents in preserved natural environments and areas affected
by human action. Serological tests, such as HI, are fundamental tools used in arbovirus
surveillance, as they detect antibodies produced in the initial stages of infection that last
long periods [1].

Hematophagous arthropods are vectors of arboviruses that can be found in different en-
vironments and coexist with animals and humans [7,42]. Approximately 300 hematophagous
arthropod species can participate in the cycle of urban and wild arboviruses, especially
the Culicidae family, which is related to the transmission of most arboviruses [43]. After
infection, culicids and other vectors remain infected with arboviruses throughout their
lives and are considered reservoirs of these infectious agents in nature [44]. Thus, entomo-
logical surveillance and laboratory tests such as viral isolation and molecular tests using
hematophagous arthropods are essential in epidemiological research on arboviruses, consid-
ering the importance of hematophagous arthropods as maintainers of arboviruses in nature
and their potential as transmitters of these diseases to vertebrate hosts [4,42].

In this study, antibodies against ICOV, BUJV, SLEV, and NJLV were detected in sera
from wild free-ranging birds, and ILHV was isolated from Psorophora (Jan.) ferox vectors
captured in preserved forest fragments and urbanized areas, demonstrating the occurrence
of wild cycles of arboviruses of importance in One Health withing the APA-Belem.

Previous serological and virological studies have demonstrated the presence of natural
cycles of arboviruses that cause encephalitis in APA-Belem, emphasizing the importance of
the occurrence of these infectious agents within APA for public and animal health [11,17,18].
For example, a serological survey developed by Bernal et al. [45] involving rodents and
marsupials captured in secondary forest fragments located inside the university campus
UFRA-Belem detected 57.14% positivity for presence of antibodies to arboviruses of the
families Togaviridae, Flaviviridae, and Peribunyaviridae, demonstrating the possible circulation
of these viral agents in wild animals living in preserved forest areas present in the APA-
Belem. In addition, a study developed by Barros [46] in the Environmental Protection Area
of Combu Island (APA-Combu), located close to APA-Belem, detected the presence of HI
antibodies for ICOV, BUJV, ILHV, SLEV, NJLV, and other arboviruses in sera collected from
wild free-ranging birds, demonstrating the circulation of arboviruses in other environmental
protection areas in Belem that are influenced by anthropic action.

Icoaraci phlebovirus and BUJV are two arboviruses of the Phenuiviridae family isolated
for the first time in the 1960s from samples of rodents captured in the Utinga forest, in the
territory covered by the APA-Belem [47]. Rodents, non-human primates, and marsupials
are considered amplifying hosts in sylvatic cycles of Phlebovirus from the New World [48].
Free-ranging birds can be considered accidental hosts of ICOV, and their participation in the
cycle of this arbovirus and BUJV is still poorly understood [40,49]. Sandflies are the most
important vectors in the transmission of arboviruses of the Phenuiviridae family worldwide,
together with some species of nocturnal culicids and ceratopogonids of the genus Culi-
coides, which can also participate as vectors in the wild cycles of these arboviruses [50,51].
Phlebovirus infections cause a self-limiting febrile illness in humans, which may present
symptoms similar to those of other viruses and are easily confused with other diseases [52].

Saint louis encephalitis virus is an arbovirus that causes encephalitis in humans and
domestic animals, with an enzootic cycle that involves wild birds and mosquitoes of the
genus Culex. Is the Flavivirus has the highest seroprevalence among free-ranging birds in
the Amazon, holding a cycle in which approximately 91 species of birds are involved as
amplifying hosts [40]. In addition, secondary cycles of SLEV involving vectors of the genera
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Aedes sp., Coquillettidia sp., Mansonia sp., Psorophora sp., Sabethes sp., and vertebrates such
as rodents, non-human primates, horses, and humans, have been reported in Brazil [1,53].
Humans are considered terminal accidental hosts of this arbovirus, presenting varied
susceptibility to the virus, and may develop mild or severe disease characterized by
symptoms such as fever, myalgia, headache, meningitis, and encephalitis [53].

Naranjal virus was first isolated from samples from a sentinel hamster in the city of
Naranjal, Ecuador [16]. In Brazil, this arbovirus was isolated from a marsupial sample
of Metachirus opossum species captured in the area of influence of the Salobo Project in
Marabá, Pará [54]. Phylogenetic studies have demonstrated that NJLV belongs to the Aroa
group and is included in the clade of encephalitogenic flaviviruses transmitted by Culex
sp., which is genetically related to BSQV [55–57]. Studies by Freitas [58] and Barros [46]
mentioned the presence of hemagglutination inhibitor antibodies to NJLV in free-ranging
birds captured in the area of influence of the Salobo Project and the APA-Combu. According
to Gaunt et al. [55], flaviviruses included in the Culex clade generally present free-ranging
birds as the main natural amplifying hosts. Dégallier et al. [40] suggested that BSQV has
an enzootic cycle that involves vectors of the Coquillettidia and Sabethes genera, rodents,
non-human primates, and birds. As NJLV has a strong genetic relationship with BSQV, the
possibility that free-ranging birds participate in the enzootic cycle of this arbovirus cannot
be ruled out, and additional studies are necessary to elucidate the role of these animals in
the transmission and maintenance cycles of NJLV.

Ilheus virus was first isolated in 1944 in Ilhéus, Bahia, Brazil, from mosquitoes of genera
Aedes and Psorophora [59]. It is an arbovirus with variable morbidity in humans, which
can cause asymptomatic infection, mild symptoms, or severe febrile illness accompanied
by encephalitis [1,60]. The sylvatic cycle of this arbovirus mainly involves mosquitoes of
the Psorophora ferox species and free-ranging birds, among other vectors and vertebrate
hosts [60–62]. Psorophora ferox females are opportunistic zoophilic hematophagous that
feed on human blood when there is an increase in the population of the species and when
humans are present in or around forested areas [13]. Sporadic cases of human encephalitis
caused by ILHV have been reported in Central [63,64] and South America [65], including
southeastern Brazil [62]. Despite the low isolation rate, the prevalence of antibodies to this
arbovirus in the human population ranges from 2 to 30% and may be higher in places with
proven viral circulation [66,67].

The environmental impacts of disorderly urbanization, deforestation and fragmenta-
tion of pre-existing forests, associated with climate change, put pressure on vectors and
wild amplifying vertebrate hosts to adapt to the urban environment, bringing them closer
to humans and domestic animals and supporting the emergence of sylvatic arboviruses in
large cities in the Amazon [11].

Humans and domestic animals are terminal accidental hosts of most arboviruses and
may present asymptomatic infection or develop symptoms similar to those of other diseases
with greater occurrence in urban areas, thus making clinical diagnosis difficult [2,52].
In addition, the lack of specific laboratory diagnostic tools for the detection of several
arboviruses makes it difficult to detect wild arboviruses in cities because it does not identify
the viral species involved in the infection.

Thus, the intensification of epidemiological, entomological, animal, and environmental
surveillance, associated with laboratory investigations, using molecular techniques such as
nucleotide sequencing and phylogenetics analysis, is a very important tool for monitoring
the circulation of wild arboviruses and detection of new viruses in preserved and altered
environments located in large Amazonian urban centers.

5. Conclusions

The detection of antibodies to encephalitogenic arboviruses in sera from wild free-
ranging birds and the isolation of ILHV in Psorophora ferox vectors indicate the occurrence of
cycles of wild arboviruses in preserved and altered environments in the territory covered by
APA-Belem. Such findings are important for One Health, given the importance and location
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of the APA, which supports contact between vectors, wild vertebrate hosts, domestic
animals, and humans, and consequently, the greater risk of emergence of wild arboviruses,
not only in the territory corresponding to the APA-Belem, but also in urban areas located
in its surroundings.
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