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Abstract: Human T-cell Leukemia virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma
(ATLL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and other inflam-
matory diseases. High viral DNA burden (VL) in peripheral blood mononuclear cells is a documented
risk factor for ATLL and HAM/TSP, and patients with HAM/TSP have a higher VL in cerebrospinal
fluid than in peripheral blood. VL alone is not sufficient to differentiate symptomatic patients from
healthy carriers, suggesting the importance of other factors, including host immune response. HTLV-1
infection is life-long; CD4+-infected cells are not eradicated by the immune response because HTLV-1
inhibits the function of dendritic cells, monocytes, Natural Killer cells, and adaptive cytotoxic CD8+

responses. Although the majority of infected CD4+ T-cells adopt a resting phenotype, antigen stim-
ulation may result in bursts of viral expression. The antigen-dependent “on-off” viral expression
creates “conditional latency” that when combined with ineffective host responses precludes virus
eradication. Epidemiological and clinical data suggest that the continuous attempt of the host immu-
nity to eliminate infected cells results in chronic immune activation that can be further exacerbated
by co-morbidities, resulting in the development of severe disease. We review cell and animal model
studies that uncovered mechanisms used by HTLV-1 to usurp and/or counteract host immunity.

Keywords: human T-cell leukemia virus; HTLV-1; adult T-cell leukemia/lymphoma; ATLL; HTLV-1-
associated myelopathy/tropical spastic paraparesis; HAM/TSP; vaccine; immunology

1. Introduction

Human T-cell leukemia/lymphoma virus type-1 (HTLV-1) is the first pathogenic
retrovirus discovered in humans [1,2]. Its current prevalence is unknown, with estimates
ranging from 10 to 20 million people worldwide [3]. While the majority of HTLV-1-infected
individuals remain asymptomatic, after a long period of clinical latency a low percentage of
patients develop either adult T-cell leukemia/lymphoma (ATLL), a disease characterized
by malignant proliferation of CD4+ T-lymphocytes, or HTLV-1-associated myelopathy/
tropical spastic paraparesis (HAM/TSP), a neurodegenerative condition of possible auto-
immune nature [4–13]. HTLV-1 is also associated with other clinical disorders including
HTLV-1-associated arthropathy, HTLV-1-associated uveitis, infective dermatitis, polymyosi-
tis, and bronchiolitis [14–16]. To date, no disease-specific differences in viral strains have
been identified, and it appears that the chronic inflammation associated with HTLV-1 infec-
tion may be at the basis of diseases manifesting as lymphoproliferation and degenerative
inflammatory diseases. Although some progress has been made in therapies for these
diseases, the prognosis for ATLL is still dismal, and HAM/TSP remains an intractable
disease. The aim of this review is to provide an overview of the current state of knowledge
of the interplay between HTLV-1 and host immunity.

2. HTLV-1 Transmission

The genomic organization and nucleotide sequence of HTLV-1 isolates are highly
conserved. To classify HTLV-1 into different subtypes (subtypes A-G) with characteristic
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geographic distribution, variations in the sequence of the HTLV-1 long terminal repeat (LTR)
sections have been used [17]. The predominant subtype in central Australia is HTLV-1C. In
some regions of Australia, HTLV-1C has an extremely high prevalence of approximately
30% infection among indigenous populations, representing a public health emergency. As
well as a risk of developing ATLL and HAM/TSP, HTLV-1C infected individuals have
elevated mortality and develop lung inflammation, bronchiectasis and infectious diseases
at an increased frequency [16]. Sequence analysis found that HTLV-1C is most divergent
from the other HTLV-1 subtypes at the 3′ section of its genome. Whether these differences
truly contribute to differences in viral pathogenicity or are due to virus-host co-evolution is
not yet known [18].

HTLV-1 infection occurs primarily through cell-to-cell contact between the virus-
infected CD4+ T-cell and uninfected cells. The most common routes of transmission are
mother-to-infant, sexual intercourse (mainly male-to-female), and, rarely, blood transfusion
(whole blood products and sharing syringes) and organ transplants [19,20]. Cell-free
HTLV-1 infection has not been documented.

Risk factors of HTLV-1 vertical transmission are mainly associated with breastfeeding
and additional factors, such as vulnerable socioeconomic position, with the rate of vertical
transmission ranging from 3.9% to 22% in endemic areas [21]. Of note, vertical transmission
has been associated with diseases such as uveitis and ATLL.

Another major route of transmission is sexual intercourse in both genders, as HTLV-
1-infected cells are present in genital secretions, such as vaginal mucus or secretions and
semen [22]. Many infected cells are found in semen, perhaps accounting for more effective
male-to-female and male-to-male transmission [23]. Studies from Japan showed that the
male-to-female transmission rate of HTLV-1 was 60.8%, but female-to-male transmission
was only around 0.4% [24].

Increased HTLV-1 transmission may occur in individuals infected with other sexually
transmitted diseases because these infections induce inflammatory reactions that recruit
lymphocytes, which have a high proportion of CD4+ T-cells facilitating HTLV-1 transmis-
sion [25]. In addition, several factors such as age over 45 years old, menopause, and a high
number of HTLV-1-infected cells can increase the number of HTLV-1 positive cells in the
seminal and vaginal fluids [23], increasing HTLV-1 transmission risk. Increased risk of
viral transmission has been associated with the presence of neutralizing antibodies against
Tax. A 1991 study demonstrated that 75% of HTLV-1-infected males had antibodies against
Tax [26]. It is possible that the level of Tax neutralizing Abs reflects a more active viral
replication in vivo in males favoring virus transmission to females.

HTLV-1 transmission can occur through whole blood transfusions or white blood cell
contaminated plasma [27–29]. Intravenous exposure to HTLV-1-infected blood leads to
seroconversion in 40–60% of cases [30]. It is estimated that the transfer of ≥9 × 104 HTLV-
1-infected cells is necessary to establish a transfusion-transmitted HTLV-1 infection [31].
Sharing needles among intravenous drug abusers can also transfer infected cells [32–35].

HTLV-1 transmission also may occur during allograft transplantation [36]. Despite low
incidence, myelopathy cases have been reported following organ transplantation in HTLV-1
positive subjects in non-endemic countries [37]. In 2000, three patients who received organ
transplants from the same donor, who was determined to be an HTLV-1 healthy carrier, then
presented with clinical manifestations of myelopathy [38]. The development of HAM/TSP
in recipients from HTLV-1 healthy carriers has been reported and can be rapid and pro-
gressive [30,39,40]. In the HTLV-1 endemic regions, more cases of HAM/TSP and ATLL
subjects have been reported after allograft transplantation from HTLV-1 carriers [41,42]. It
appears that the immunosuppression used to avoid organ rejection is a primary factor in
frequent and rapid disease onset [20]. Alternative explanations include high doses of virus
exposure due to the large numbers of infected cells in the contaminated organs.

Although HTVL-1 can infect various cell types, such as dendritic cells, B cells, macrophages
and T-cells, the virus preferentially induces clonal expansion of CD4+ T-cells [43,44] and
has an impact on T-cell function contributing to disease progression [45–47]. Although
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in vitro cell-free virus transmission has been demonstrated for DCs and monocytic cell
lines [48,49], HTLV-1 is believed to be transmitted to T-cells and myeloid cells primarily by
cell-to-cell contact through virological synapse, biofilm-like extracellular viral assemblies
or cellular conduits [50–52]. Viral genes are responsible for clonal proliferation of infected
cells, de novo infection, and infected cell survival. Importantly, viral gene expression is
also critical for the virus’s ability to evade the host immune response.

3. Immune Deregulation in HTLV-1 Infection

HTLV-1 infection is associated with diseases that are often accompanied by changes
in immune responses (4–16). ATLL is often associated with severe immune suppression,
while HAM/TSP is accompanied by chronic inflammation. CD4 cells regulate immune
responses, but due to viral infection, their function is altered, causing changes in inflam-
matory responses and immune tolerance. Increased Treg cell function and production of
IL-10 and TGF-b trigger the immunosuppressive phenotype observed in patients [53,54].
In HAM/TSP patients, unlike in ATLL, investigators found decreased FoxP3 expression
and reduced IL-10 and TGF-b [55]. The loss of suppressive function may cause chronic
inflammation, T-cell and Natural Killer (NK) cell exhaustion and exacerbate the disease
process. HTLV-1-infected CD4+ cells of HAM/TSP patients exhibit spontaneous prolifera-
tion with an increased production of proinflammatory cytokines such as interferon (IFN)-γ,
TNF-α, IL-1 and IL-16 and neurotoxic cytokines IFN-γ and TNF-α, which are found in
high concentrations in the spinal fluid of HAM/TSP patients [20,56,57]. Disruption of
the cytokine homeostasis and the balance between inflammatory and anti-inflammatory
responses is thought to lead to loss of tolerance and the development of autoimmunity.

The type-I interferon response is induced by viral infection [58–62]. The culture of
HTLV-1-infected cells with IFNs suppress HTLV-1 expression [58]. HTLV-1 mRNA and
protein expression are markedly decreased when infected cells are co-cultured with stromal
cells through type-I IFN responses [62]. Furthermore, it was shown that HTLV-1 infection
reduces the phosphorylation of factors in the IFN signaling cascade [59], and that the viral
proteins Tax and p30 can regulate cellular transcription factors such as SOCS1 and PU.1,
which inhibit the interferon response [48,60,63–65]. Interestingly, the combination of the
antiviral drugs zidovudine (AZT) and IFN-α have become the standard treatment of some
forms of ATLL and significantly improves survival for patients diagnosed with chronic
or smoldering subtypes, or a portion of acute individuals carrying wild-type p53 [66–69].
These data suggest that the antiviral effect of both drugs may target an ongoing, low level
of viral infection/replication.

4. Genomic Organization

After entry of the virus into a host cell, the viral RNA is reverse transcribed into
double-stranded DNA, which integrates into the host chromosomal DNA and results in
lifelong infection. The HTLV-1 integrated genome (provirus) contains the characteristic
retroviral structural and enzymatic genes gag, pro, pol, and env [7]. In addition, a region
located between env and the 3′ long terminal repeat (LTR), contains four partially over-
lapping open reading frames (orf s) expressing regulatory proteins [7] that are produced
via alternatively spliced mRNAs and by internal initiation codons [70–73]. Orf-I produces
the p12 protein, which is proteolytically cleaved at the amino terminus to generate the
p8 protein, while differential splicing of mRNA from orf-II results in production of the
p13 and p30 proteins [71,73–75]. The HTLV-1 regulatory genes p12, p8, p30, and p13 are
not absolutely required for virus replication or immortalization of human primary T-cells
in vitro [76–78]. Nevertheless, several studies have shown that primary human T-cells
immortalized with molecular clones lacking p12 or p30 grew less efficiently than the wild
type molecular clone and are more dependent on IL-2 [78–80].

Interestingly, it was shown that the HTLV-1C subtype does not encode the orf-I
gene [81]. In HTLV-1C proviral sequences from 22 Australian isolates, a mutation at
position 6840 leads to a change of the start codon for orf-1 from methionine to a threo-
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nine [82]. Although the p12/p8 protein would not be expressed, a bicistronic mRNA,
rex-orf -I, uses an initiation codon in exon 2 and the acceptor splice site at position 6383 to
encode a protein of 152 amino acids referred to as the Rex-orf-I protein of 17 kDa. In this
mRNA, the first coding exon of the Rex protein is joined in frame to p12/p8. The distinct
functional motifs implicated in p12 function are conserved in the amino acid sequence of
the putative protein rex-orf -I, and thus could possibly compensate for the role of p12 in
viral persistence and immune dysregulation.

Orf-III and orf-IV encode for the Rex and Tax proteins that are essential for viral
expression and production, respectively, and an antisense mRNA transcribed from the 3′

LTR that generates the HTLV-1 basic leucine zipper (HBZ) protein [83–86]. All regulatory
proteins interfere with cellular pathways and only Tax and Rex are essential for virus
expression and production in vitro and likely in vivo. The regulatory proteins p12/p8, p30,
and HBZ are dispensable for viral replication in vitro but essential for viral persistence
in vivo (see next sections). To date, there is no disease-specific difference in viral strains,
and it is unclear how infection results in asymptomatic, cancer, neurodegenerative or
inflammatory diseases. It is thought that the viral regulatory proteins play an important
role in pathogenesis.

5. Tax and HBZ-Specific Cytotoxic Response and Viral Burden

The prognosis for ATLL is still bleak and HAM/TSP remains an intractable disease.
The two regulatory proteins of HTLV-1, Tax, and the HTLV-1 bZIP factor, HBZ, have
been shown to have pleiotropic functions connected to viral pathogenesis. Many early
studies focused on the viral transcriptional activator, Tax. In addition to being required for
induction of the 5′ viral long terminal repeat, and thus the expression of viral sense strand
genes, Tax has been shown to regulate the expression of NF-kB- and CREB-responsive
genes, cellular pathways central to immunity [87,88]. Tax has also been shown to have
cell-dependent pro- or anti- apoptotic activity and to affect DNA repair [89–94]. Therefore,
Tax is thought to play a major role in the proliferation of infected cells, as well as in
inducing genomic instability, thereby contributing to viral oncogenesis. NF-kB regulates
physiological processes such as proliferation, cell death, inflammation, and immunity [87],
and has been shown to be constitutively activated in HTLV-1-infected cells. Therefore, it is
believed that NF-kB activation is central for HTLV-1 associated inflammation and cancer.

However, while Tax expression is high in early infection, it is often suppressed at later
timepoints, likely because Tax is highly immunogenic and renders infected cells vulnerable
to cytotoxic T-cells [93,95–97]. Tax expression is suppressed transcriptionally by HBZ and
post-transcriptionally by both p13 and p30 [98,99]. p30 has been found to regulate Tax and
Rex expression and viral production by sequestering the common Tax/Rex doubly-spliced
RNA in the nucleus [100], whereas p13 binds Tax and interferes with its activity [101]. Other
mechanisms identified to inhibit Tax expression include mutations in the tax gene [102],
methylation or deletion of the 5′ LTR, and host restriction factor CTIIA [103–105]. The
transcription factor CTIIA, which regulates major histocompatibility complex (MHC) class
II expression, was shown to bind Tax and reduce its activation of viral transcription [105].
Interestingly, Tax has been shown to increase MHC-II basal expression by interacting
with NF-YB [106]. However, more studies are needed to determine the possible interplay
between Tax and CTIIA on MHC-II expression and its impact on peptide presentation.

Recent ex vivo studies in T-cell clones showed that Tax can be expressed in bursts [107]
that can be triggered by cellular stress [108] and can toggle between an on and off
state [100,101,109–111]. While Tax is often silenced in the later stages of infection, HBZ,
encoded by the minus strand HTLV-1 RNA, is constitutively expressed at very low levels
in vivo throughout infection [85]. HBZ has been shown to have a variety of functions that
are thought to play a role in viral persistence and pathogenesis [47,90,110]. Interestingly,
HBZ has been shown to counter many of the activities of Tax. Recently, cytoplasmic versus
nuclear localization of the HBZ protein has been shown to differ in asymptomatic carriers
and HAM/TSP patients compared to ATLL patients, in the distribution of the HBZ protein
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in peripheral blood mononuclear cells [112]. It has been shown that not only HBZ protein
but also HBZ mRNA, which is retained in the nucleus, may be involved in HLTV-1 medi-
ated cell proliferation and anti-apoptosis [85,113]. Unlike Tax, the cytotoxic T lymphocyte
(CTL) response to HBZ is very low [114,115]. It remains unclear, however, whether the low
immunogenicity is intrinsic to HBZ or is linked to its low expression in vivo.

The CTL response is a critical component of the host immune response against viral
infection. CTLs directed toward HTLV-1 predominantly recognize the Tax antigen, and
anti-Tax CTLs have been suggested to contribute to the control of expansion of infected
cells [95,116–121]. Similarly, even if the immunogenicity of HBZ is low [115], correlative
analyses suggest that CTL responses to HBZ may contribute to the control of virus bur-
den [114,122,123]. However, all these studies are correlative and performed either on ex
vivo tetramer stained cells or stimulated cells apart from their natural micro-environment.
Several studies have demonstrated a functional impairment of ex vivo CTL in HAM/TSP
linked to the exhaustion associated with chronic immune activation. While direct evidence
that CTL controls the HTLV-1 viral burden is lacking in humans, CD8+ T-cell depletion, as
a means to demonstrate their importance in non-human primates, has demonstrated that
their decrease accelerates primary HTLV-1 infection [124].

6. HTLV-1 Regulatory Genes
6.1. The Pleiotropic orf-I Encoded p12/p8 Proteins

HTLV-1 orf-I encodes a 99 amino acid p12 protein which can be proteolytically cleaved
at the amino terminus to generate the p8 protein [74]. The two protein isoforms localize to
different cellular compartments and are associated with infected cell proliferation, as well
as the ability of the virus to evade several arms of immunity such as cytotoxic T-cells, NK
cells, and monocyte efferocytosis. Orf-I mRNA is expressed early after virus entry and is
critical for establishing and maintaining viral infection in vivo [78,125–127].

6.2. The p12 Protein in the ER
6.2.1. T-Cell Proliferation

HTLV-1 persists primarily through the proliferation of infected cells. The viral p12
protein localizes to the endoplasmic reticulum (ER) through a noncanonical ER retention
signal [75]. In the ER, p12, through its interaction with calcium binding proteins calnexin
and calreticulin, increases cytosolic calcium [128]. In T-lymphocytes, the increased ER
calcium release is mediated by inositol triphosphate receptors. In response to the lower
level of calcium in the ER, calcium enters through calcium channels in the plasma mem-
brane [129,130]. By depleting ER calcium stores and increasing cytosolic calcium, p12
modulates a variety of processes including T-cell proliferation, viral replication, and viral
spread. Early studies demonstrated that overexpression of orf-I influenced T-cell prolif-
eration by activating the nuclear factor of activated T-cells (NFAT), which is dependent
on calcium-binding proteins for its dephosphorylation and nuclear import, to increase
T-cell proliferation [129–131]. During the immune response, NFAT activation is controlled
by calcium influx upon T-cell activation. Recognition of specific peptide-bound MHC
molecules by the T-cell receptor (TCR) activates a cascade of events that lead to NFAT
activation. Upon ligand binding, the protein tyrosine kinases Lck and Fyn phosphory-
late the TCRζ and CD3 subunits, allowing ZAP70 docking and activation. ZAP70 then
phosphorylates the linker of activation of T-cells (LAT) that, in turn, binds and activates
phospholipase C-γ-1 (PLCγ1). This leads to the production of inositol-1,4,5-trisphosphate
and the release of ER calcium stores. The increase in intracellular calcium stimulates NFAT
dephosphorylate by the Ca2+/calmodulin-dependent phosphatase calcineurin, triggering
NFAT’s nuclear import. Because p12 can modulate the cytosolic calcium levels, it can also
activate NFAT independent of TCR signaling [129]. NFAT is known to bind to and activate
transcription of the IL-2 promoter, and thus p12 can increase the production of IL-2 in
T-cells in a calcium-dependent process [130]. The expression of p12 can also modulate other
calcium-regulated proteins such as p300, a transcriptional coactivator [132]. Since p300 is
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known to play a role in Tax-mediated LTR activation, this suggests that p12 may aid in
viral gene expression [133]. In a calcium dependent manner, p12 may enhance intercellular
viral transmission by inducing the cellular adhesion through the clustering of Lymphocyte
Function Associated Antigen 1 (LFA-1) on the surface of T-cells, which is known to promote
cell-to-cell contacts [134].

In addition, early studies demonstrated another function in the ER of p12. P12 binds
to the IL-2R β chain in a region critical for JAK1 and JAK3 recruitment, and the interaction
of p12/p8 with the immature IL-2R leads to an increase in Signal Transducer and Activator
of Transcription 5 (STAT5) phosphorylation and DNA binding activity and decreases the
cellular requirement for IL-2 [79]. Furthermore, the binding of p12 to IL-2R allows T-cells
to proliferate not only with a lesser amount of IL-2, but also with suboptimal antigen
stimulation, providing a proliferative advantage to HTLV-1-infected cells [79].

6.2.2. MHC-Class I and Cytotoxic T-Cells

The presentation of antigens via the MHC class I (MHC-I) processing pathway plays
a critical role in the development of host immunity against pathogens. All nucleated
cells express MHC-I on their cell surface. MHC-I molecules present antigen peptides to
the TCRs on effector CD8+ T-cells, also called cytotoxic T lymphocytes (CTLs). Because
CTLs recognize viral peptide:MHC-I complexes on target cells, many viruses have evolved
proteins to interfere with this pathway [135]. The MHC-I molecule is composed of a
heavy chain (Hc) that is non-covalently bound to a nonglycosylated β2 microglobulin
protein (β2M). The affinity of the MHC-I heavy chain is increased in the presence of
peptide and folds to assemble the peptide:MHC-I-Hc: β2M complex in the ER lumen [136].
Early work showed that, prior to association with β2M, the p12 protein binds to newly
synthesized MHC-I-Hc, preventing its maturation [137]. These improperly assembled
protein complexes are cleared from the ER by degradation [138]. Immature MHC-I-Hc:p12
complexes are ubiquitinated, retro-translocated to the cytoplasm, and degraded by the
proteasome, resulting in decreased MHC-I surface expression [137]. Although the viral p8
protein was also able to bind MHC-I, its biological importance has not been investigated.
Interestingly, a study comparing MHC-I expression on the surface of primary CD4+ T-cells
infected with HTLV-1 mutant viruses (HTLV-1WT, HTLV-1G29S, HTLV-1N26, HTLV-1p12KO)
demonstrated that a decrease in surface MHC-I was seen only in cells infected with virus
that predominantly expresses the p12 protein HTLV-1G29S [139]. This same study showed
that expression of p12 and p8 (HTLV-1WT) was necessary for the protection of infected
CD4+ cells from CTL lysis [139]. By preventing the presentation of viral antigens through
the MHC-I presentation pathway, p12/p8 may contribute to the expansion of infected T-cell
clones by allowing the evasion of the adaptive immune surveillance in vivo.

6.2.3. ICAM-1 and ICAM-2 and NK

NK cells detect and destroy cells expressing low surface MHC-I levels. Thus, reduced
MHC-I cell-surface expression enables infected cells to evade CTL killing but makes them
targets for NK cells. NK cells directly kill target cells by delivering cytotoxic proteins (per-
forin and granzyme B) to their targets. When NK cells recognize a target, a lytic immune
synapse is established through integrins like LFA-1 on the NK cell, and its ligand intercellu-
lar adhesion molecule 1 (ICAM-1) on the target cell [140]. Early studies demonstrated that
overexpression of Tax induced surface expression of the adhesion molecules LFA-3 and
ICAM-1 [141,142]. Although ICAM-1 levels were high on Tax-expressing HTLV-1 trans-
formed cell lines, it was found that the expression of its ligand LFA-1 was independent of
HTLV-1 infection, and was low in three of four ATL cell lines [142]. Later studies found that
the surface expression of MHC-I, ICAM-1, and ICAM-2, but not ICAM-3, was significantly
reduced in HTLV-1-infected primary CD4+ T-cells, making them resistant to autologous
NK cell killing [143]. Pretreatment of the NK cells with IL-2 only marginally increased their
ability to kill infected cells. In addition to reduced MHC-I and ICAM-1/2, HTLV-1-infected
CD4+ T-cells did not express ligands for NK cell activating receptors NCR and NKG2D,
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further contributing to the reduced adherence of NK cells to HTLV-1-infected cells [143].
This study went on to show that expression of p12I in primary CD4+ T-cells was sufficient
to cause downregulation of surface ICAM-1 and ICAM-2.

The immunomodulatory drug Pomalidomide (Pom), used as part of the standard
treatment for multiple myeloma and recently approved for the treatment of Kaposi Sar-
coma [144,145], increased both MHC-I and ICAM-1 on Tax-expressing cells. The treatment
of HTLV-1-infected cells with Pom increased surface expression of MHC-I, ICAM-1, and
B7-2 and significantly increased the susceptibility of infected cells to NK cell killing. Fur-
thermore, the effect of Pom was dependent on orf-I expression, as the surface expression
of both MHC-I and ICAM-1 increased following Pom treatment in primary CD4+ cells
infected with wild type HTLV-1 but not primary CD4+ cells infected with a mutant orf-I
knockout HTLV-1 virus [146]. Additional studies demonstrated that the thalidomide drugs
Pom and the related analogue lenalidomide (Len) directly affected HTLV-1-infected cell
proliferation by reducing the transcription factors involved in cell signaling and survival:
IRF4, STAT3, EZH2, Aiolos and Ikaros [146–148]. Thus, Pom treatment could potentially
reduce the viral burden in HTLV-1-infected individuals by rendering them susceptible
to CTL and NK cell killing. Indeed, the importance of NK and CTL cells in controlling
infection is underscored by macaque studies in which the depletion of CD8+ cells greatly
enhanced the infection of both wild type and orf-I knockout virus [124]. Although Pom
treatment of HTLV-1-infected macaques did result in the activation of T-cells, this immune
activation was transient and viral activation was also found [149]. While a phase II trial
of lenalidomide in the United States of four patients with refractory/relapse ATLL had
no clinical activity, Len did have tolerable toxicity and provided significant anti-cancer
activity in a phase II clinical trial in Japan of 26 relapsed/recurrent patients (15 acute and
four chronic cases of ATL and seven cases of lymphoma) [150,151]. These results have led
to the approval of Len for the treatment of refractory/relapse ATLL in Japan.

6.3. The p8 Protein in T-Cells and Monocytes
6.3.1. The p8 Protein and the TCR

T-cells are critical in mediating the protective immune response to pathogens. The
localization of p8 on the surface of T-cells was shown to decrease T-cell activation by in-
hibiting proximal T-Cell Receptor (TCR) signaling [152]. The recognition of peptide-bound
major histocompatibility complex II (MHC-II) on antigen-presenting cells via the TCR
induces TCR ligation and recruitment of the complex to lipid rafts and the immunological
synapse (IS). The p8 protein also localizes to the IS upon TCR ligation, causing a LAT-
dependent decrease in phosphorylation of LAT, VAV and PLCγ1, downregulating NFAT
activation [74,152]. Thus, p8 is able to impair antigen-specific T-cell responses to immuno-
logic stimuli, a state called T-cell anergy. Induction of T-cell anergy by p8 was shown
to result in decreased Tax activity and thus decreased viral replication [152]. However,
because p8 is known to be transferred to target cells through cellular conduits, p8-induced
T-cell anergy in neighboring cells may increase viral transmission [51,153].

6.3.2. The p8 Protein and Viral Transmission

It is well-documented that HTLV-1 is transmitted via cell-to-cell contact and that
cell-free virus is poorly infectious and rarely detected in the blood plasma of HTLV-1-
infected individuals [49,154–156]. Three modes of cell-to-cell viral transmission have
been identified: the virological synapse, biofilm-like extracellular viral assemblies, and
cellular conduits [50–52,157]. Virus transmission through the virological synapse depends
on the polarization of cytoskeletal and adhesion molecules to the cellular contact [50].
Cellular surface adhesion molecules are also important for viral transmission. The HTLV-1
p8 protein enhances LFA-1 clustering on the cell surface, increasing cell-to-cell contacts
and poly synapse formation, which promotes viral transfer [51,134]. The p8 protein also
promotes the formation of cellular conduits, thin membranous protrusions used by several
different cell types for intercellular communication [51,158,159]. Immune cells such as
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macrophages, B cells, NK cells and T-cells are known to use tunneling nanotubes (TNTs)
for intercellular communication [160,161]. TNTs are filamentous actin containing structures
that function as long cytoplasmic bridges connecting adjacent or distant cells for efficient
cell-to-cell communication. The p8 protein was shown to induce TNT formation, increasing
the quantity and length, and allowing the transfer of HTLV-1 proteins such as Tax, Gag,
Envelope, and p8 itself [51]. Other viruses have been shown to induce TNTs to enhance viral
spread and avoid immune recognition [162–166]. When HTLV-1-infected T-cells are treated
with Cytarabine, a molecule shown to reduce TNT formation [167], virus transmission is
decreased by 30% [168]. Furthermore, using a quantitative flow cytometry method, the p8
protein was shown to be transferred to approximately 5% of recipient T-cells after 5 min of
co-culture in a process dependent on actin polymerization [51,168,169].

6.3.3. The p8 Protein and VASP

Interestingly, the vasodilator-stimulated phosphoprotein (VASP), which promotes
actin filament elongation, co-immunoprecipitated with p8, and imaging showed partial
areas of co-localization of VASP and p8 on the plasma membrane and in membrane pro-
trusions [153]. The knockdown of VASP expression by RNA interference or CRISPR/Cas9
reduced p8 and Gag transfer to target cells, but virus release was unaffected [169]. Since
VASP is associated with filamentous actin formation, it likely plays a widespread role in
cell adhesion and motility, and contributes to intracellular signaling pathways that regulate
integrin-extracellular matrix interactions, as well as processes dependent on cytoskeleton
remodeling and cell polarity such as T-cell activation and phagocytosis [170].

6.3.4. The p8 Protein and Monocytes

The role of p12/p8 in monocyte function is unclear. It was shown that HTLV-1
virus knocked-out for Orf-I protein expression was severely impaired in its ability to
replicate in dendritic cells [126]. Furthermore, when mutant viruses were used to infect
the monocytic cell line THP-1, we found that p8 expressing virus (HTLV-1N26) infected
monocytes similar to wild type virus, with a proviral load of three to four copies per cell
and high supernatant p19 levels. In contrast, mutant viruses expressing only p12 (HTLV-
1G29S) or no p12/p8 (HTLV-1p12KO) had lower proviral loads of > one copy per cell and
no detectable supernatant p19 produced [139]. This is similar to what we found in the
rhesus macaque model, where HTLV-1G29S and HTLV-1p12KO did not establish persistent
infection, while HTLV-1WT and HTLV-1N26 did [139]. Orf-I also alters the engulfment of
infected cells by monocytes. In vitro experiments in human primary monocytes or THP-1
cells demonstrated that orf-I expression is associated with the inhibition of inflammasome
activation, with increased CD47 “don’t-eat-me” signal surface expression in virus-infected
cells and the decreased monocyte engulfment of infected cells [124].

6.3.5. p12/p8 and Vacuolar ATPase

Similar to the E5 protein of the bovine papilloma virus, both p12 and p8 can bind to the
proton pump V-ATPase through the 16 kilodalton subunit [171–174]. V-ATPase localizes
to and regulates the acidification of intracellular vesicles such as clathrin coated vesicles,
endosomes, lysosomes, Golgi vesicles, endoplasmic reticula, and synaptic vesicles [175].
The binding of the V-ATPase with the HTLV-1 p12 and p8 proteins may potentially interfere
with functions such as protein trafficking within the lysosomal/endosomal vesicles or
the dissociation of receptor-ligand complexes, but acidification of intermediates between
early and late endosomes or endosome carrier vesicles remains essential [176,177]. HTLV-1
is known to infect dendritic cells and monocytes/macrophages where acidification of
lysosomes may regulate virus entry or egress [49,178,179], and monocyte functions such
as phagocytosis and efferocytosis. Of note, the knocking out of orf-I expression impairs
HTLV-1 persistence in dendritic cells [126] and affects efferocytosis.
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6.4. The Pleiotropic orf-II Encoded p30 and p13 Proteins

The orf-II gene encodes for two proteins: p30, a 241-residue nuclear/nucleolar protein
expressed from a doubly-spliced mRNA, and p13, an 87-residue protein coded by a singly-
spliced mRNA corresponding to the carboxy-terminal portion of p30 [71,73,75]. HTLV-
1 can infect monocytes/macrophages and dendritic cells [49,180–187], but their role in
viral pathogenesis is not fully understood. While the majority of viral DNA in infected
individuals is found in CD4+ and CD8+ T-cells, a small percentage is observed in all three
monocyte subsets defined by CD14 and CD16 expression [44], suggesting that they might
be involved in the pathogenesis of the virus.

6.4.1. p30 Protein Modulates the Interferon Response

Interferons (IFN-Iα and IFN-Iβ) play a critical role in mediating innate and adaptive
antiviral immunity. This is accomplished predominantly through their impact on cell acti-
vation, cell proliferation, and apoptosis. Activation of the IFN response increases the expres-
sion of over 300 genes encoding antiviral and immunoregulatory proteins [186,188–191].
IFNs are primarily produced by dendritic cells, fibroblasts, and macrophages. Dendritic
cells isolated from HTLV-infected individuals were found to have reduced IFN secretion,
suggesting that the virus has strategies to escape the interferon response [186]. Consistent
with impaired IFN responses, reduced phosphorylation of members of the IFN cascade
(TYK2 and STAT2) were observed in HTLV-1 positive cells [92,192–195]. In addition, STAT1
phosphorylation, most likely mediated through the STAT1 negative regulator, was sup-
pressed in ex vivo CD4+ T-cells isolated from HTLV-1-infected patients [64,196].

Early studies demonstrated that the HTLV-1 p30 protein could work as a latency factor
by retaining newly transcribed tax/rex mRNA in the nucleus, as well as by repressing LTR-
mediated transcription [100,111]. It was later demonstrated that in monocytic cells, p30 af-
fects Toll-like receptor signaling and cytokine release [48,63]. TLRs are an important defense
against microbial pathogens. Because TLR activation is crucial for dendritic cell maturation,
TLRs link innate and pathogen-specific adaptive responses. TLR3, TLR4, TLR7, TLR8, and
TLR9 activation can induce an antiviral response by inducing type I IFNs [197–199]. The
p30 protein, through direct interaction with the transcription factor PU.1, was shown to
reduce cell surface expression of TLR4 [63]. In addition, it was further shown that p30
decreases PU.1 recruitment to IFN-responsive gene promoters following stimulation by
either lipopolysaccharide (LPS) or poly(IC), which respectively activate the toll-like recep-
tors TLR4 and TLR3 [48]. Following LPS stimulation of monocytes/macrophages, reduced
TLR4 expression resulted in the reduced release of MCP1, TNF-α, and IL-8 (proinflam-
matory cytokines), and an increased release of the anti-inflammatory cytokine, IL-10 [63].
Consistent with p30 affecting cytokine release, high levels of IL-10 secretion from HTLV-1-
infected cell lines and in the plasma of patients with ATLL have been documented [200,201].
The inhibitory effect of p30 on the IFN innate response likely favors viral persistence in
immune competent hosts.

6.4.2. The p13 Protein

The viral protein p13 is produced from orf-II by a singly-spliced mRNA correspond-
ing to the carboxy-terminal portion of p30 [71,73,75]. Using confocal microscopy and
co-localization analyses with cellular compartment markers, electron microscopy, and
biochemical fractionation, p13 was determined to localize predominantly to the inner mito-
chondrial membrane [202–204]. Several studies have shown that p13 alters mitochondrial
function by increasing potassium influx, which in turn activates the electron transport chain
favoring reactive oxygen species (ROS) production [203,205,206]. ROS are powerful second
messengers that regulate multiple signal transduction pathways. Depending on their levels,
ROS may favor cell proliferation, neoplastic transformation, or cell death. Observations
made in isolated mitochondria found that p13 increased ROS production in several cell
models, suggesting that p13 might contribute to an expansion of the pool of infected T-cells,
but could possibly also trigger the apoptosis of transformed cells [207].
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The effect of p13 on mitochondrial function could also affect the host immune response
to the virus. Several studies have revealed important roles for mitochondria in immune re-
sponses [208]. By inducing cell death through mitochondrial pathways, p13 may trigger in-
flammatory responses in the host through the cyclic GMP-AMP synthase (cGAS)-stimulator
of interferon genes (STING) signaling pathway [209]. Mitochondrial size and shape is con-
trolled by the balance between mitochondrial fusion and fission [210]. This dynamic is
connected to immune cell differentiation and activation. Naïve CD4+ T-cell activation in-
duces a synchronized program of mitochondrial biogenesis and remodeling [211]. HTLV-1
infects myeloid cells altering the host innate immune responses [43,44,184,187,212,213]. It
would be interesting to investigate the role p13 plays in affecting monocyte/macrophage
and dendritic cell function.

6.5. Viral and Host Factors That Regulate HTLV-1 Infectivity In Vivo
6.5.1. Role of Viral Genes in HTLV-1 Infectivity

Unlike Tax, Rex and HBZ, the HTLV-1 regulatory genes p12, p8, p30, and p13 are
not absolutely required for virus replication or immortalization of human primary T-
cells in vitro [76–78]. The viral regulatory proteins are known to be expressed in infected
individuals as antibodies, and cytotoxic T-lymphocytes to p12, p30, and p13 have been
detected in patients [214–216]. The importance of the regulatory proteins to viral infection,
dissemination, persistence, and clinical status has also been suggested in sequence analysis
of the orf-I and orf-II regions in HTLV-1-infected individuals [74,139,206,217,218].

Several studies demonstrated that primary human T-cells immortalized with molecu-
lar clones lacking p12 or p30 grew less efficiently than the wild type molecular clone and are
more dependent on IL-2 [78–80]. Early studies in the rabbit model suggested that p12, p13,
and p30 might be important for viral infectivity [219–221]; however, it was recognized that
these clones also have mutations in HBZ [222]. Subsequent studies re-investigating the role
of p12 and p30 in molecular clones not affecting HBZ demonstrated that while HBZ, p12,
and p30 were not essential for persistent infection in rabbits, these viral genes were critical
for persistence in non-human primates [126,139]. The expression of orf-I is essential for in-
fectivity in the macaque model and the requirement of orf-I for viral infectivity in macaques
parallels HTLV-1 infectivity of dendritic cells in vitro [126]. No reversion of the single point
mutation was observed in macaques, suggesting that virus-infected cells are eliminated
very early following infection, precluding a sufficient round of viral replication to allow
for the selection of virus revertant. Our further studies using HTLV-1 orf-I mutant viruses
support the importance of p12/p8 expression and CD8+ cells in viral persistence [139]. In a
humanized mouse model, we found that infection with wild type HTLV-1 virus resulted
in polyclonal expansion of CD4+CD25+ T-cells. However, when mice were infected with
virus ablated for orf-I expression, HTLV-1p12KO infection only occurred after reversion of
HTLV-1p12KO back to wild type [127]. Similarly, using HTLV-2 in the rabbit model, the
authors found that sequences in HTLV-2 corresponding to the p12 region in HTLV-1 are not
necessary for infection, but confer increased replicative capacity in vivo [223]. In addition
to orf-I, species specific requirements of orf-II and hbz for viral infectivity [126] suggest that
non-human primates are the species of choice to test preventive vaccines for HTLV-1 that
engage cellular immunity.

6.5.2. Role of NK, CD8, and Monocytes in HTLV-1 Infection

Increases in the HTLV-1 proviral load and persistent infection are likely linked with
the virus’s ability to evade the host immune response. As stated above, p8 and p12 are
dispensable for viral replication in vitro [76,77,126,224], but are essential for viral infec-
tivity/persistence in vivo [126,139]. The p12 and p8 proteins counteract NK cells [143]
and CD8+ cytotoxic T-cell (CTL) [139] responses in vitro and augment T-cell prolifera-
tion [79,225] and virus transmission [51,152,168]. The importance of orf-I expression for
counteracting NK and CTL responses was validated in macaques by the depletion of either
CD8 and NK cells (CD8/NK) or CD8 cells alone prior to virus exposure. HTLV-1 orf-I
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knockout virus is un-infectious in macaques, but following the depletion of CD8/NK, viral
infectivity was restored and all animals were persistently infected with detectable mutated
viral DNA in tissues [124]. Similarly, CD8/NK depletion accelerated virus infection after
exposure to HTLV-1 wild type. While CD8 depletion alone accelerated the infectivity of
HTLV-1 wild type, CD8 depletion, without the concomitant removal of NK cells, incom-
pletely restored the infectivity of orf-I knockout HTLV-1 [124]. These data suggest that
the innate function of NK cells is central for the immune control of HTLV-1 infectivity.
Indeed, the frequency and function of NK cells is altered in HTLV-1 infection [226]. The
frequency of spontaneous proliferation of NK cells correlates with proviral load in infected
individuals [227]. Interestingly, NK cells may also play a role in chronic infection as pas-
sive transfer of amplified NK cells to a HTLV-1 patient with smoldering ATL resulted in
complete remission [228].

Monocyte/macrophage depletion by clodronate prior to viral exposure to HTLV-1 wild
type was associated with a faster seroconversion in all macaques, but antibody levels were
not sustained, suggesting a possible role of monocytes in persistent infection [124]. The
infectivity of orf-I knockout HTLV-1 was not restored by clodronate treatment prior to virus
exposure. Interestingly, orf-I expression was associated with defective efferocytosis in part
linked to its upregulation of CD47, the “don’t-eat-me” signal on infected cells [124]. These
findings raise the possibility that orf-I expression by transiently protecting engulfed cells
from degradation may facilitate the spread of virus by migratory efferocytosis to tissues. In
addition, defective efferocytosis could create a durable and vicious inflammatory response
that is unable to clear the virus by inducing further inflammation [229] and regulatory
T-cell differentiation via the production of IL-10 and TGF-β [230]. Indeed, high levels of
IL-10 and TGF-β and increased regulatory T-cell counts are hallmarks of HTLV-1 infection
and may contribute to viral pathogenesis [46]. This study suggests that monocytes play
a role early in infection by clearing infected cells. Alternatively, monocytes may provide
an early viral reservoir important for maintaining viral persistence. Experiments which
simultaneously deplete NK cells, CTLs, and monocytes in vivo are necessary to determine
the role of monocytes in the early stages of infection.

7. Humoral Immunity

While the function of the viral regulatory proteins in modulating the T-cell response is
actively being studied, little is known about the role these proteins play in modulating the
HTLV-1 humoral response. In a study looking at a cohort of HTLV-1 exposed transfusion
recipients, it was noted that antibodies to core, envelope and tax protein appeared within
30–60 days following primary HTLV-1 infection [231]. In most cases, the serum antibody
titers correlate with the proviral load, but it is not known if high antibody titers contribute
to protection or controlling the viral load [232,233].

Many viral vaccines are directed toward blocking virus entry into target cells. The
HTLV-1 envelope (Env) protein is necessary for infection, highly immunogenic and the
primary target of neutralizing antibodies [234]. Results from studies using passive immu-
nization in animal models indicate that neutralizing antibodies could be protective. The ad-
ministration of purified anti-HTLV-1 immunoglobulin from the plasma of seropositive indi-
viduals 24 h before HTLV-1 challenge protected cynomolgus monkeys from infection [235].
In addition, anti-HTLV-1 antibodies prevented viral transmission in NOD-SCID/γcnull
mice [236] and rabbit models [237]. Furthermore, at birth, infants born to HTLV-1 positive
mothers have detectable anti-HTLV-1 antibodies which decrease exponentially until most
babies become seronegative by about nine months of age [238]. Interestingly, the duration
of breastfeeding is an important risk factor associated with mother-to-child transmission,
where longer duration of breastfeeding is associated with increased risk of viral transmis-
sion [238]. However, if this is due to neutralizing antibodies or increased repeated viral
exposure remains unclear. In a study of 4 L from an HTLV-1 infected rabbit, neonates that
were given anti-HTLV-1 hyperimmunoglobulin had a decreased risk of infection compared
to untreated liters [239]. However, in rats, the infection of offspring by HTLV-1 positive
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mothers occurred at a higher rate in this model, which correlated with the proviral load.
However, in this same model, passive administration of neutralizing antibodies did not
prevent oral transmission [240]. Another complicating factor to consider is that although
HTLV-1 Env is required for infection, viral cell-to-cell transmission through the VS, biofilms
and cellular conduits is thought to shield the virus from antibodies [241].

As discussed above, NK cells play an important role in controlling viral persis-
tence. Thus, eliciting anti-HTLV-1 antibodies may be important for clearance by antibody-
dependent cellular cytotoxicity (ADCC). An early study examining ADCC and NK cell
activity from newborns, infants and adults suggests that these activities can protect against
the transmission of mother-to-child [242]. A more recent study found that a neutralizing
anti-Env antibody, LAT-27, induced ADCC, eliminating Tax positive cells and can con-
tribute to the control of infection [243]. A second study looking at NK cell activity in
healthy carriers and HAM/TSP patients found that HAM/TSP patients had decreased
frequencies of NK cells expressing CD16, the main receptor in the Fc-mediated antibody
effector function inducing ADCC. This suggests that NK cells may prevent progression
to HAM/TSP [226]. These results are consistent with the findings that ADCC activity
was significantly reduced in HAM/TSP patients compared to asymptomatic carriers, due
in part to a reduction in ADCC effector activity but not to a lack of anti-HTLV-1 ADCC
antibodies [244].

8. Conclusions

HTLV-1 counteracts host NK and CTL activity and usurps monocyte and dendritic
cell immunity [43]. The continuous engagement of immune cells that fail to eradicate
infection likely underlies the damaging chronic inflammation that ensues in a portion of
HTLV-1-infected individuals (Figure 1). HTLV-1 infection has been reported to signifi-
cantly alter dendritic cell function, increase the frequency of intermediate and non-classical
(pro-inflammatory) monocytes, and decrease the frequency of classical monocytes that
mediate the clearance of apoptotic cells and maintain tissue homeostasis [44]. The con-
tinuous but ineffective attempts of the immune system to clear the virus may result in
exhaustion of both NK and CD8+ cells, as observed in infected individuals with high virus
burdens [46,116,226,243,245–248].

Although an HTLV-1 preventative vaccine is feasible, no candidate vaccine has ever
proceeded to clinical trial. Vaccine development efforts have used recombinant vaccinia
virus vectors, protein immunization, DNA vaccine vectors, and peptide vaccines [249–261].
Collectively, these data suggest that an immune-based intervention based on vaccination
alone is unlikely to be effective in the context of chronic HTLV-1 infection. With the current
knowledge of HTLV-1 regulatory proteins, investigators should now consider targeting
these pathways. For example, we recently showed in the rhesus macaque model that
treatment of infected animals with the immunomodulator pomalidomide to target orf-I-
mediated immune dysregulation caused reactivation of the virus, allowing its recognition
by the host immune system [149]. Unfortunately, this response was short-lived, indicating
that pomalidomide may not work as a single agent but could rather be used in combination
therapy or in combination with vaccines. In addition, when HTLV-1-infected cells were
treated in vitro with cytarabine, a therapeutic used in relapse/refractory AML [262], there
was a reduction in tunneling-nanotubes induced by the viral p8 protein, reduced virus
production, and reduced virus transmission [167]. Integrase inhibitors are another potential
avenue to explore. Studies have shown that the integrase strand transfer inhibitors (INSTIs)
raltegravir, bictegravir, and cabotegravir (FDA approved treatments for HIV-1) inhibited
cell-free and cell-to-cell transmission of HTLV-1 in vitro [263–266]. Thus, INSTs should be
considered in the treatment of HTLV-1, particularly for pre-exposure prophylaxis and in
the prevention of mother to child transmission.
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mission have been demonstrated: virological synapse, cellular conduits called tunneling nanotubes, 
and biofilm matrices. HTLV-1 viral proteins enable the evasion of host immunity and contribute to 
alterations in the innate and adaptive immune responses. Altered responses to chronic HTLV-1 in-
fection lead to inflammation and T-cell exhaustion, and allow clonal expansion of infected cells. 
While the majority of individuals remain asymptomatic, a subset of infected individuals will pro-
gress to diseases such as Adult T-cell Leukemia/Lymphoma, HTLV-1-associated myelopathy/trop-
ical spastic paraparesis, HTLV-1-associated uveitis, bronchiectasis, rheumatoid arthritis, and infec-
tive dermatitis. 
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Figure 1. HTLV-1 transmission occurs primarily through cell-to-cell contact. Three modes of trans-
mission have been demonstrated: virological synapse, cellular conduits called tunneling nanotubes,
and biofilm matrices. HTLV-1 viral proteins enable the evasion of host immunity and contribute to
alterations in the innate and adaptive immune responses. Altered responses to chronic HTLV-1 infec-
tion lead to inflammation and T-cell exhaustion, and allow clonal expansion of infected cells. While
the majority of individuals remain asymptomatic, a subset of infected individuals will progress to
diseases such as Adult T-cell Leukemia/Lymphoma, HTLV-1-associated myelopathy/tropical spastic
paraparesis, HTLV-1-associated uveitis, bronchiectasis, rheumatoid arthritis, and infective dermatitis.
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In addition, the data suggest that a preventive HTLV-1 vaccine should either prevent
infection upfront or eliminate the virus very early on to avoid the establishment of a
reservoir that host immunity is unable to clear. Given the HTLV-1 modes of transmission,
virus vulnerability to neutralizing antibodies is uncertain. The engagement of less canonical
host responses such as ADCC and efferocytosis, based on the ability of NK and monocytes
to recognize and effectively dispose of infected cells, may be necessary for an HTLV-1
vaccine to prevent the establishment of infection.
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