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Abstract: Bovine herpesvirus-1 (BoHV-1) is a major cause of rhinotracheitis and vulvovaginitis in
cattle. VP8, the major tegument protein of BoHV-1, is essential for viral replication in the host.
VP8 is phosphorylated by the viral kinase US3, mediating its translocation to the cytoplasm. VP8
remains nuclear when not phosphorylated. Interestingly, VP8 has a significant presence in mature
BoHV-1YmVP8, in which the VP8 phosphorylation sites are mutated. This suggests that VP8 might be
packaged during primary envelopment of BoHV-1. This was investigated by mass spectrometry and
Western blotting, which showed VP8, as well as VP22, to be constituents of the primary enveloped
virions. VP8 and VP22 were shown to interact via co-immunoprecipitation experiments, in both
BoHV-1-infected and VP8-transfected cells. VP8 and VP22 also co-localised with one another and
with nuclear lamin-associated protein 2 in BoHV-1-infected cells, suggesting an interaction between
VP8 and VP22 in the perinuclear region. In cells infected with VP22-deleted BoHV-1 (BoHV-1∆UL49),
VP8 was absent from the primary enveloped virions, implying that VP22 might be critical for the
early packaging of VP8. In conclusion, a novel VP22-dependent mechanism for packaging of VP8
was identified, which may be responsible for a significant amount of VP8 in the viral particle.

Keywords: BoHV-1; major tegument protein; early tegument; tegument formation; virus maturation

1. Introduction

Bovine herpesvirus-1 (BoHV-1) belongs to the family Alphaherpesviridae and is a major
cause of bovine rhinotracheitis and vulvovaginitis [1]; it also causes reduced milk produc-
tion as well as infertility in cows and, hence, adversely affects the dairy industry [2]. The
structure of BoHV-1 includes a proteinaceous 125 nm diameter capsid, which packages the
double-stranded DNA of about 135 kb; the capsid is covered by a tegument, which consists
of approximately 20 proteins [3]. A lipid envelope forms the outermost shell of the virus,
and contains glycoproteins [4]. Tegument proteins are responsible for diverse functions,
and around 11 tegument proteins are known to be conserved across alphaherpesviruses
along with their interactions [5,6]. The life cycle of human herpesvirus-1 (HHV-1) and
BoHV-1 starts by entry into the host cell via receptor-mediated endocytosis, which involves
fusion of the viral envelope and the endocytic membrane due to interaction between the
host cell molecules and glycoproteins [7,8].

During entry into the host cell, HHV-1 and BoHV-1 lose the lipid envelope, and also
shed some of their tegument proteins. The capsid then releases the viral DNA into the
nucleus through the nuclear pore complex, where the DNA replicates via a rolling circle
mechanism [8,9]. The newly formed DNA is packaged into the capsid inside the nucleus,
which is then ready to exit the nucleus via a budding process [8,10]. During egress, the
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capsid gains a primary envelope from the inner nuclear membrane, and buds into the
perinuclear space [8,11]. It is known for HHV-1 that a few tegument proteins are also
packaged at this stage of primary envelopment [12]. Subsequently, the primary enveloped
virus particle fuses with the outer nuclear membrane and loses the primary envelope, while
retaining some of the tegument proteins, and buds out of the nucleus [13]. As the virus
particle proceeds through the cytoplasm towards its site of maturation at the Golgi, the
tegument undergoes changes in its composition due to loss and/or addition of proteins [12].
At the Golgi, the final maturation of the virus takes place, after the addition of the lipid
envelope and the glycoproteins [11].

VP8, the major tegument protein of BoHV-1, is a product of the UL47 gene [14], and
plays a versatile role in viral replication [4], induction of humoral and cell-mediated im-
munity [15], alteration of host defense mechanisms [16], and cell death or apoptosis [17].
It is a late protein, and is conserved throughout the alphaherpesvirus family [14]. The re-
quirement for VP8 during BoHV-1 replication has been inferred from a 1000-fold reduction
in viral titre in cells, and the total inability of a VP8-deleted BoHV-1 (BoHV-1∆UL47) to
replicate in cattle upon infection. In addition, the amounts of glycoprotein D (gD) and tegu-
ment protein VP22 were found to be significantly reduced in the mature BoHV-1∆UL47 [4].
Early during infection with HHV-1 and BoHV-1, the UL47-encoded protein localises to the
nucleus [18,19], which is mediated by nuclear localisation signals (NLSs). At later stages
of infection, BoHV-1 VP8 and HHV-1 VP13/14 are exported, which is consistent with the
presence of nuclear export signals (NESs) [19,20]. VP8 undergoes phosphorylation in the
cytoplasm by host casein kinase 2 (CK2), and in the nucleus by a viral kinase—the unique
short protein 3 (US3). This phosphorylation aids in many cellular functions of VP8, includ-
ing host defense modulation and export of VP8 from the nucleus to the cytoplasm. When a
mutant (BoHV-1YmVP8), in which the phosphorylation sites were replaced by alanine, was
studied, it was found that VP8 remained nuclear [21], and in the mature BoHV-1YmVP8
virus particles VP8 was present in a reduced, but still significant, amount [22]. There was
also a 100-fold reduction in the titer of BoHV-1YmVP8, which might be due to a substantial
reduction in VP8 in the mature virus.

The fact that YmVP8 remained nuclear, and yet was present in the mature virion, led
us to hypothesize that early packaging of VP8 occurs during the primary tegumentation
process. We determined that VP8 is a part of the primary tegument of the primary en-
veloped virus, along with VP22—a small tegument protein translated by the UL49 gene [23].
During infection, BoHV-1 and HHV-1 VP22 are known to localise into the nucleus with the
help of an NLS present at the C-terminus [24,25]; however, other subcellular localisations
are slightly different in HHV-1 and BoHV-1 [26]. We demonstrated that VP8 and VP22
interact and co-localize in the perinuclear region in cells infected with wild-type BoHV-1
or BoHV-1-YmVP8. VP22 was shown to be critical for the packaging of VP8 at the early
tegumentation stage, as in VP22-deleted virus (BoHV-1∆UL49)-infected cells the primary
enveloped virions were found to be devoid of VP8.

2. Materials and Methods
2.1. Cell Lines and Viruses

COS-7 and Madin–Darby bovine kidney (MDBK) cells were grown in Dulbecco’s
modified Eagle’s medium (DMEM; Sigma-Aldrich Canada Ltd., Oakville, ON, Canada)
and Eagle’s minimum essential medium (MEM; Sigma-Aldrich Canada Ltd.), respectively,
supplemented with 10 mM N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid (HEPES,
Gibco, Life Technologies, Burlington, ON, Canada), 1% nonessential amino acids (Gibco,
Life Technologies), 50 µg/mL gentamycin (Gibco, Life Technologies), and 10% fetal bovine
serum (FBS; Gibco, Life Technologies), with 5% CO2 in a 37 ◦C incubator.

Wild-type BoHV-1, BoHV-1YmVP8, in which all of the phosphorylation sites were
mutated [22], and BoHV-1∆UL49—a VP22-deleted mutant [23]—were propagated and
titred on MDBK cells in 24-well plates, followed by overlay with 0.8% UltraPure low-
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melting-point agarose (Invitrogen/Thermo Fisher Scientific, Waltham, MA, USA) in MEM,
and stocks were maintained at −80 ◦C.

For viral infections, 85–90% confluent monolayers of MDBK cells were infected with
BoHV-1, BoHV-1-YmVP8, or BoHV-1∆UL49 at different multiplicities of infection (MOIs)
in MEM. Virus was replaced after 1.5 h with MEM containing 2% FBS. Cells were collected
at different timepoints post-infection.

2.2. Plasmids and Antibodies

The plasmid pFLAG-VP8 was previously described in [16]. pHA-VP22 was con-
structed by amplifying the UL49 gene from the BoHV-1 genome using 3′ATTGAATTCATGG
CCCGGTTCCACAGG 5′ and 3′ATTTCTAGAATTTTCATACTAGCA CAGCA 5′ primers,
followed by ligation with an XbaI- and EcoRI-digested pcDNA3.1HA (Addgene, Water-
town, MA, USA). Plasmid DNA was sequenced at the NRC Plant Biotechnology Institute
(Saskatoon, SK, Canada).

Antibodies including mouse monoclonal VP8-specific antibody (clone 1G4 2G2), rab-
bit polyclonal VP22-specific antibody, and rabbit polyclonal VP5-specific antibody were
described previously in [15,23]. FLAG tag-specific mouse monoclonal antibodies (Sigma-
Aldrich Canada Ltd.) and HA tag-specific rabbit polyclonal antibodies (Cell Signaling
Technology, Danvers, MA, USA) were used to detect the respective proteins. Mouse
monoclonal antibodies specific to lamin-associated proteins A and C (LAP2) were pur-
chased from Abcam Inc. (Toronto, ON, Canada). Mouse monoclonal antibodies specific
to nucleolin, and rabbit polyclonal antibodies specific for tubulin, were purchased from
Sigma-Aldrich Canada Ltd. For Western blotting, IRDye 680RD goat anti-rabbit IgG, IRDye
680RD goat anti-mouse IgG, IRDye 800RD goat anti-rabbit IgG, and IRDye 800RD goat
anti-mouse IgG (Li-Cor Biosciences, Lincoln, NE, USA) were used. Alexa 488-conjugated
goat anti-mouse IgG, Alexa 488-conjugated goat anti-rabbit IgG, Alexa 633-conjugated goat
anti-mouse IgG, and Alexa 633-conjugated goat anti-rabbit IgG (Invitrogen/Thermo Fisher
Scientific) were used for immunofluorescent staining.

2.3. Isolation of Nuclear Membrane

The procedure for the isolation of the nuclear membrane was derived from a procedure
applied to HHV-1-infected COS-7 cells [27]. MDBK cells were infected at an MOI of 10 with
wild-type BoHV-1 or BoHV-1∆UL49 and incubated at 37 ◦C for 8 h. Cells were collected in
sucrose buffer A (10 mM Tris-HCl pH 7.4, 0.32 M sucrose, 3 mM MgCl2) and centrifuged at
1700× g for 10 min, followed by resuspension of the pellets in fresh sucrose buffer A with
60 µL/mL of protease inhibitor cocktail (Sigma-Aldrich Canada Ltd.). Cells were manually
disrupted using a 25G × 5/8”-gauge needle; the resulting suspension was termed the total
cell extract (TCE). The TCE was centrifuged for 10 min at 700× g, and the nuclei in the
pellet were resuspended in sucrose buffer B (10 mM Tris-HCl pH 7.4, 2.4 M sucrose, 3 mM
MgCl2) and centrifuged at 50,000× g for 1 h at 4 ◦C. The resulting pellet contained the
purified nuclei, which were washed and resuspended in 1 mM DNase and digestion buffer
(10 mM Tris-HCl pH 8.5, mM β-mercaptoethanol, 0.3 M sucrose), and then incubated for
20 min at room temperature. The washed nuclei were centrifuged at 40,000× g for 15 min,
and the digestion was repeated for 1 h, followed by centrifugation at 40,000× g for 15 min.
The resulting pellet contained the nuclear membrane and was called the nuclear membrane
preparation (NMP) and resuspended in sucrose buffer C (10 mM Tris-HCl pH 7.4, 0.25 M
sucrose, 3 mM MgCl2).

2.4. Isolation of Primary Enveloped Virions

The NMP was sonicated (5 pulses of 10 s on and 20 s off) in order to release the
primary enveloped virions from the perinuclear space. The suspension was incubated
with 50 µg/mL of proteinase K (Sigma-Aldrich, Canada Ltd.) for 1 h on ice, and quenched
with 1 mM phenylmethylsulfonyl fluoride (PMSF) (Sigma-Aldrich, Canada Ltd.). The
suspension was then overlaid on a 30% sucrose cushion (Sigma-Aldrich, Canada Ltd.) (in
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10 mM Tris-HCl, pH 7.4) and centrifuged at 40,000× g for 1 h at 4 ◦C. The pellet containing
the primary enveloped virions was resuspended in sucrose buffer C.

2.5. Purification of Mature Virus

MDBK cells were infected with wild-type BoHV-1 or BoHV-1∆UL49 at an MOI of
10, and culture medium was collected 18 h post-infection. The medium was clarified at
3000× g for 20 min to remove any cell debris. The supernatant was collected and overlaid
over 30% sucrose (in TNE (10 mM Tris-HCl pH 7.4, 1.5 mM NaCl, 1 mM EDTA)), and
was centrifuged for 2 h at 25,000× g and 4 ◦C. The resulting viral pellet was solubilised at
4 ◦C in TNE overnight. The virus was layered over a 20–60% sodium potassium tartrate
gradient and centrifuged for 90 min at 28,000× g and 4 ◦C; this step was performed twice.
The virus band was collected, diluted in TNE, and centrifuged at 25,000× g and 4 ◦C for
1 h. The resulting pellet was resuspended in TNE and stored at −80 ◦C until further use.

2.6. Gel Electrophoresis

Twenty microliters of both the primary enveloped virus particles and the purified
mature virions were run on an 8% SDS-polyacrylamide gel after being boiled in SDS loading
dye at 95 ◦C for 3 min. The gel was stained with ProtoBlue Safe (National Diagnostic,
Thermo Fisher Scientific) and de-stained in distilled water.

2.7. Mass Spectrometry Sample Preparation and Analysis

The viral samples purified from culture medium (mature) and the perinuclear space
(primary enveloped) were precipitated using −20 ◦C cold acetone. Two sets of samples
from two different infections were sent to the Mass Spectrometry Facility at the University
of Missouri (Columbia, MI, USA). Acetone-precipitated samples from the mature and
primary enveloped virus particles were washed and resuspended with 6 M urea, 2 M
thiourea, and 100 mM ammonium bicarbonate. In-solution digestion was carried out
overnight and then stopped after 16 h. The samples were then zip-tipped, lyophilised,
resuspended, and loaded into the LTK Orbitrap XL (Thermo Fisher Scientific). Subsequently,
proteins were identified using computer software against the NCBI Herpesvirus Database.

2.8. Transfections

Monolayers of COS-7 cells at 80–90% confluency were transfected with a total of 3 µg
of plasmid (pFLAG-VP8, pVP22-HA, or pFLAG-VP8 + pVP22-HA) using Lipofectamine
LTX transfection reagent (Invitrogen/Thermo Fisher Scientific), and cells were collected
24–48 h post-transfection.

2.9. Preparation of Cell Lysates

Infected MDBK cells or transfected COS-7 cells were collected using ice-cold phosphate-
buffered saline at pH 7.4 (PBS) (Gibco, Life technologies) after various time intervals, and
then centrifuged at 8000× g for 10 min. Cell pellets were subjected to lysis in RIPA buffer
(50 mM Tris-HCl, 150 mM NaCl, 1mM EDTA, 1% Triton-X100, pH 7.4) and protease in-
hibitor cocktail (Sigma-Aldrich Canada Ltd.) at a 10:1 v/v ratio for 40 min on ice. Cell
lysates were clarified by centrifugation at 12,000× g for 10 min at 4 ◦C. The supernatants
were collected and stored at −20 ◦C for further use.

2.10. Immunoprecipitation and Western Blotting

Infected cell lysates (prepared as described above) were incubated with VP8-specific
or VP22-specific antibodies overnight at 4 ◦C, followed by Protein G Sepharose Fast Flow
beads (GE HealthCare, Niskayuna, NY, USA) for 3 h at 4 ◦C. Transfected cell lysates were
incubated with Anti-FLAG M2 Affinity Gel (Sigma-Aldrich Canada Ltd.) or anti-HA
agarose (Pierce/Thermo Fisher Scientific) and incubated at 4 ◦C overnight. Lysates were
washed 3–4 times with wash buffer (0.05 M Tris-HCl, 0.15 M NaCl, pH 8) and eluted with
SDS loading dye by boiling at 95 ◦C for 2 min. SDS loading dye was also added to a
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fraction of the whole cell lysates, which were then boiled at 95 ◦C for 2 min. These samples
were subjected to SDS-polyacrylamide gel electrophoresis on 8% gels, and transferred to
0.45 µm nylon membranes (Bio-Rad, Hercules, CA, USA). This was followed by blocking
the membrane with 3% blotto (3 g milk powder in TBST (20 mM Tris-HCl, 150 mM NaCl,
0.1% w/v Tween 20, pH 7.4) for 1 h, and incubation with the corresponding antibodies
overnight. The next day, the membranes were washed with TBST and incubated with
IRDye 680RD goat anti-mouse IgG or IRDye 800RD goat anti-rabbit IgG (LI-COR Bioscience,
Lincoln) for 2 h. An Odyssey Infrared Imaging System and Odyssey 3.0.16 application
software (LI-COR Biosciences) were used for detection and analysis.

2.11. Confocal Microscopy

Cells were seeded in 2-well Permanox Lab-Tek chamber slides (Nunc, Thermo Fisher),
and were infected at 80–90% confluency with BoHV-1, BoHV-1YmVP8, or BoHV-1∆UL49
at various MOIs. Cells were fixed at different times post-infection with 4% paraformalde-
hyde (Sigma-Aldrich Canada Ltd.) and washed with phosphate-buffered saline (10 mM
Na2HPO4, 1.8 mM KH2PO4, 137 mM NaCl, 2.7 mM KCl, pH 7.4 (PBS)). After washing,
the cells were blocked overnight with 1% goat serum. The following day, the cells were
treated with 0.1% Triton X-100 to permeabilize them. Subsequently, they were incubated
with the corresponding primary antibodies prepared in 1% goat serum for 2–3 h, followed
by Alexa 488-conjugated goat anti-rabbit or goat anti-mouse IgG, Alexa 633-conjugated
goat anti-rabbit or goat anti-mouse IgG, or both Alexa 488- and Alexa 633-conjugated IgG
(Invitrogen, Thermo Fisher), for 1–2 h at room temperature. Prolong Gold with DAPI
(Invitrogen, Thermo Fisher) was used as a mounting medium and for staining of the
nuclei of the cells after the antibody incubations. These cells were analysed with a Leica
SP8 confocal microscope (Leica Microsystems, Wetzlar, Germany), and Leica Application
Suite X software was used to enlarge cells to indicate localisations in detail. Perinuclear
localization of VP8 and/or VP22 was enumerated in 10 fields with 30–100 cells each.

3. Results
3.1. VP8 and VP22 Are Packaged at the Early Tegumentation Stage

When not phosphorylated, VP8 remains nuclear during viral infection, but is present
in a significant amount in the mature BHV-1YmVP8 virus particles. In order to examine
the possibility of VP8 being packaged at the early tegumentation stage, primary enveloped
virions were isolated from the perinuclear region and tested for the presence of VP8 by
mass spectrometry and Western blotting. Prior to the extraction of the primary enveloped
virus from the perinuclear membranes, the purity of the NMP was tested. Both TCE and
NMP were analysed for the presence of tubulin, a cytoskeletal protein; nucleolin, a nuclear
protein; and lamin-associated protein 2 (LAP2), a protein specific to the nuclear membrane.
The NMP was found to be devoid of tubulin and nucleolin; only LAP2 was found in the
NMP, confirming it to be free from other cellular components (Figure 1). To determine their
purity, the mature and primary enveloped viruses were analysed via SDS-PAGE. Figure 2
shows the stained polyacrylamide gel, which indicates distinct bands of VP8 (91 kD) and
VP22 (29 kD) in both mature and primary enveloped virus samples. The detection of VP5
(the major capsid protein; 105 kD) confirms the presence of virus particles.

Viruses purified from the culture medium and the perinuclear membrane were sub-
mitted to mass spectrometry analysis. Table 1 shows a comprehensive list of the mass spec-
trometry results. As hypothesised, VP8 was found to be a part of the primary enveloped
virus, suggesting its packaging at the early stage of tegument formation. Interestingly,
another tegument protein—VP22—was also found to be a part of the early tegument. In
HHV-1, VP22 is known to play a critical role in viral protein packaging, while in BoHV-1 it
is known to aid in the packaging of gN, so VP22 might play a role in VP8 packaging. The
presence of both VP8 and VP22 in primary enveloped virus particles was confirmed by
Western blotting (Figure 3).
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lular markers were detected by mouse monoclonal anti-LAP2, mouse monoclonal anti-nucleolin, 
and rabbit polyclonal anti-tubulin IgG, followed by IRDye 680RD goat anti-mouse IgG and IRDye 
680RD goat anti-rabbit IgG, respectively. 
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with BoHV-1, and virus was purified from the perinuclear membrane at 8 h post-infection, and from 
the culture medium at 18 h post-infection. The proteins were separated by SDS-PAGE on 8% reduc-
ing gels and stained with ProtoBlue Safe. The positions of the capsid protein VP5 and tegument 
proteins VP8 and VP22 are indicated with arrows. Molecular weight markers (MWs) ×10−3 are 
shown in the left margin. 
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spectrometry results. As hypothesised, VP8 was found to be a part of the primary envel-
oped virus, suggesting its packaging at the early stage of tegument formation. Interest-
ingly, another tegument protein—VP22—was also found to be a part of the early tegu-
ment. In HHV-1, VP22 is known to play a critical role in viral protein packaging, while in 

Figure 1. Nuclear membrane preparations from BoHV-1-infected and mock-infected MDBK cells
were separated by SDS-PAGE on 8% reducing gels and subjected to Western blotting to check for the
absence of nucleolin and tubulin, and the presence of LAP2, in the nuclear membrane. The cellular
markers were detected by mouse monoclonal anti-LAP2, mouse monoclonal anti-nucleolin, and
rabbit polyclonal anti-tubulin IgG, followed by IRDye 680RD goat anti-mouse IgG and IRDye 680RD
goat anti-rabbit IgG, respectively.
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Figure 2. Purified primary enveloped virus (A) and mature virus (B). MDBK cells were infected with
BoHV-1, and virus was purified from the perinuclear membrane at 8 h post-infection, and from the
culture medium at 18 h post-infection. The proteins were separated by SDS-PAGE on 8% reducing
gels and stained with ProtoBlue Safe. The positions of the capsid protein VP5 and tegument proteins
VP8 and VP22 are indicated with arrows. Molecular weight markers (MWs) ×10−3 are shown in the
left margin.
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Table 1. Comprehensive list of proteins detected by mass spectrometry analysis.

Gene Protein
Present in
Primary

Enveloped Virus

Present in
Mature Virus

Molecular
Weight (kDa)

Number of
Unique
Peptides

Peptide
Coverage (%)

Glycoproteins

UL27 Glycoprotein B (gB) x
√

101.1 200 63

UL44 Glycoprotein C (gC) x
√

55.3 134 60

US6 Glycoprotein D (gD) x
√

44.5 19 73

US8 Glycoprotein E (gE) x
√

61.1 65 46

UL22 Glycoprotein H (gH) x
√

88.3 82 57

UL1 Glycoprotein L (gL) x
√

17.1 8 23

US4 Glycoprotein G (gG) x
√

46.5 67 48

UL10 Glycoprotein M (gM) x
√

45.5 6 13

UL49.5 Glycoprotein N (gN) x
√

10.2 5 25

UL53 Glycoprotein K (gK) x
√

35.8 5 25

US7 Glycoprotein I (gI) x
√

39.9 100 45

Envelope Proteins

UL20 pUL20 x
√

25.6 5 37

UL34 pUL34 x
√

27.1 55 54

UL43 pUL43 x
√

36.9 9 25

Capsid Proteins

UL6 Capsid portal protein
√ √

75.1 30 86

UL18 Capsid triplex subunit
√ √

33.3 37 46

UL19 VP5 major capsid protein
√ √

105.1 106 52

Tegument Proteins

UL2 pUL2
√

x 33.8 8 18

UL7 pUL7 x
√

32.5 21 63

UL11 pUL11 x
√

9.7 15 96

UL14 pUL14 x
√

23.2 31 76

UL16 pUL16 x
√

36.4 12 25

UL17 Cleavage protein x
√

72.6 59 83

UL21 pUL21 ×
√

60.2 47 48

UL25 Cleavage protein ×
√

63.1 62 63

UL26 Maturational protease
√ √

63.7 14 46

UL29 Major DNA binding protein
√ √

78.9 13 29

UL31 pUL31 x
√

39.5 35 72

UL32 pUL32 x
√

62.9 4 23

UL36 Egress regulating protein
√

x 327.2 79 57

UL37 Egress regulating protein
√

x 105.9 86 67

UL39 pUL39
√ √

86.1 27 58

UL40 pUL40
√ √

31.1 15 57

UL41 Host shut off protein x
√

50.1 41 65

UL42 DNA processivity protein x
√

42.6 67 63

UL46 VP11/12 x
√

77.6 26 38

UL47 VP8
√ √

80.7 47 65

UL48 VP16 x
√

54.1 55 58
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Table 1. Cont.

Gene Protein
Present in
Primary

Enveloped Virus

Present in
Mature Virus

Molecular
Weight (kDa)

Number of
Unique
Peptides

Peptide
Coverage (%)

UL49 VP22
√ √

26.8 148 84

UL50 pUL50 x
√

34.1 18 63

UL51 pUL51 x
√

24.9 16 86

UL54 bICP27 x
√

43.3 26 63

US1.67 pUS1.67 x
√

27.2 28 44

US3 Serine/threonine kinase x
√

49.9 27 48

Host Proteins

HSP70 x
√

70.8 4 18

Eukaryotic initiation factor
4H x

√
30.8 26 18

Annexin x
√

38.9 15 75

Alpha tubulin x
√

50 5 23

Beta actin x
√

40.3 9 13

Histone
√ √

13.9 5 29

PCNA
√ √

28.8 11 26
√

Indicates presence, and x indicates absence.
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In view of the coexistence of VP8 and VP22 in the primary enveloped virus, and the 
fact that the VP22 levels were reduced in the mature virus when the cells were infected 
with BoHV-1ΔUL47, we studied the interaction between VP8 and VP22 in the mature and 
primary enveloped virus particles. The viruses collected from the culture medium and the 
NMP of MDBK cells infected with wild-type BoHV-1 were lysed and incubated overnight 
with antibodies specific to VP8 or VP22, followed by incubation with Protein G Sepharose. 
After the bound proteins were eluted and subjected to Western blotting, it was found that 
VP22 interacted with VP8—and vice versa—in the primary enveloped virions obtained 
from the NMP (Figure 4A). Similarly, in the mature virus, VP22 interacted with VP8, and 
vice versa (Figure 4B). 

Figure 3. Identification of VP8 and VP22 in primary enveloped virus purified from the NMP of MDBK
cells infected with wild-type BoHV-1 at an MOI of 10 and harvested 7 h post-infection. The proteins
were separated by SDS-PAGE on 8% reducing gels, and VP8 and VP22 were identified by Western
blotting with mouse VP8-specific monoclonal antibody and rabbit VP22-specific polyclonal antibody,
followed by IRDye 680RD goat anti-mouse IgG and IRDye 800RD goat anti-rabbit IgG, respectively.
The positions of the tegument proteins VP8 and VP22 are indicated with arrows. Molecular weight
markers (MWs) ×10−3 are shown in the left margin.

3.2. VP8 Interacts with VP22 in the Perinuclear Region and in Mature Virus in BoHV-1-Infected
Cells and in BoHV1-YmVP8-Infected Cells

In view of the coexistence of VP8 and VP22 in the primary enveloped virus, and the
fact that the VP22 levels were reduced in the mature virus when the cells were infected
with BoHV-1∆UL47, we studied the interaction between VP8 and VP22 in the mature and
primary enveloped virus particles. The viruses collected from the culture medium and the
NMP of MDBK cells infected with wild-type BoHV-1 were lysed and incubated overnight
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with antibodies specific to VP8 or VP22, followed by incubation with Protein G Sepharose.
After the bound proteins were eluted and subjected to Western blotting, it was found that
VP22 interacted with VP8—and vice versa—in the primary enveloped virions obtained
from the NMP (Figure 4A). Similarly, in the mature virus, VP22 interacted with VP8, and
vice versa (Figure 4B).
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and harvested 8 h post-infection (primary enveloped virus; (A)) or 18 h post infection (mature virus; (B)). Lysates were
generated and incubated with mouse VP8-specific monoclonal antibodies or rabbit VP22-specific polyclonal antibodies,
followed by Protein Sepharose G beads. VP8 and VP22 were detected by Western blotting with monoclonal anti-VP8
and rabbit anti-VP22 antibodies, followed by IRDye 680RD goat anti-mouse IgG and IRDye 800RD goat anti-rabbit IgG,
respectively. Immunoprecipitation of VP8 with VP22—and vice versa—is shown for both primary enveloped (A) and
mature (B) virus.

In order to determine whether VP8 and VP22 interact in cells infected with BoHV-
1-YmVP8, in which VP8 is not phosphorylated and remains nuclear, MDBK cells were
infected with BoHV-1-YmVP8 at an MOI of 0.5 and collected at 18 h post-infection to purify
the perinuclear membrane, and at 30 h post-infection to isolate mature virus. The cell
lysates were incubated overnight with VP8-specific or VP22-specific antibodies, followed
by binding to Protein G Sepharose beads and elution with SDS loading dye. Western
blot analysis showed coprecipitation of VP22 with VP8—and vice versa—in the NMP
(Figure 5A). Similarly, in the mature virus, VP22 interacted with VP8, and vice versa
(Figure 5B).
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Figure 5. VP8 and VP22 interact during BoHV-1YmVP8 infection. MDBK cells were infected with
BoHV-1YmVP8 at an MOI of 0.5 and harvested 18 h post-infection (primary enveloped virus; (A)) or
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30 h post-infection (mature virus; (B)). Lysates were generated and incubated with mouse VP8-
specific monoclonal antibodies or rabbit VP22-specific polyclonal antibodies, followed by Protein
Sepharose G beads. VP8 and VP22 were detected by Western blotting with monoclonal anti-VP8 and
rabbit anti-VP22 antibodies, followed by IRDye 680RD goat anti-mouse IgG and IRDye 800RD goat
anti-rabbit IgG, respectively. Immunoprecipitation of VP8 with VP22—and vice versa—is shown for
primary enveloped (A) and mature (B) virus.

These data suggest that VP8 and VP22 interact with one another in the NMP, and
possibly at a later stage during final envelopment at the Golgi. The interaction with VP22
does not depend on phosphorylation of VP8, as it occurred with both the wild-type VP8
and the non-phosphorylated form of VP8.

3.3. VP8 Is Absent in the Primary Enveloped Virus in the Absence of VP22

Since an interaction was found between VP8 and VP22, the dependence of VP8 on
VP22 for its packaging into the primary tegument was examined. MDBK cells were infected
with wild-type BoHV-1 or BoHV-1∆UL49, and the virions extracted from the NMP were
tested for the presence of VP8 by Western blotting. VP8 was not detected in the NMP of
the BoHV-1∆UL49-infected cells, suggesting that VP22 is required for the packaging of
VP8 during primary envelopment. VP5 (a major capsid protein) was used as a control to
confirm the presence of virus particles (Figure 6).
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Figure 6. VP8 is absent in primary enveloped virus in BoHV-1∆UL49-infected cells. Primary
enveloped virus was purified from the NMP of MDBK cells infected with BoHV-1∆UL49 at an
MOI of 3, and harvested 18 h post-infection. The proteins in the primary enveloped virus were
separated by SDS-PAGE on 8% gels, and VP8 and VP22 were identified by Western blotting with
mouse VP8-specific monoclonal antibody and rabbit VP22-specific polyclonal antibody, followed by
IRDye 680RD goat anti-mouse IgG and IRDye 800RD goat anti-rabbit IgG, respectively. The positions
of the tegument proteins VP8 and VP22 are indicated with arrows. Molecular weight markers
(MWs) × 10−3 are shown in the left margin.

3.4. VP8 and VP22 Interact with one Another Outside the Context of Infection

In order to determine whether the interaction between VP8 and VP22 is independent
of other viral factors, COS-7 cells were co-transfected with both VP8-FLAG and VP22-
HA plasmids (and individually with VP8-FLAG and VP22-HA as controls). At 48 h
after transfection the cells were collected and lysed. The lysates were incubated with
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anti-FLAG beads or anti-HA beads, and the proteins were eluted with SDS loading dye.
When these samples were subjected to Western blotting, it was found that VP8-FLAG was
precipitated along with VP22-HA when the lysate was incubated with anti-HA beads, and
that VP22-HA was precipitated along with VP8-FLAG when the lysate was incubated
with anti-FLAG beads. The specificity of the VP8-FLAG and VP22-HA interaction was
proven by the absence of VP8-FLAG when the lysate from VP8-FLAG-transfected cells was
incubated with anti-HA agarose, and similarly, the absence of VP22-HA when the lysate
from VP22-HA-transfected cells was incubated with Anti-FLAG M2 Affinity Gel (Figure 7).
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Figure 7. VP8 and VP22 interact outside the context of infection in transfected cells. COS-7 cells were
transfected with VP8-FLAG and/or VP22-HA plasmids. The cells were lysed at 24 h post-transfection,
and incubated with Anti-FLAG M2 Affinity Gel or anti-HA agarose. VP8 and VP22 were detected
by Western blotting with monoclonal mouse anti-FLAG and polyclonal rabbit anti-HA antibodies,
followed by IRDye 680RD goat anti-mouse IgG and IRDye 800RD goat anti-rabbit IgG, respectively.
VP22 was precipitated with VP8 and Anti-FLAG M2 Affinity Gel, while VP8 was precipitated with
VP22 and anti-HA agarose.

3.5. VP8 and VP22 Localise in the Perinuclear Region in Cells Infected with Wild-Type BoHV-1 or
BoHV-1YmVP8

To confirm the presence of VP8 and VP22 in the perinuclear region at the early stages
of infection, MDBK cells were infected with wild-type BoHV-1 or BoHV-1-YmVP8 at an
MOI of 5 and fixed at 4 or 5 h post-infection. Antibodies specific to LAP2, followed by
Alexa 633-conjugated goat anti-mouse IgG, were used to identify the nuclear membranes
and antibodies specific to VP8 and VP22, followed by the use of Alexa 488-conjugated
goat anti-rabbit IgG to identify the respective proteins. In both wild-type BoHV-1- and
BoHV-1YmVP8-infected cells, the presence of VP8 in the perinuclear nuclear region was
confirmed by the yellow fluorescence. No signal was observed in mock-infected cells.
Figure 8 shows co-localisation of VP8 with LAP2 in the perinuclear region of MDBK cells
infected with wild-type BoHV-1 or BoHV-1YmVP8, at 4 and 5 h post-infection. At 4 h post
infection, VP8 was present at low levels, and was mostly nuclear in both wild-type BoHV-1-
and BoHV-1YmVP8-infected cells. After infection with wild-type BoHV-1, 2.6% of the cells
showed the presence of VP8 in the perinuclear region. In BoHV-1YmVP8-infected cells,
less co-localisation of VP8 and LAP2 (<2%) was observed when compared to the wild-type
BoHV-1-infected cells. At 5 h post-infection, VP8 expression increased; in wild-type BoHV-
1-infected cells, a low proportion of VP8 was cytoplasmic, while 37.5% of the observed
cells showed the presence of VP8 in the perinuclear region. Meanwhile, in BoHV-1YmVP8-
infected cells, VP8 remained nuclear due to the absence of phosphorylation; in 36.74%
of the cells, a distinct co-localisation of VP8 with LAP2 was observed in the perinuclear
region. These localisation patterns continued through the later stages of infection (data not
shown). This supports the hypothesis of a certain amount of VP8 being packaged during
the early envelopment process in both BoHV-1- and BoHV-1YmVP8-infected cells.
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VP22 was mostly cytoplasmic at 4 h post-infection in both BoHV-1- and BoHV-1YmVP8-
infected cells. However, at 4 h post-infection, 9% of the BoHV-1-infected cells were found 
to have VP22 present in the perinuclear region. In BoHV-1YmVP8-infected cells, 15% of 
the cells showed VP22 localisation in the perinuclear region. Localisation of VP22 in the 
perinuclear region was evident at 5 h post-infection in both BoHV-1- and BoHV-1YmVP8-
infected cells. After wild-type BoHV-1 infection, 31.6% of the cells showed VP22 in the 
perinuclear region, whereas in BoHV-1YmVP8 infected cells 38.5% showed a clear pres-
ence of VP22 in the perinuclear region. No signal was observed in mock-infected cells. 
VP22 is predominantly cytoplasmic during the early stages of infection [28]; however, due 
to its small size, VP22 (29 kDa) can passively diffuse into the nucleus via the nuclear pores 
[29,30], which is probably responsible for some nuclear VP22. 

Figure 8. Co-localisation of VP8 and LAP2. MDBK cells were infected with wild-type BoHV-1 or BoHV-1YmVP8 at an
MOI of 5, and fixed and permeabilised at 4 or 5 h post-infection. VP8 was identified with rabbit VP8-specific antibody and
Alexa-488-conjugated goat anti-rabbit IgG. LAP2 was detected with monoclonal LAP2-specific antibody and Alexa-633
conjugated anti-mouse IgG. The yellow ring around the cells shows VP8 co-localised with LAP2 in the perinuclear region.
Select cells were observed at 10×magnification to show more details.

Figure 9 shows similar results for the presence of VP22 in the perinuclear region. VP22
was mostly cytoplasmic at 4 h post-infection in both BoHV-1- and BoHV-1YmVP8-infected
cells. However, at 4 h post-infection, 9% of the BoHV-1-infected cells were found to have
VP22 present in the perinuclear region. In BoHV-1YmVP8-infected cells, 15% of the cells
showed VP22 localisation in the perinuclear region. Localisation of VP22 in the perinuclear
region was evident at 5 h post-infection in both BoHV-1- and BoHV-1YmVP8-infected cells.
After wild-type BoHV-1 infection, 31.6% of the cells showed VP22 in the perinuclear region,
whereas in BoHV-1YmVP8 infected cells 38.5% showed a clear presence of VP22 in the
perinuclear region. No signal was observed in mock-infected cells. VP22 is predominantly
cytoplasmic during the early stages of infection [28]; however, due to its small size, VP22
(29 kDa) can passively diffuse into the nucleus via the nuclear pores [29,30], which is
probably responsible for some nuclear VP22.
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3.6. VP22 Co-Localises with VP8

After proving the interaction of VP8 and VP22, and the presence of VP8 and VP22
in the perinuclear region, co-localisation of VP8 and VP22 was investigated in wild-type
BoHV-1-infected cells at an MOI of 5. Figure 10 shows co-localisation of VP8 and VP22
proteins at 4 h and 5 h post-infection. At 4 h post-infection, co-localisation of VP8 and VP22
was observed in 15% of the cells—mostly around the perinuclear region, with some in the
cytoplasm. At 5 h post-infection, more co-localisation of VP8 and VP22 was observed in
the cytoplasm than in the perinuclear region, but 38.5% of cells showed co-localisation of
VP8 and VP22 in the perinuclear region.
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Figure 10. Co-localisation of VP22 and VP8. MDBK cells were infected with wild-type BoHV-1, and fixed and permeabilized
4 or 5 h post-infection. VP8 was identified with monoclonal VP8-specific antibody and Alexa 488-conjugated goat anti-mouse
IgG. VP22 was detected with rabbit VP22-specific antibody and Alexa 633-conjugated anti-rabbit IgG. The yellow ring
(as indicated by the arrows) shows co-localisation of VP8 and VP22 proteins in the perinuclear region. Select cells were
observed at 10×magnification to show more details.

3.7. VP8 Is not Localised to the Perinuclear Region in BoHV-1∆UL49-Infected Cells

To further confirm the absence of VP8 in the perinuclear region of BoHV-1∆UL49-
infected cells, as shown in Figure 6, MDBK cells were infected with BoHV-1∆UL49 at an
MOI of 5 and fixed 4 or 5 h post-infection. LAP2-specific antibodies, followed by Alexa
633-conjugated goat anti-mouse IgG, were used to identify the nuclear membranes and
antibodies specific to VP8, followed by the use of Alexa 488-conjugated goat anti-rabbit
IgG to identify VP8. In BoHV-1∆UL49-infected cells, no nuclear VP8 was detected at 4 h
post-infection, which may be due to the slower rate of BoHV-1∆UL49 infection, whereas
at 5 and 6 h post-infection VP8 was partially nuclear and partially cytoplasmic—similar
to wild-type BoHV-1-infected cells. No VP8 was localised in the perinuclear region at
4, 5, or 6 h post-infection (Figure 11). From these results, it can be inferred that VP22 is
required for the perinuclear localisation and, hence, the packaging of VP8 during the early
tegumentation process.
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Figure 11. VP8 does not localise in the perinuclear region in BoHV-1∆UL49- infected cells. MDBK
cells were infected with BoHV-1∆UL49 at an MOI of 5, and fixed and permeabilized 4, 5, or 6 h post
infection. VP8 was identified with rabbit VP8-specific antibody and Alexa 488-conjugated goat anti-
rabbit IgG. LAP2 was detected with monoclonal LAP2-specific antibody and Alexa 633-conjugated
anti-mouse IgG. No yellow and, hence, no presence of VP8 in the perinuclear region, was detected.

4. Discussion

In this study, a novel, VP22-dependent packaging mechanism of VP8 during primary
envelopment was identified. During the maturation process of alpha herpesviruses, tegu-
ment proteins are added at different stages—namely, during primary envelopment, i.e.,
when the virus moves from the nucleus into the perinuclear region during its egress [12];
in the cytoplasm, after it exits the nucleus and travels towards the Golgi; and at the Golgi,
where the final maturation takes place [7,11]. VP8 contains phosphorylation sites, and
is phosphorylated by host kinase CK2 in the cytoplasm, and by viral kinase US3 in the
nucleus [31]. Previous studies showed that the phosphorylation of VP8 by US3 is neces-
sary for its translocation into the cytoplasm, as well as for various other functions [22].
Tegument proteins such as VP8 may be completely packaged during the primary envel-
opment process, completely packaged at the Golgi, or partially packaged during primary
envelopment and partially in the Golgi. A similar pattern of packaging during the early
tegumentation process has been shown in previous studies for HHV-1 VP22 [32]. When
MDBK cells were infected with BoHV-1YmVP8 and the mature virus was tested for the
amount of VP8, a significant amount of VP8 was found to be present in the BoHV-1YmVP8
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virions, despite the fact that VP8 remained nuclear [22]. This suggested that VP8 might be
packaged during early tegumentation; however, due to the fact that the amount of VP8 in
the mature BoHV-1YmVP8 virions was significantly reduced, it can be inferred that the
early packaging of VP8 at the nucleus is only partial, and that VP8 is further packaged in
the Golgi.

In this study, mass spectrometry analysis performed on biological duplicate samples
of primary enveloped virions extracted from the NMP and the mature virus extracted from
the culture medium identified the proteins specific to these fractions. Based on the purity
of the fractions, it can be inferred that the NMP was devoid of any nuclear or cytoplasmic
contaminants, and that the identified proteins were solely from the primary enveloped
virus present in the perinuclear region. The comprehensive list of identified proteins is
similar to the list of proteins present in HHV-1 for both primary enveloped and mature
viruses [27,32,33]. In the BoHV-1 mass spectrometry analysis, 11 glycoproteins—gB, gC,
gD, gE, gH, gL, gG, gM, gN, gK, and gI—were found to be a part of the mature virus, as
glycoproteins are acquired at the Golgi along with the lipid envelope; this is consistent with
previous studies on the protein composition of BoHV-1 [34]. The absence of glycoproteins
from the primary enveloped virus further confirms the purity of the virus extracted from
the perinuclear region. Major and minor capsid proteins were found to be a part of both
the primary enveloped and the mature virus, which demonstrates the presence of the
viral capsid in these regions. Most of the tegument proteins were found to be a part of
only the mature virus—i.e., they are packaged outside the nucleus in the cytoplasm or at
the Golgi—except for pUL2, pUL36, and pUL37, which were only present in the primary
enveloped virions, meaning that they are packaged during the early tegumentation process,
and are lost as the capsids travel from the nucleus to the Golgi. In HHV-1, pUL36 and
pUL37 are known to play critical roles in nuclear egress and, hence, are only needed at
the early stages [12]. pUL26, pUL29, pUL39, pUL40, pUL47 (VP8), and pUL49 (VP22)
were found to be part of the primary enveloped virus as well as the mature virus, which
suggests that they are packaged during early tegument formation, and retained and/or
lost and added during travel to the Golgi. Host proteins—namely, HSP70, annexin, tubulin,
actin, PCNA, and histones, known to form an integral part of herpesviruses [33]—were
also found in the BoHV-1 mature virus samples and, in the case of histones and PCNA,
also in the primary enveloped virus particles. The absence of annexin from the primary
enveloped BoHV-1 is in contrast with HHV-1, in which annexin 2 was found to be an
integral part of the primary enveloped virus [27]. Overall, fewer host proteins were found
in the BoHV-1 virus particles when compared to HHV-1, which may be related to the purity
of the samples or the specific characteristics of these herpesviruses.

VP8 and VP22 were both found to be a part of primary enveloped viruses, i.e., a certain
amount of both proteins is packaged during the early tegumentation process. In HHV-1
and BoHV-1, VP22 is a critical tegument protein, which plays a role in the packaging of
several other tegument proteins as well as glycoproteins [35,36]; it is also responsible for
the shuttling of viral proteins in the host cells [37–39]. The viral titer was also reduced
10-fold in BoHV-1∆UL49-infected cells when compared to wild-type BoHV-1-infected
cells [23]. A reduction in the amount of VP22 in BoHV-1∆UL47-infected cells [4] suggests
interdependence between VP8 and VP22. Partial packaging of critical proteins such as
VP8 and VP22 into the early tegument might also be a survival strategy of the virus
under conditions that oppose the transportation or translocation of these proteins to the
Golgi. In this study, an interaction between VP8 and VP22 was confirmed in both the
primary enveloped virions and the mature virus. This interaction was independent of the
phosphorylation status of VP8 (as they were found to interact in BoHV-1-YmVP8-infected
cells), and also of other viral factors (as they interact outside the context of infection). The
presence of VP8 and VP22 was shown in the perinuclear region at early timepoints, which
supports the probability of both proteins being packaged during early tegumentation, and
assisting one another in the process.



Viruses 2021, 13, 1854 17 of 19

Because VP22 aids in the packaging of proteins, and interacts with VP8, the require-
ment of VP22 for VP8 packaging at the early tegumentation stage was investigated. The fact
that in BoHV-1∆UL49-infected cells VP8 was absent from the perinuclear region (Figures 6
and 11) confirms that VP22 is needed for the packaging of VP8 into the primary enveloped
virus particles.

In summary, our results support the hypothesis that VP8 is partially packaged during
the early tegumentation process along with VP22, and that VP22—an interaction partner of
VP8—is required for the early packaging of VP8 into the early tegument. In the absence of
phosphorylation, when VP8 remains mostly nuclear, the limited quantity of VP8 packaged
during the early tegumentation process helps the virus to obtain a certain amount of this
critical and multifunctional protein. However, in wild-type virus-infected cells, most of the
VP8 is translocated into the cytoplasm and, hence, gets packaged at the Golgi along with
the partial packaging during the early tegumentation. In addition to suggesting a novel
mechanism for VP8 packaging during the early tegumentation process, this study also
supports the correlation of the amount of VP8 in the virions with the replication efficiency
in cell culture. Based on previous studies and the current study, it can be safely said that
VP8 plays a critical role in viral replication, and that its reduction in mature virus causes
the replication efficiency and virulence to be significantly reduced.

5. Conclusions

The presence of both VP8 and VP22 as a part of the early tegument indicates the early
packaging of these proteins. This explains why a significant, though reduced, amount
of VP8 is incorporated in the virus particles when it is not phosphorylated and remains
nuclear. In cells infected with a VP22-deleted mutant, VP8 was not present in the early
tegument, which suggests that VP8 depends on VP22 for its early packaging.
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