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Abstract: Salmonella infections (salmonellosis) pose serious health risks to humans, usually via
food-chain contamination. This foodborne pathogen causes major food losses and human illnesses,
with significant economic impacts. Overuse of antibiotics in the food industry has led to multidrug-
resistant strains of bacteria, and governments are now restricting their use, leading the food industry
to search for alternatives to secure food chains. Bacteriophages, viruses that infect and kill bacteria,
are currently being investigated and used as replacement treatments and prophylactics due to their
specificity and efficacy. They are generally regarded as safe alternatives to antibiotics, as they are
natural components of the ecosystem. However, when specifically used in the industry, they can
also make their way into humans through our food chain or exposure, as is the case for antibiotics.
In particular, agricultural workers could be repeatedly exposed to bacteriophages supplemented
to animal feeds. To our knowledge, no studies have investigated the effects of such exposure
to bacteriophages on the human gut microbiome. In this study, we used a novel in-vitro assay
called RapidAIM to investigate the effect of a bacteriophage mixture, BAFASAL®, used in poultry
farming on five individual human gut microbiomes. Multi-omics analyses, including 16S rRNA
gene sequencing and metaproteomic, revealed that ex-vivo human gut microbiota composition
and function were unaffected by BAFASAL® treatment, providing an additional measure for its
safety. Due to the critical role of the gut microbiome in human health and the known role of
bacteriophages in regulation of microbiome composition and function, we suggest assaying the
impact of bacteriophage-cocktails on the human gut microbiome as a part of their safety assessment.

Keywords: bacteriophage; microbiome; Salmonella; metaproteomics; 16S rRNA gene sequencing;
BAFASAL®

1. Introduction

As the world population increases, so does food demand. Plant and animal diseases
can seriously impact food supplies and food safety, resulting in food shortages and causing
significant economic impacts. Zoonotic diseases present clear public health risks; in
the USA, tens of thousands get sick each year, with six out of 10 infectious diseases
having a zoonotic origin [1]. Strikingly, the World Health Organization (WHO) estimates
that consumption of contaminated food sickens 600 million people (or 10% of the world
population), and results in 420,000 deaths [2].

Historically, most zoonotic diseases have been treated with antibiotics, with 73% of all
antibiotics in the world now used in animal production [3]. The wide-spread use of antibi-
otics in the food industry was spurred on not only by increased food safety but by data
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showing increased meat production in animals receiving broad-spectrum antibiotics [4].
The appearance of multidrug-resistant bacteria in our food chain is an unintended conse-
quence from decades of over-using broad-spectrum antibiotics. In addition, humans are
exposed to these excess antibiotics through several means: these antibiotics can be present
in the animal products we consume and can be simply discarded into the environment,
with up to 90% of antibiotics excreted in their active forms from treated animals [5]. The
rise of multidrug-resistant bacteria has become such a global concern that by 2022, the
European Union (EU) will ban the prophylactic use of clinically relevant antibiotics in food
production, with the exemption of veterinary prescriptions [6], and other countries are
following suit. Without such interventions, antimicrobial resistance (AMR) will result in an
estimated 10 million deaths by 2050 [5].

Nevertheless, the issue of food safety and the prevention of zoonotic diseases remain.
Bacteriophage therapy is an alternative garnering increased interest by scientists and food
agencies around the world. Discovered by Félix d’Hérelle and Frederick Twort in the
early 1900s, bacteriophages have been investigated for their therapeutic potential to treat
pathogenic bacteria in humans, animals, and agriculture, especially in light of AMR [7].
Bacteriophages, or phages, are ubiquitous and abundant in nature, with numbers estimated
above 1031 [8]. Indeed, phages outnumber their bacterial hosts by a factor of 10 times and
regulate the bacterial populations they target by triggering bacterial lysis. Their ability to
act directly on specific bacteria—via their recognition of unique receptor proteins—allows
researchers to develop targeted therapies to fight against identifiable bacterial pathogens
in our food chain and reduce the spread of foodborne illnesses in humans.

Bacteriophage therapy in the food industry has proven successful: phages have
been approved for use in food decontamination [9], as dietary supplements [10], and as
environmental prophylaxis [11]. Importantly, no adverse effects were noted in trials, as
phages did not interact with eukaryotic cells and targeted only bacteria [11]. One of the
most common foodborne illnesses, Salmonellosis, is caused by the bacterium Salmonella.
Salmonella easily transfers from its primary hosts (commonly laying hens, pigs, turkeys,
and broilers) to humans and is a common target for bacteriophage cocktails [12]. Salmonella
is a genus of the family Enterobacteriaceae and contains two species: S. enterica and S.
bongori [13]. Salmonellosis causes fever, sepsis, infection of tissues, and inflammation of
the gastrointestinal tract. In America alone, Salmonella genera cause 1.35 × 106 infections,
resulting in 26,000 hospitalizations and 420 deaths each year [1]. In the EU, salmonellosis is
the most common foodborne disease and S. enterica the most frequently reported pathogen.
In 2020, a study profiled the effectiveness of an anti-Salmonella bacteriophage cocktail,
BASFASAL, to prevent contamination of dried and liquid poultry feed in vitro and to
reduce numbers of Salmonella in intestines of birds challenged with Salmonella in vivo [12].

The human gut microbiome, consisting of bacteria, viruses, and fungi, plays a critical
role in health, as evidenced by perturbations in the gut microbiome composition and/or
function that associated with a variety of diseases, including inflammatory bowel dis-
eases (IBD) [14], cardiovascular disease [15], Parkinson’s and Alzheimer’s diseases [16,17],
anxiety, and depression [18]. Bacteriophages are a normal part of the human microbiota
and also outnumber bacteria in our gut by at least ten-fold. Most are temperate phages,
and so induction of these prophages under various conditions could disturb microbiota
balance [19]. Although bacteriophages are generally recognized as safe (GRAS) when
used for pathogen control in food processing, including ready to eat foods and poultry,
bacteriophages could interact with niche gut microbiota [19]. Effects could range from
no effect to direct lysis and dysbiosis of commensal bacterial to indirect interactions of
bacteriophage with commensal bacteria or prophages, triggering lysis [19].

We have developed an in-vitro gut microbiome culturing system (MiPro) coupled
to a downstream bioinformatics toolbox collectively called RapidAIM (or rapid assay of
an individual microbiome) that measures compositional and functional changes in the
gut microbiome in response to dietary and therapeutic interventions [20,21]. RapidAIM
can measure the impact of products on the microbiota and can be used to stratify people
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in clinical studies. We previously used this assay to show the effects of antibiotics and
other drugs on the gut microbiome [20]. In this study, we used RapidAIM to investigate
further the effects of BAFASAL®: specifically, whether BAFASAL® phage introduction to
the human gut microbiome affects its composition and function. We treated five individual
adult-derived gut microbiomes with active and inactive mixtures of BAFASAL®. We used
both 16S rRNA gene sequencing and metaproteomic analyses to study changes in bacterial
composition and function. This study, the first of its kind, has important implications for
how we measure food safety and maintain the safety of workers in the food-processing
industry exposed to these preparations.

2. Materials and Methods

2.1. BAFASAL® Production

Liquid BAFASAL® preparation was produced according to Wójcik et al. [12]. Briefly,
bacteriophages included in BAFASAL® (BAF) were amplified separately in culture, reach-
ing a titer of about 1 × 109 PFU/mL. Phage-containing culture fluid was separated from
bacterial debris by filtration, and final titers assessed using double agar overlay plaque as-
say. The final preparation was completed with sterile water, resulting in a 1 × 108 PFU/mL
titer. Inactive BAFASAL® (IBAF) was prepared by autoclaving this preparation at 120 ◦C
for 30 min.

2.2. Stool Sample Preparation

The research ethics board protocol (#20160585-01H) for human stool sample collection
was approved by the Ottawa Health Science Network Research Ethics Board at the Ottawa
Hospital. Stool samples were obtained from five healthy volunteers (age range 27–36 years;
three men and two women). Exclusion criteria for participation were irritable bowel syn-
drome, inflammatory bowel disease, or diabetes diagnosis; antibiotic use or gastroenteritis
episode in three months preceding collection; use of pro-/pre-biotic, laxative, or anti-
diarrheal drugs in the last month preceding collection; or pregnancy. Participants collected
stool into a 50-mL Falcon tube containing 15 mL of sterile phosphate-buffered saline (PBS;
pH 7.6) and 10% (v/v) glycerol pre-reduced with 0.1% (w/v) L-cysteine hydrochloride.
Samples were weighed, transferred into an anaerobic workstation (5% H2, 5% CO2, and
90% N2 at 37 ◦C), homogenized to 20% (w/v) in the same pre-reduced buffer mixture, and
filtered using sterile gauzes to remove large particles to obtain the fecal inocula. Fecal
inocula, as proxies for gut microbiomes, were stored at −80 ◦C until used in RapidAIM.

2.3. Culturing of Microbiota and Treatments

Fecal inocula were thawed at 37 ◦C and inoculated at a concentration of 2% (w/v)
into a 96-well deep-well plate containing 1 mL MiPro optimized sterile and pre-reduced
culture medium (2.0 g L−1 peptone water, 2.0 g L−1 yeast extract, 0.5 g L−1 L-cysteine
hydrochloride, 2 mL L−1 Tween 80, 5 mg L−1 hemin, 10 µL L−1 vitamin K1, 1.0 g L−1 NaCl,
0.4 g L−1 K2HPO4, 0.4 g L−1 KH2PO4, 0.1 g L−1 MgSO4·7H2O, 0.1 g L−1 CaCl2·2H2O, 4.0 g
L−1 NaHCO3, 4.0 g L−1 porcine gastric mucin, 0.25 g L−1 sodium cholate, and 0.25 g L−1

sodium chenodeoxycholate), as per Li et al., in an anaerobic workstation [20,21]. BAF and
IBAF were added at 2% (v/v) and 5% (v/v) to the media. For BAF, this equated to 2 × 106

and 5 × 106 PFU/mL, respectively. Fructo-oligosaccharide (FOS) is an oligosaccharide that
is widely used as a prebiotic, and several studies document its effects on gut microbiome
composition and function from both mice [22,23] and humans [24–26]. With consistent
changes in composition, such as increases in Bifidobacteria, we utilized FOS as a positive
control in our RapidAIM assay. It was added at 2% (v/v) and 5% (v/v) from a 250 mg/mL
stock as a positive control and PBS (1×; pH 7.6) added as vehicle control at 2% (v/v) and
5% (v/v). Following the addition of inoculants and compounds, the plates were covered
with vented sterile silicone mats and shaken at 500 rpm with a digital shaker (MS3, IKA,
Germany) at 37 ◦C for 18 h in the anaerobic chamber. Treatments were randomized on the
96-well plates for each participant.
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2.4. Sample Processing

Sample processing was done as per our reported sample processing workflows [20,21,27].
Briefly, following 18 h of culturing, samples were transferred from 96-well plates to individ-
ual 1.5-mL Eppendorf tubes. Sample order were randomized for processing. Samples were
transferred out of the anaerobic station onto ice and centrifuged at 14,000× g at 4 ◦C for 20
min to pellet the microbiota. Supernatants were removed, and the pellets were resuspended
in 1 mL cold 1× PBS (pH 7.6). They were subsequently centrifuged at 300× g at 4 ◦C for 5
min to remove debris. With samples on ice, supernatants were transferred into new 1.5-mL
Eppendorf tubes for two additional rounds of debris removal as above. Supernatants were
transferred to 1.5-mL Eppendorf tubes and centrifuged at 14,000× g at 4 ◦C for 20 min to
pellet the microbiota. Supernatants were removed, and the pelleted bacterial cells were
resuspended and washed two times with 1 mL cold 1× PBS (pH 7.6), pelleting the cells
after each wash at 14,000× g for 20 min at 4 ◦C. Before the final spin, resuspended bacterial
samples were equally divided into new 1.5-mL Eppendorf tubes. Harvested bacterial cell
pellets were stored at −80 ◦C prior to protein extraction or DNA extraction.

2.5. Metaproteomic Sample Processing and LS-MS/MS Analyses

Microbial pellets were resuspended in 100 µL of 8 M urea and 4% (w/v) sodium
dodecyl sulfate (SDS) in 100 mM Tris-HCl (pH 8.0) plus Roche cOmplete™ Mini tablets.
Lysis was completed with sonication (Q700 Qsonica, Newtown, CT, USA) at 8 ◦C, 50% am-
plitude (15.6 watts/sample), and sixty cycles of 10 s ultrasonication and 10 s cooling down.
Samples were centrifuged at 16,000× g for 10 min at 9 ◦C. Supernatants were transferred
to new 1.5-mL Eppendorf tubes, and proteins in the supernatant were precipitated with
5× volume of ice-cold protein precipitation buffer (acidified acetone/ethanol) overnight
at −20 ◦C. Proteins were pelleted by centrifugation at 16,000× g for 20 min at 4 ◦C and
washed 3× in ice-cold acetone. Proteins were resuspended in 100 µL of 6 M urea in 50 mM
ammonium bicarbonate (ABC; pH 8.0), with sonication as above. Protein concentrations
were measured in triplicate using Bio-Rad’s detergent compatible, DC Protein Assay (USA).
Trypsin digestion was carried out as described in Zhang et al. [28]. For each sample, 50 µg
of protein was reduced with 10 mM dithiothreitol (DTT) at 56 ◦C for 30 min and alkylated
in the dark with 20 mM iodoacetamide (IAA) at room temperature for 45 min, followed
by 10× dilution into 50 mM ABC (pH 8.0) and tryptic digestion at 37 ◦C for 20 h with
shaking using 1 µg of trypsin (Worthington Biochemical Corp., Lakewood, NJ, USA) per
50 µg protein. Trypsin digestion was stopped by addition of 10% (v/v) formic acid (FA)
to pH 2–3. Acidified, digested peptides were desalted using 10 µm C18 column beads,
according to our laboratory standard protocol [20], dried via vacuum centrifugation, and
resuspended in 100 µL 0.1% (v/v) FA for tandem mass spectrometry (MS/MS) analyses.
As quality control (QC) samples to be assessed repeatedly throughout our MS/MS runs,
10 peptide samples were selected at random and combined. Two microlitres (1 µg peptides)
were loaded in a randomized order for liquid chromatography tandem mass spectrometry
(LC-MS/MS) onto an Agilent 1100 Capillary LC system (Agilent Technologies, San Jose,
CA) and a Q Exactive mass spectrometer (ThermoFisher Scientific Inc.). Peptides were
separated on a tip column (75 µm inner diameter × 50 cm) packed with reverse phase
beads (1.9 µm/120 Å ReproSil-Pur C18 resin, Dr. Maisch GmbH, Ammerbuch, Germany)
using a 90-min gradient from 5 to 30% (v/v) acetonitrile at a 200 nL/min flow rate. A
total of 0.1% (v/v) FA in water was used as solvent A, and 0.1% FA in 80% acetonitrile
was used as solvent B. The MS scan was performed from 300 to 1800 m/z, followed by
data-dependent MS/MS scans of the 12 most intense ions, a dynamic exclusion repeat
count of two, and repeat exclusion duration of 30 s were used. The resolutions for MS and
MS/MS were 70,000 and 17,500, respectively.

2.6. Metaproteomic Data Analysis

Mass spectrometry proteomics data were deposited on 8 July 2021 to the ProteomeX-
change Consortium (http://www.proteomexchange.org) via the PRIDE partner repository

http://www.proteomexchange.org
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with the data identifier PXD027172. Peptide/protein identification and quantification,
taxonomic assignment, and functional annotations were done using MetaLab (version
1.1.0) [29]. Briefly, MetaLab automates an iterative database search strategy called MetaPro-
IQ, described in Zhang et al. (2016). The MetaPro-IQ search was based on a human
gut microbial gene catalog containing 9,878,647 sequences from https://db.cngb.org/
microbiome/genecatalog/genecatalog_human/. In MetaLab, a spectral clustering strat-
egy [29] was used for database construction from all raw files. Then the peptide and protein
lists were generated by applying strict filtering based on a false-discovery rate (FDR) of
0.01, and quantitative information for proteins was obtained with the maxLFQ (label-free
quantification) algorithm on MaxQuant (version 1.5.3.30). Carbamidomethyl (C) was set as
a fixed modification, and oxidation (M) and N-terminal acetylation (Protein N-term) were
set as variable modifications. The matching between runs option was used. Instrument
resolution was set as “High-High”. Quantified protein groups were filtered according to
the criteria that the protein appeared in >50% of the gut microbiomes for each treatment.
Protein group LFQ intensities were then log2-transformed. Functional annotations of pro-
tein groups, including COG (Clusters of Orthologous Groups) information, were obtained
using MetaLab. Functional responses, including hierarchical clustering, heatmaps, and
principal component analyses (PCA), were analyzed and visualized using R (version 4.0.2)
or Shiny apps on imetalab.ca.

2.7. Metagenomic DNA Extraction and 16S rDNA-V4 Amplicon Sequencing

Metagenomic DNA extraction from samples (RapidAIM cultures and stools) and V4-
16S rRNA gene library construction and sequencing were done as previously described [30,31].
Samples were extracted in the same randomized order as in the metaproteomic analysis.
Briefly, metagenomic DNA was extracted using beads beating, extracted DNA normalized,
and the V4-16S rRNA gene PCR amplified. Positive controls included a ZymoBiotics com-
munity standard (Cat# D6300) that was processed alongside the study samples. Negative
controls included extraction blanks and RT-PCR grade water (Ambion Cat#: AM9935) as
the template for the V4-16S rRNA PCR. We processed BAF and IBAF preparations through
our extraction/sequencing pipeline and also used pure BAF/IBAF as a template to our V4
amplicon PCR to identify potential contaminating bacteria in the BAF/IBAF preparations.
V4 PCR amplicons were normalized by mass, pooled together, sized selected, and quanti-
fied using an Agilent Bioanalyzer. The pooled library was subsequently templated and
sequenced using an IonChef and Ion Torrent Proton sequencer using the manufacturer’s
recommended protocol. The samples were partitioned between the two sequencing chips
in a randomized fashion. Two separate V4-16S rRNA amplicon libraries were constructed
for the input stool samples and included on each sequencing chip to assess reproducibility.

2.8. Processing for 16S rRNA Sequencing and Analyses

Raw sequencing reads were quality filtered and demultiplexed prior to OTU (op-
erational taxonomic unit) picking, as previously described. The demultiplexed reads
were deposited on 14 July 2021 and are available at the NCBI Sequence Read Archive
(http://www.ncbi.nlm.nih.gov/sra) under ascension PRJNA746541. QIIME 1.9.1 was used
to identify OTUs using a closed-reference strategy against the SILVA 119 database, and
the resulting data analyzed in R. Potential contaminants were removed with the decontm
package using V4 amplicon concentrations prior to pooling. OTUs were subsequently
filtered to only keep those with ≥2 counts at least 5% of the final sample dataset, and
samples were rarefied to 90,000 reads prior to analysis. Samples with less than 90,000 reads
were discarded. Differences in alpha diversities (Chao1 index and Shannon diversity)
were assessed using a Kruskal–Wallis test with Dunn’s post-hoc test. Beta diversities were
assessed using the Bray–Curtis dissimilarity, weighted Unifrac distance, and unweighted
Unifrac distance. The impact of BAF or IBAF on beta diversity clustering was assessed
with adonis function from vegan by pooling the samples for each stool donor. Potentially
differentially abundant taxa between the PBS and BAF/IBAF cultures were assessed using

https://db.cngb.org/microbiome/genecatalog/genecatalog_human/
https://db.cngb.org/microbiome/genecatalog/genecatalog_human/
http://www.ncbi.nlm.nih.gov/sra
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MaAsLin2 controlling for stool donors using the default parameters. Results were consid-
ered significant with a p-value < 0.05 and, where appropriate, after controlling for multiple
hypothesis testing using the Benjamini and Hochberg approach.

3. Results
3.1. Experimental Set-Up

In this study, we used our well-established and optimized RapidAIM (Rapid assay of
an individual microbiome) workflow to carry out both metaproteomic and metagenomic
analyses of five human gut microbiomes following in-vitro treatment with the BAFASAL®

commercial bacteriophage mixture (Figure 1). Microbiotas were harvested from the feces
of five participants (three men and two women) as proxies of their gut microbiota. In
brief, microbiota samples were derived from homogenized human feces and stabilized
in 20% (w/v) anaerobic, pre-reduced 1× PBS/10% (v/v) glycerol/0.1% (w/v) L-cysteine.
These samples were inoculated to 2% (w/v) in 1 mL of Mi-Pro optimized culture media
and incubated under anaerobic conditions at 37 ◦C for 18 h. We have shown that this
in-vitro assay maintains both gut microbiome composition and function over 24 h in
culture [21]. To evaluate the potential effects of BAFASAL® on human gut microbiota, we
compared (1) BAFASAL®-treated microbiota (BAF) to those microbiotas exposed to (2)
heat-inactivated BAFASAL® (IBAF), (3) positive control fructo-oligosaccharide (FOS), and
(4) vehicle phosphate-buffered saline (PBS; pH 7.6). Samples were cultured in triplicate
for each condition and at 2% (v/v) and 5% (v/v) concentrations, as described in materials
and methods. Following 18 h culturing, the bacterial cells were pelleted, DNA extracted
for metagenomic analyses using 16S rRNA gene-based sequencing, and proteins extracted
and digested for metaproteomic analysis, as described in materials and methods. We used
16S rRNA gene amplicon data to analyze compositional changes and metaproteomics to
focus on functional changes following gut microbiome treatments.

Figure 1. Experimental Set-Up. Microbiotas were harvested from the feces of five participants
(3 men and 2 women) as proxies of their gut microbiota. Samples were derived from homogenized
human feces stabilized in 20% (w/v) anaerobic, pre-reduced 1× PBS/10% (v/v) glycerol/0.1% (w/v)
L-cysteine. Samples were inoculated to 2% (w/v) in 1 mL of Mi-Pro optimized culture media and
incubated under anaerobic conditions at 37 ◦C for 18 h. To evaluate the potential effects of BAFASAL®

on human gut microbiota, we compared (1) BAFASAL®-treated microbiota (BAF) to those microbiotas
exposed to (2) heat-inactivated BAFASAL® (IBAF), (3) fructo-oligosaccharides as a positive control
(FOS), and (4) phosphate-buffered saline (PBS; pH 7.6) as a negative control in triplicate and at
two concentrations, as defined in materials and methods. Following culturing, microbial cells were
pelleted and frozen until further analysis. DNA was extracted for metagenomic analyses using 16S
rRNA gene-based sequencing and proteins extracted and digested for metaproteomic analysis, as
described in materials and methods. Bioinformatic analysis was used to determine gut microbiome
compositional and functional changes in response to treatment.
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3.2. Microbial Biomass

We firstly assessed whether BAFASAL® addition would impact the ability of human
microbiotas to grow in-vitro. As a gross measure for tracking increases in microbial biomass,
we measured the amount of metagenomic DNA extracted for each individual under the
different treatments (Figure 2). For all individuals, biomass did not differ following either
BAF or IBAF treatments. Nor did these treatments differ when compared to the PBS
vehicle control for our positive treatment FOS. In contrast, almost all individuals showed
reduced bacterial biomass upon FOS treatment. This biomass reduction is likely due to
the production of short-chain fatty acids that acidified the medium and inhibited specific
microbes’ growth.

Figure 2. BAFASAL® treatment does not impact microbial biomass after 18 h of in-vitro growth. Microbial biomass
expressed as the quantity of metagenomic DNA (ng/uL) extracted for each donor and each treatment. Donors are plotted
separately, and the high/low treatments combined. Statistical differences were assessed using Kruskal–Wallis test with
Dunn’s multiple comparison post-hoc test. * p < 0.05, ** p < 0.01.

3.3. Compositional Analyses
3.3.1. RapidAIM and Sequencing Library Reproducibility

We assessed the reproducibility of the sequencing reactions by comparing the human
gut microbiome profiles of the stool samples that were sequenced on both chips for high
and low doses. Principal coordinate analysis (PCoA) using the Bray–Curtis dissimilarity
revealed that the individual stools clustered tightly together in a donor-dependent manner
(Figure S1A) with essentially no separation between the two sequencing chips. Moreover,
we assessed the reproducibility of the RapidAIM culturing assay by comparing the PBS
replicates between the high/low dose conditions, as these would be expected to show few
differences. This analysis revealed little separation between the two culturing conditions
(Figure S1B), with the samples again segregating primarily by an individual. Finally, our
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commercial standards revealed that we could detect all the genus present in this mix and
could distinguish between the closely related Escherichia coli and Salmonella enterica present
in the standard (Figure S1C).

3.3.2. Microbial Diversity Analyses

We next evaluated whether BAFASAL® impacted microbial alpha diversity. Species
richness (Figure 3A) and diversity (Figure 3B) did not differ significantly among BAF,
IBAF, and PBS treatments at either dosing level. Treatment with FOS lowered the overall
diversity at high concentrations but had no impact on overall species richness.

Figure 3. BAFASAL® treatment does not impact microbial alpha diversity. Species richness (A) and diversity (B) were
assessed for each treatment group. There was no difference in between the groups except for lowered species diversity in
the high FOS concentration. Statistical differences assessed using a Kruskal–Wallis test with Dunn post-hoc test. * p < 0.05.

We subsequently compared the microbiota beta diversity profile for all RapidAIM
assayed samples (BAF, IBAF, PBS, and FOS, at both high and low doses; Figure 4). This
analysis revealed that samples from a given individual formed their own cluster regardless
of treatment, underscoring each individual’s highly personalized microbiota and the need
to assess microbial responses on a personalized level.

Figure 4. Principal coordinate analysis of the RapidAIM cultures reveal the highly personalized
nature of human gut microbiomes. All RapidAIM assay microbiota results were analyzed using
Principal coordinate analysis of the Bray–Curtis dissimilarity. This analysis revealed that each donor
formed its own cluster, demonstrating the highly personalized nature of human gut microbiomes and
the requirement for high-throughput in-vitro assays to assess microbial responses on a personalized
level.



Viruses 2021, 13, 1734 9 of 17

Comparing the microbiota profiles for each individual’s treatments separately revealed
that BAF and IBAF treatments did not result in major changes in the overall microbial
community for any of the participants (Figure 5). This is in contrast with FOS treatment,
which resulted in clear shifts in microbiota community composition for each individual.
Notably, the lack of separation between the BAF, IBAF, and PBS communities persisted even
after removing the FOS samples (Figure S2) or when assessing the microbial communities
using either weighted or unweighted Unifrac distances (data not shown).

Figure 5. Principal coordinate analysis of RapidAIM cultures from each donor reveals that BAFASAL® treatment has
minimal impact on microbial composition. RapidAIM assays from each donor were analyzed separately using principal
coordinate analysis of the Bray–Curtis dissimilarity and plotted as separate panels. This analysis reveals the large impact
that FOS treatment has on patient microbiotas that could be obscured by high interpatient variability (Figure 4). There were
no apparent differences between the PBS and BAFASAL®/inactivated BAFASAL® treatments.

3.3.3. Compositional Differences

We could not identify significantly differentially abundant taxa between the BAF-,
IBAF-, and PBS-treated samples. This was true whether analyzing the high and low dosing
regimens separately or by pooling the two dosing groups together. As BAF specifically
targets Salmonella, we then focused on the abundances of related genera in the Enterobacteri-
aceae family. There were no apparent differences between the dominant Enterobacteriaceae
genera in the BAF-, IBAF-, and PBS-treated cultures (Figure S3). In contrast with the above
results, there were differences between the PBS- and FOS-treated samples that mirror pre-
viously reported results, such as increased Bifidobacteria genera (data not shown). Notably,
and as expected, FOS treatment reduced the levels of several Enterobacteriaceae family
members, such as Escherichia genera.

3.4. Functional Analyses

Metaproteomic functional analyses were based on data from the MS/MS spectra
collected with an average identification rate of 40.77%, with 1,364,000 MS/MS submitted
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and 556,283 identified. In total, 65,760 peptides were identified and quantified that mapped
to 16,064 proteins across the 60 samples.

3.4.1. Metaproteomic Assessed Responses to BAFASAL®

To examine similarities and differences in protein expression following BAF, IBAF,
PBS, and FOS treatments of the five human gut microbiomes, we applied hierarchical
cluster analyses for proteins identified in >50% of all samples (Q50) (Figure S4, Panels
A (low dose) and B (high dose)). As expected, quality control (QC) samples clustered
together. While an individual’s gut microbiome samples clustered together, clustering
did not occur among BAF-, IBAF-, and PBS-treated gut microbiomes for an individual’s
samples at either dose. Meanwhile, our FOS positive control induced significant shifts
in protein abundances for each individual’s gut microbiome, resulting in their clustering
at both low and high doses. In fact, high-dose FOS treatment shifted protein expression
patterns such that FOS-treated gut microbiomes between individuals clustered together
and moved further away from their corresponding control-treated PBS gut microbiomes
(Panel B).

Principal component analysis (PCA) of those quantified protein groups (Q50) revealed
that gut microbiome samples from an individual clustered together, showing again in-
terindividual gut microbiome differences (Figure 6). No clustering occurred among BAF-,
IBAF-, and PBS-treated gut microbiomes for any individual and at either low (Panel A)
or high (Panel B) doses while QC samples clustered tightly. At low dose, FOS-treated
gut microbiomes formed a sub-cluster within an individual’s larger cluster (Panel A). At
higher doses an individual’s sample treated with FOS separated from its BAF-, IBAF- and
PBS-treated samples along principal component axis 1, again indicating the variations
induced by high-dose FOS treatments were greater than gut intermicrobiome variations
(Panel B).

Figure 6. Principal component analyses of protein groups demonstrate the unique pattern of an individual’s protein
expression profile and absence of BAFASAL® impact. Panels A,B show principal component analyses (PCA) at the protein
level per sample and for low and high doses, respectively. Colors indicate volunteer samples and shapes treatment as
shown to legends on the right of each panel. Note: Only those protein groups that have non-zero values in >50% of samples
were used for analyses (Q50).

3.4.2. Functional Responses to BAFASAL®

We studied the functional distribution of identified human gut microbiome proteins
and any changes induced with treatment via functional hierarchical clustering (Figure S5)
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and PCA (Figure 7). Functional annotation of the protein groups using Clusters of Orthol-
ogous Groups (COGs) database did not reveal functional changes among BAF-, IBAF-,
and PBS-treated gut microbiomes for an individual and at either low (Panels A) or high
dose (Panels B) treatment. Quality control samples clustered tightly together, as expected.
Similar to clustering observed for protein-level analyses, at low doses, FOS-treated gut
microbiomes formed a sub-cluster usually within an individual’s cluster (Figure 7, Panel A).
Samples treated with FOS at higher doses separated from other samples along principal
component axis 1, indicating again that the functional variations induced by high-dose
FOS were greater than gut intermicrobiome functional variations (Figure 7, Panel B).

Figure 7. Principal component analyses of clusters of orthologous groups (COGs) demonstrate the unique pattern of an
individual’s functional metaproteomic profile and absence of BAFASAL® impact. Principal Component Analyses—COGs.
Panels A,B show principal component analyses (PCA) using COGs per sample and for low and high doses, respectively.
Colors indicate volunteer samples and shapes treatment as shown to legends on the right of each panel. Note: Only those
COGs that have non-zero values in >50% of samples were used for analyses (Q50).

Supplemental Figures 6–8 illustrate the abundance distribution of major functional
categories, including translation, amino acid metabolism, carbohydrate metabolism, lipid
metabolism, and energy metabolism. There were no significant changes for any individual
nor dosage when comparing BAF-, IBAF-, and PBS-treated gut microbiomes for diverse
COGs, such as translation, ribosomal structure, and biogenesis; amino acid transport and
metabolism; lipid transport and metabolism; nucleotide transport and metabolism; carbo-
hydrate transport and metabolism; and energy production and conversion. In contrast,
the FOS positive control had significant effects on multiple COG categories, including
increased functional categories of translation and amino acid metabolism; decreased lipid
transport and metabolism; increased nucleotide transport and metabolism; increased car-
bohydrate transport and metabolism, and increased energy production and conversion, all
at low and high doses with inter-individual variation and responses.
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Figure 8. Taxonomic analyses at the phylum level demonstrates the unique composition of an individual’s gut microbiome
via metaproteomic profiling and absence of BAFASAL® impact. Stacked bar representation from label-free quantification of
protein groups assigned to phylum (Panel (A), low dose, and Panel (B), high dose) expressed as percentages. Individual gut
microbiomes are grouped, and the phylum are identified by colored bars, as indicated in key below panels.

3.5. Metaproteomic Comparative Taxonomic Analyses

Additionally, and complementing our 16S analyses, we performed comparative taxo-
nomic analyses at phylum (Figure 8) and genus levels (Figure 9) using quantified peptides
in metaproteomics. No phylum-level changes were observed at either low (Panel A) or high
(Panel B) doses among BAF-, IBAF-, and PBS-treated gut microbiomes for an individual
(Figure 8). Several phyla abundances were significantly increased in FOS-treated versus ve-
hicle PBS-treated gut microbiomes, including Actinobacteria, as expected and documented
in the literature [22]. Similarly, no obvious genus-level changes were observed at either low
(Panel A) or high (Panel B) doses among BAF-, IBAF-, and PBS-treated gut microbiomes
for an individual (Figure 9). However, FOS treatment increased Bifidobacterium as expected
and documented in the literature [22].

Figure 9. Taxonomic analyses at the genus level demonstrates the unique composition of an individual’s gut microbiome
via metaproteomic profiling and absence of BAFASAL® impact. Stacked bar representation from label-free quantification of
protein groups assigned to genus (Panel (A), low dose, and Panel (B), high dose) expressed as percentages. Individual gut
microbiomes are grouped, and the top 11 genus are identified by colored bars as indicated in key below panels.
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4. Discussion

This study aimed to examine the effects of the BAFASAL® agricultural bacteriophage
mixture on human gut microbiome function and composition using an in-vitro RapidAIM
platform. In particular, we were interested in whether this agricultural bacteriophage
mixture, used as a feed additive in poultry farming to prevent and eliminate Salmonella,
would display off-target effects on the human gut microbiome. It has been reported
that BAFASAL® significantly reduces Salmonella levels in poultry, reducing mortality
and improving feed conversion rates [12]. These types of therapeutic and prophylactic
agricultural bacteriophages are important tools to address the critical, on-going need
to maintain food safety, improve the health of animals in our food chains, and reduce
human morbidity and mortality due to consumption of contaminated food. Bacteriophage
development and studies regarding their safe introduction into our food chain have been
prompted in light of growing antimicrobial resistance and the environmental pollution
caused by decades-long, wide-spread antibiotic use in the food industry [4].

Bacteriophages, as self-replicating and self-limiting agents, are generally regarded
as safe. A bacteriophage preys on specific bacterial strains due to their specificity in
recognizing particular receptors on target bacteria [7]. Additionally, virulent bacteriophages
that exhibit only a lytic mechanism of replication, of which BAFASAL® is composed,
are desirable as therapeutics since once their target bacteria are infected and lysed, the
bacteriophages themselves become self-limiting. To date, rodent models have been used
extensively to examine bacteriophage safety as therapeutics in medicine and agriculture.
Oral administration of different anti-Salmonella bacteriophage mixtures into mice did not
result in gross clinical changes or mortality [12,32]. Additionally, mice treated with a
bacteriophage therapeutic against E.coli also did not exhibit any toxic effects [33].

Herein, we determined whether the bacteriophage mixture BAFASAL®, proven ef-
fective against Salmonella sp. in poultry, would affect the human gut microbiome using
our novel multi-omics RapidAIM approach against healthy adult gut microbiomes. The
16S rRNA gene sequencing captured compositional changes and was complemented by
proteomics analyses that, in addition to providing confirmatory information on taxonomic
abundances, can accurately quantify expressed proteins and assess functional changes.
It was important to use both approaches, as our previous work demonstrated that bacte-
rial function could change and shift in response to a stimulant without a change in the
abundance of bacteria [20].

As a gross measure of BAF potential impact on gut microbiota, we showed that total
biomass was unaffected compared to IBAF-treated gut microbiomes (Figure 2). Nor did
it differ from our PBS-treated negative control. In contrast, FOS-treated gut microbiome
biomasses were lower than all other groups, suggesting FOS treatment depresses selective
or general gut bacterial growth. Microbial richness and diversity were unaffected by BAF
treatments (Figure 3), while FOS treatment reduced microbial richness, likely due to specific
microbes thriving when using this carbon source and suppressing the growth of competi-
tors. Similarly, only FOS significantly affected beta-diversity metrics for each individual
gut microbiome, while BAF-treated gut microbiomes were indistinguishable from their
corresponding heat-inactivated and PBS-treated gut microbiomes (Figures 4 and 5). Over-
all, metagenomics using 16S rRNA amplicon analyses did not reveal significant changes
in the composition or abundances of the gut microbiomes obtained from any of the five
healthy adults following 18-h culture with BAF at two concentrations in comparison to
IBAF or PBS. These results differed from the FOS positive control, which resulted in the
expected and documented increases in Bifidobacteria genera and reduced levels of several
Enterobacteriaceae family members (Figure S3) [22,23].

Hierarchical clustering of microbial proteins did not reveal shifts in protein abun-
dances among BAF, IBAF, and PBS treatments at either dose for any individual gut mi-
crobiome tested, while FOS treatment induced changes in protein expression so that
these samples clustered at both low and high doses. In fact, at high dose, FOS treatment
protein-abundance changes overcame intraindividual clustering (Figure S4). Likewise,
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PCA analyses did not detect any shifts in protein differences in BAF, IBAF, and PBS treat-
ments at either dose, while low-dose, FOS-treated gut microbiomes separated from their
individual gut microbiome, and at high dose, those FOS-induced changes were increased
to the level that would overcome interindividual differences (Figure 6). Collectively, these
analyses did not reveal any significant shifts in protein abundance with BAF treatment.
Results from FOS treatments established the utility of the metaproteomic branch of the
RapidAIM assay to reliably and reproducibly detect expressed protein-abundance changes
and that dose-dependent effects can be measured and differentiated. Quantified protein
groups were assigned to functional pathways to examine whether microbial function differs
with BAF treatment (Figure 7). There were no differences detected under BAF treatment
(Figures S6–S8), while FOS-treated gut microbiomes show predicted changes from past
metagenomic studies [22,23]. Metaproteomic assessment of phylum- and genus-level
abundances in the presence of BAF treatment were similar to IBAF- and PBS-treated gut
microbiomes. Overall, metaproteomic analyses did not reveal obvious protein abundance
changes nor functional changes of the gut microbiomes obtained from any of the five
healthy adults following 18-h culture with BAF at two concentrations and in comparison to
IBAF or PBS. Meanwhile, our control FOS showed the expected and documented changes,
such as increases in Actinobacteria and decreases in Proteobacteria (Figures 8 and 9) [22,23].

The gut microbiome composition of humans has a definite impact on health and
disease. The gut is an important milieu where the host, pathogens, and foods interact. Shifts
in our gut microbiome due to diet, treatments, therapies, and antibiotics can be correlated
with diseases. As such, food industry leaders and government regulators are closely
studying the impact of food processing, additives, etc., on the gut microbiome. Antibiotics,
especially broad-spectrum antibiotics, have profound effects on the gut microbiota. We have
recapitulated and documented these effects previously using the RapidAIM platform [20].
Bacteriophages are very abundant in human guts as stable members of our niche microbiota,
with estimates of 1012 bacteriophages per gram found in our feces. Many are lysogenic
phages, and replication only occurs in their bacterial hosts. Nonetheless, it is vital to
understand whether bacteriophages introduced and used as therapies in, for instance,
agriculture, could make their way into the human intestinal system and have significant
off-target effects. Agricultural workers may be uniquely at risk for any effects of these new
therapies and prophylactics as they may be exposed to agricultural residues with residual
bacteriophage from the feed.

The RapidAIM platform as utilized in this study provided an opportunity to investi-
gate the effects of the bacteriophage mixture BAFASAL® on human gut microbiota and
on an individual basis. To our knowledge, this is the first study of this kind to measure
the response of the human gut microbiome to a bacteriophage-based product. That we
measured responses on an individual basis is a strength of this in-vitro assay, as studies
show our gut microbiomes are as unique as their hosts and can respond differentially
to stimuli. Indeed, we have previously shown how individual gut microbiomes vary in
their response to drug treatments [20]. As well, we used a multi-omics approach em-
ploying both 16S rRNA gene sequencing and metaproteomics to investigate the effects
of BAFASAL® on both human gut microbiome composition and function. Notably, the
RapidAIM platform is amenable to metabolomics that could be advantageous in future
studies, providing additional information on the functional capacity of a microbiome and
the effects of stimulation/treatment. Technologies such as single amplified genome (SAG)
sequencing could be used following RapidAIM to identify responders at the species level.
This has been successfully employed in mice to identify insulin responders from their
gut microbiota [34]. Finally, we examined five individual gut microbiomes’ responses to
BAFASAL® in this pioneering study; however, the RapidAIM platform is scalable to a
large number of individuals, can be modified for pooled effects, and can simultaneously
screen large numbers of compounds. In this study, we utilized the RapidAIM platform
and demonstrated that BAFASAL® did not affect gut microbiome composition nor gut
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microbiome function from the five individual participants and suggested that results from
such an assay can be added to therapeutic and prophylactic bacteriophage safety profiling.

5. Conclusions

The goal of our study was to utilize RapidAIM, a novel, in-vitro assay of the gut
microbiome, to assess the effect of BAFASAL® bacteriophage preparation on our gut micro-
biota. In this multi-omics study, including 16S rRNA gene sequencing and metaproteomics,
we showed that BAFASAL® does not affect healthy human adult gut microbiomes’ com-
position and function. This study also highlights the value of the RapidAIM assay as a
tool/platform to rapidly measure whether or not novel antibacterial solutions, including
bacteriophage-based products, affect our niche gut microbiota ecology.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13091734/s1, Figure S1: RapidAIM assay and sequencing pipeline generate reproducible
results; Figure S2: Principal coordinate analysis of RapidAIM cultures from each donor reveals that
BAFASAL® treatment has minimal impact on microbial composition; Figure S3: BAFASAL® has
no apparent impact on the abundances of Enterobacteriaceae genera; Figure S4: Sample clustering
at the protein level does not support an effect for BAFASAL® on human gut microbiome protein
expression; Figure S5: Sample clustering at the functional level does not support an effect for
BAFASAL® on the human gut microbiome; Figure S6: Abundance distribution of major functional
categories via clusters of orthologous groups (COGs) analyses for translation, ribosomal structure
and biogenesis, and amino acid transport and metabolism; Figure S7: Abundance distribution of
major functional categories via clusters of orthologous groups (COGs) analyses for lipid transport
and metabolism and nucleotide transport and metabolism; Figure S8: Abundance distribution of
major functional categories via clusters of orthologous groups (COGs) analyses for carbohydrate
transport and metabolism and energy production and conversion.
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