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Abstract: HIV-1 is a fast-evolving, genetically diverse virus presently classified into several groups
and subtypes. The virus evolves rapidly because of an error-prone polymerase, high rates of
recombination, and selection in response to the host immune system and clinical management of
the infection. The rate of evolution is also influenced by the rate of virus spread in a population
and nature of the outbreak, among other factors. HIV-1 evolution is thus driven by a range of
complex genetic, social, and epidemiological factors that complicates disease management and
prevention. Here, we quantify the evolutionary (substitution) rate heterogeneity among major HIV-1
subtypes and recombinants by analyzing the largest collection of HIV-1 genetic data spanning the
widest possible geographical (100 countries) and temporal (1981–2019) spread. We show that HIV-1
substitution rates vary substantially, sometimes by several folds, both across the virus genome
and between major subtypes and recombinants, but also within a subtype. Across subtypes, rates
ranged 3.5-fold from 1.34 × 10−3 to 4.72 × 10−3 in env and 2.3-fold from 0.95 × 10−3 to 2.18 × 10−3

substitutions site−1 year−1 in pol. Within the subtype, 3-fold rate variation was observed in env
in different human populations. It is possible that HIV-1 lineages in different parts of the world
are operating under different selection pressures leading to substantial rate heterogeneity within
and between subtypes. We further highlight how such rate heterogeneity can complicate HIV-1
phylodynamic studies, specifically, inferences on epidemiological linkage of transmission clusters
based on genetic distance or phylogenetic data, and can mislead estimates about the timing of
HIV-1 lineages.

Keywords: HIV-1; phylogenetics; evolutionary rate; subtypes

1. Introduction

HIV-1 is one of the deadliest pathogens known to mankind. Since the 1980′s, the
virus has claimed >30 million lives and infected >75 millions worldwide [1]. The in-
troduction of antiretroviral therapy (ART) around 1995 significantly lowered the HIV-1
mortality rate (from 1.95 million deaths in 2006 to 0.95 million in 2017) [2]. However, HIV
prevalence has continued to rise steadily, especially in Sub-Saharan Africa (SSA) [3]. The
development of an effective global vaccine is ongoing [4], but is challenged by the rapid
evolution and recombination of HIV resulting from a combination of genetic, social, and
epidemiological factors.

For example, the HIV-1 reverse transcriptase enzyme lacks proof reading ability and
generates significant genetic diversity due to mutations during essentially every round
of replication [5]. These mutations are then subjected to different evolutionary pressures
exerted by the host immune system and clinical management, which select for immune
and drug-escape variants [6,7]. In turn, recombination can not only produce chimeric
lineages from existing lineages that have evolved within a single infected person, but also
among different subtypes in co-infected persons. These recombinants can cause their own
outbreaks, and rise to high prevalence, as seen in several countries [8]. At the population
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level, natural selection favors strains that are more transmissible between hosts [9]. This
selection pressure can offset some of the within-host evolution that is geared towards
adapting to a single host and results in differences in the estimates of evolutionary rates
between within- and between-host levels [9–11]. In addition, the rate of epidemic spread
is inversely correlated to virus evolution and faster epidemics, such as in people who
inject drugs, typically transmitting highly-similar viruses and, therefore, a slower rate of
evolution [12,13]. Thus, HIV-1 evolution is driven by a range of factors involving virus
replication enzymes, human immune response, access and cost of ART, social behavior,
and population demographics, resulting in an immense genetic diversity among HIV-1
sequences worldwide.

In this study, we calculated the evolutionary (substitution) rates for major subtypes
and circulating recombinant forms (CRFs) of the HIV-1 M group, which is responsible for
the major AIDS pandemic. In theory, the evolutionary rate should encompass the rate
of mutations, substitutions (mutations that become fixed in a population), insertions and
deletions (indels), recombination, inversions, and duplications, among other evolutionary
events. However, calculation of all these processes is not straightforward, though some
success has been achieved in estimating indel rate variation in the hypervariable env loop
regions [14]. Therefore, while we use the terms evolutionary and substitution rate inter-
changeably throughout this manuscript, in reality, the analysis describes substitution rate
heterogeneity in the HIV-1 M group. To accomplish this task, we performed a systematic
analysis of the pol and env genetic regions that are subject to ART and host immune re-
sponse selection pressures, and thus have clinical and historical significance. We aimed to
include a large number of subtypes/CRFs in our analysis and collected maximum genetic
data covering the widest possible temporal (1981–2019) and geographical (100 countries)
range. We uncovered significant rate heterogeneity both between and within subtypes that
has implications for the phylogenetic and phylodynamic studies of HIV-1. For example,
not accounting for rate heterogeneity may mislead inferences of epidemiological events
in phylodynamic analyses and can bias the estimates about the origin of major HIV-1
lineages [15]

2. Materials and Methods
2.1. Data Retrieval

We downloaded a total of 165 env and 207 pol datasets from the Los Alamos HIV
database (27 August 2020) [16]. These datasets included pol and env genetic sequences from
all known subtypes, CRFs, and unique recombinant forms (URFs) of the HIV1-M group.
All sequences that included the env HXB2 coordinates (6813–7376, C2-V3-C3 region, 564 bp)
and pol HXB2 coordinates (2253–3308, 1056 bp) were included. These coordinates were
chosen to ensure both a broader sampling across subtypes and CRFs (Figures S1 and S2)
and keeping in mind their clinical and historical significance. Moreover, the choice of
the C2-V3-C3 env region was partly inspired by a recent analysis by Palmer and Poon
(2019) who calculated indel rates in env across major HIV-1 subtypes and CRFs [14], and
partly by this region’s demonstrated epidemiological accuracy and popularity in past
phylogenetic studies [17]. The HIV-1 M surface envelope glycoprotein (gp120) is notorious
for accumulating indels, especially in the regions around the so-called variable loops
(V.1–V.5). Palmer and Poon (2019) showed that V3 accumulates the least and shortest
indels, relative to other variable regions [14]. The V3 mediates HIV entry by binding to
the host co-receptors. There is therefore stronger selection pressure on V3 to maintain its
overall structure and it is thus better suited for inferring substitution rate heterogeneity
relative to other env variable regions. For all downloaded sequences, we also retrieved
metadata about the geo-region (country) of sampling, risk factor, sampling date, HIV
treatment status, patient ID, and if the sequence was a member of a previously established
epidemic cluster (outbreak).
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2.2. Data Filtering and Quality Control

Sequence records without sampling dates or coded as problematic (i.e., hypermutants,
unique recombinants, or synthetic sequences) were excluded. Moreover, only a single
sequence from those appearing in multiple publications was kept. To ensure that we
captured the desired regions of interest, all records were pairwise aligned with the HXB2
reference genome and trimmed at the specified coordinates to generate partial pol and
env records. Records that contained >10% gaps were removed. These steps provided
us with a total of 78,290 partial pol and env sequences sampled from 100 countries and
covering nearly four decades of sequencing effort (1981–2019). The LANL HIV database
included 110 sequences of subtype A, in addition to A1 and A2. Subtype A sequences
were therefore re-subtyped using the online COMET HIV-1 tool [18] and pooled with
either A1 or A2 depending upon the assignment. Subtype B was the largest dataset
in our analysis (26,566 pol and 16,271 env sequences). For ease of computation, and to
minimize any possible confounding or population structure effects from B genetic variants
circulating in Asia (e.g., Thai-B or Korean-B) [19], we initially restricted the analysis to B
sequences from non-Asian countries, primarily from North America and Europe. Next,
we shortlisted seven subtypes and two CRFs that had both pol and env genetic data from
at least 10 different years. These included subtypes A1, A6, B, C, D, F1, and G, as well as
CRFs 01_AE and 02_AG that collectively encoded a total of 58,903 sequences (i.e., 75% of
the original data). For these datasets, we further removed duplicate/identical sequences
(keeping only the earliest record) and kept only one sequence record per patient per year,
when the patient ID was known. Similarly, only the earliest sequence from each labeled
epidemic cluster was kept.

2.3. Dataset Sub-Sampling

Different biological, epidemiological, and social factors can contribute to evolutionary
rate heterogeneity among HIV-1 subtypes and CRFs. To fully capture such variability,
we reconstructed 100 time-scaled phylogenetic trees for each subtype and CRF, each tree
containing no more than randomly sampled 100 taxa. First, we randomly sampled no
more than 50 sequences from each year for each subtype/CRF. This step reduced the
size of some extremely large datasets corresponding to highly-prevalent or well-studied
subtypes such as B and C. Second, we randomly drew no more than 100 sequences from
each subtype/CRF, while ensuring all sampling years were represented. In other words,
each year contributed at least one sequence. We iterated this approach 100 times to yield
100 datasets for each subtype and CRF and, in total, 900 datasets each for pol and env, each
containing no more than 100 sequences from all sampling years. The sub-sampling strategy
provided two major benefits: (i) by restricting to no more than 50 sequences per year, we
ensured that we did not overly sample from some of the recent years for which many more
sequence records are now available due to the recent revolution in the ease and low cost of
genome sequencing, and (ii) by drawing a fixed number of no more than 100 sequences
per subtype/CRF, we minimized any biases resulting from incomplete or over-sampling
that can disturb the temporal signal in the genetic data for calculation of time-scaled
phylogenies [20]. For well-sampled subtypes, there is little chance of a sequence repeating
across multiple samples. For subtypes with fewer sequences, however, some sequences
can occur in several resamplings making sets not entirely independent from each other.

2.4. Phylogenetic Tree Reconstruction

We aligned the 1800 datasets using MAFFT (version 7.471) [21] (-auto option to de-
termine the optimal alignment strategy depending on the size of the dataset). In parallel,
we retrieved the pol and env alignments for four SIVs (chimpanzee immunodeficiency
viruses) from the LANL HIV database to use as outgroups (accession numbers: AF103818,
AF382828, AJ271369, and X52154). The pol and env coordinates for outgroups matched the
pol and env coordinates for HIV-1M datasets. We used the MAFFT–merge function to merge
the outgroup and ingroup alignments. The alignments were trimmed to remove sites con-
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taining >50% gaps using TRIMAL (version 1.4) [22]. We used IQ-TREE (version 2.0.3) [23]
to estimate the maximum likelihood (ML) phylogenetic trees for our datasets. We ran
10 independent tree searches, stopping after 500 unsuccessful iterations in each search, and
specified the GTR+G+I substitution model for all searches. We rooted the trees on the
branch leading to the SIV outgroup.

2.5. Phylogenetic Tree Dating

We used the Least Squares Dating (LSD) program (version 2.0) [24] to estimate the
evolutionary rates and dates on the best-scoring ML tree. The LSD program was used
as follows: the variance option was set to ‘2’ to run two iterations and to use the branch
lengths calculated in the first run to recalculate variances of the branch lengths in the
second run. This step is recommended to minimize any effects of potentially long (e.g.,
outgroup) branches. Furthermore, sequences deemed as outliers (>3 Z-units) by LSD (e.g.,
weak correlation between sampling dates and phylogenetic placement) and SIV outgroups
were removed prior to computing evolutionary rates. Moreover, we set the -u and -l options
to 0 to avoid collapsing short branches. This step improves evolutionary rate estimates
when the trees contain several short branches. We calculated the 95% confidence intervals
(CIs) from 100 samples and specified the lognormal relaxed clock standard deviation to
0.4, previously suggested appropriate for HIV-1 [24]. We set the verbose option to true to
also get the root-to-tip (RTT) regression data for all trees and to estimate the relationship
between genetic divergence and sampling time for all datasets. Trees where the RTT slope
was negative (a total of 39 out of 1800 reconstructions, 2.16%) were excluded from the
downstream analysis.

2.6. Tip-Date Randomization Test

It is important to verify the existence of a temporal signal in genetic datasets prior
to tree dating (i.e., that a positive correlation exists between virus genetic divergence and
sampling time). While RTT is a good diagnostic tool to identify problematic sequences and
outliers that deviate significantly from a linear model, it is probably (and statistically) inap-
propriate for phylogenetic data, as all data points have evolved from a common ancestor
and hence are dependent [25]. This fact questions the reliability of regression estimates in
the standard linear regression models. We therefore re-calculated the substitution rates on
the ML trees by randomizing the tip dates within the ingroup. We compared the estimates
from random trees versus the actual trees to verify the existence of a temporal signal in
genetic datasets.

2.7. Rate Autocorrelation Test

We used the CorrTest program [26] to test the null hypothesis that the evolutionary
rate is independently distributed across tree branches against the alternative hypothesis
that rates are not independently distributed.

2.8. Leave-One-Out (LOO) Cross-Validation

We performed LOO cross-validation to evaluate how the subtype/CRF evolutionary
rates differed from the global HIV-1M rate. For this purpose, we generated 100 LOO
datasets for each subtype and CRF. By definition, the LOO datasets included genetic
sequences from all subtypes and CRFs, except the subtype/CRF of interest. Next, we gen-
erated time-scaled phylogenies for each LOO dataset and calculated a mean evolutionary
rate for each tree. A total of 1800 LOO trees were reconstructed, out of which 1766 (98.1%)
passed the RTT and other quality-control tests, described above. Since the LOO datasets
included significantly more data (i.e., up to 800 tips in each tree), we performed only a
single IQ-TREE search, stopping after 100 unsuccessful iterations. Other settings were
kept unchanged. Next, we used the R package overlapping (version 1.6) [27] to estimate the
overlapping percentage between the estimated density distributions for the evolutionary
rates for subtype/CRF of interest and their corresponding LOO trees.



Viruses 2021, 13, 1689 5 of 15

2.9. Exploration of Population Structure in Time-Scaled Phylogenies

We used the R package treestructure (version 0.1.1) [28] to reveal the underlying popula-
tion structure in subtype B time-scaled phylogeny. The program was run at 0.005 significance
level using a minimum clade size threshold of 50 tips. Treestructure rank-sum test was used
to evaluate if the two partitions had evolved under the same coalescent process.

3. Results
3.1. Substantial Substitution Rate Heterogeneity between HIV-1 Subtypes and CRFs

We calculated the evolutionary (substitution) rates in partial pol and env genes for nine
major HIV-1 M-group subtypes and CRFs that qualified our filtering criteria (see Methods).
The median substitution rate for pol across all subtypes/CRFs and tree reconstructions
was 1.36 × 10−3 substitutions site−1 year−1 (ssy) (Figure 1A) compared to 3.10 × 10−3 ssy
for env (Figure 2A), confirming faster evolution of env, which is well-known to be under
diversifying selection in response to host immune surveillance. For pol, the median sub-
stitution rates differed by 2.3-fold among subtypes and CRFs, from 0.95 × 10−3 ssy in
subtype D to 2.18 × 10−3 ssy in subtype A6 (p < 0.001, two-tailed Mann–Whitney test)
(Figure 1B). The difference was even more profound in env, where median rates ranged
from 1.34 × 10−3 ssy in subtype F1 to 4.72 × 10−3 ssy in subtype G, indicating a roughly
3.5-fold difference (p < 0.001, two-tailed Mann–Whitney test) (Figure 2B).

In both genes, we could initially classify subtypes as either fast or slow-evolving
relative to the global medians (see dotted horizontal lines in Figures 1B and 2B). For
example, in pol, we classified subtypes A6, F1, G, and CRF 01_AE as fast-evolving, and
the rest as slow-evolving (Figure 1B). To validate these classifications, we performed LOO
cross-validation and calculated an overlap between the estimated density distributions
of the calculated evolutionary rates for each subtype/CRF versus their corresponding
HIV-1M (LOO) trees (Figures S3 and S4). The LOO cross-validation revealed that except
subtype G and CRF 01_AE, all other subtypes and CRFs indicated a less than 20% overlap
in the estimated pol evolutionary rates for subtype/CRF versus HIV-1M (LOO) analyses
(Figure S3). For example, we noticed a 0% overlap between the slowest-evolving subtype
D and HIV-M and only an 8% overlap between the fastest-evolving sub-subtype A6 and
HIV-1M (Figure S3). Similarly, in env, we initially classified G, 02_AG, A6, and A1 as fast-
evolving, and the rest as slow-evolving (Figure 2B). The LOO cross-validation confirmed
that the overlap for the fast-evolving 02_AG, A6, and A1 was less than 20% relative to
HIV-1M (Figure S4). However, the overlap ranged from 26–77% for the rest, indicating
that these rates did not, on average, deviate significantly from the HIV-1M rates. Overall,
the LOO cross-validation confirmed the existence of subtype specific evolutionary rates
in both pol and env, especially for the fast-evolving subtypes and CRFs. Taken together,
subtype A6 was classified as fast-evolving in both pol and env analyses (Figures 1 and 2)
and indicated very little (8–11%) overlap compared to LOO trees (Figures S3 and S4).
Interestingly, subtype B was classified as slow-evolving in both Figures 1 and 2 and had
only 2% overlap with LOO trees in pol (Figure S3) but a 26% overlap with LOO trees in env
(Figure S4).

The tip-date randomization test verified the existence of a strong temporal signal
in the original trees for all comparisons (p < 0.05, two-tailed Wilcoxon signed-rank test
for paired samples). Moreover, except A1 in pol, >50% of trees in all datasets, passed the
RTT test (Figures 1C and 2C, Table 1). Similarly, other than A1 and A6 in pol, none of
the remaining datasets indicated evidence for autocorrelated rates (Figures 1D and 2D).
The calculated rates are therefore well-supported by multiple diagnostic measures (see
Table 2 for substitutions rates after removing trees with poor RTT signal). Overall, the
analysis revealed substantial substitution rate variation both across different genes in the
HIV-1 genome and also among subtypes, which corroborates previous findings [15,29], and
indicates that HIV-1M strains are probably evolving under different selection pressures in
different geographical and genetic regions.
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Figure 1. Substitution rate heterogeneity in pol. (A) The histogram displays the distribution of calculated substitution
rates for all 900 pol tree reconstructions. Median of the distribution is listed on the top. (B) The violin plots show the
distribution of substitution rates calculated individually for each subtype/CRF (i.e., across 100 tree reconstructions). The
white circle indicates the group median. The dotted horizontal line represents the global median rate calculated in (A).
Distributions of substitution rates calculated for trees with real and random dates can be compared. All comparisons were
statistically significant (indicated by asterisk). (C) Pie-charts show the proportion of phylogenetic trees that failed the RTT
tests described in text. (D) Pie-charts show the proportion of phylogenetic trees with evidence of autocorrelated rates. Note
that the latest version of the CorrTest program [26] only works with standard ML trees and not dated trees. The mean and
median substitution rates, along with 95% CIs, for each subtype and CRF are also reported in Table 2. Note that Table 2
excludes trees where RTT slope was either negative or r was <0.3.
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Figure 2. Substitution rate heterogeneity in env. The histogram displays the distribution of calculated substitution rates for
all 900 env tree reconstructions. Median of the distribution is listed on the top. (B) The violin plots show the distribution
of substitution rates calculated individually for each subtype/CRF (i.e., across 100 tree reconstructions). The white circle
indicates the group median. The dotted horizontal line represents the global median rate calculated in (A). Distributions
of substitution rates calculated for trees with real and random dates can be compared. All comparisons were statistically
significant (indicated by asterisk). (C) Pie-charts show the proportion of phylogenetic trees that failed the RTT tests described
in text. (D) Pie-charts show the proportion of phylogenetic trees with evidence of autocorrelated rates. The mean and
median substitution rates, along with 95% CIs, for each subtype and CRF are also reported in Table 2. Note that Table 2
excludes trees where RTT slope was either negative or r was <0.3.
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Table 1. Evidence of temporal signal and autocorrelated rates on phylogenetic trees. The values in the
table show how many of the 100 trees for each subtype/CRF failed the RTT test (i.e., either negative
slope or r < 0.3) or indicated evidence of autocorrelated rates, tested via the CorrTest program [26].
A6 and A1 are bolded, as >50% of these trees indicated either evidence of rate autocorrelation or
failed RTT tests. See Table S1 for complete data.

CorrTest Root-to-Tip Regression

Subtype/CRF Autocorrelated Independent Pass Fail

env

01_AE 7 93 99 1
02_AG 7 93 100 0

A1 12 88 88 12
A6 16 84 100 0
B 2 98 98 2
C 10 90 84 16
D 22 78 97 3
F1 0 100 100 0
G 0 100 100 0

pol

01_AE 22 78 73 27
02_AG 12 88 99 1

A1 56 44 46 54
A6 74 26 100 0
B 5 95 99 1
C 2 98 97 3
D 21 79 54 46
F1 29 71 100 0
G 1 99 90 10

Table 2. Substitution rates in pol and env. The table below reports the calculated pol and env
substitution rates (×10−3 ssy) for all analyzed subtypes and CRFs. The mean, median, standard error,
and the lower and upper bounds of the 95% CIs are reported. The table is sorted by the median rate,
in a descending manner. The table excludes trees that indicated either a negative RTT slope or r < 0.3
(see text). See Table S1 for complete data.

Subtype/CRF Gene Trees Mean Median Std. Error Lower-Bound Upper-Bound

G env 100 4.72 4.72 0.0045 4.71 4.73
02_AG env 100 4.48 4.45 0.0623 4.36 4.60

A6 env 100 3.94 3.91 0.0647 3.81 4.06
A1 env 88 3.41 3.41 0.0461 3.32 3.50

01_AE env 99 2.99 3.02 0.047 2.90 3.09
D env 97 2.93 2.98 0.0261 2.88 2.98
C env 84 2.74 2.64 0.0555 2.63 2.85
B env 98 2.33 2.32 0.0418 2.25 2.41
F1 env 100 1.34 1.34 0.00003 1.34 1.34
A6 pol 100 2.18 2.18 0.0275 2.12 2.23
F1 pol 100 2.05 2.02 0.0294 1.99 2.11
G pol 90 1.78 1.76 0.0225 1.73 1.82

01_AE pol 73 1.48 1.51 0.0238 1.43 1.52
02_AG pol 99 1.29 1.29 0.0200 1.25 1.33

C pol 97 1.22 1.23 0.0206 1.18 1.26
B pol 99 1.08 1.09 0.014 1.05 1.11

A1 pol 46 1.25 1.26 0.0338 1.18 1.31
D pol 54 0.98 0.96 0.0200 0.94 1.02
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3.2. Substantial Substitution Rate Heterogeneity between Closely-Related HIV-1 Sub-Subtypes

While there were significant rate differences between subtypes, there were also sub-
stantial rate differences within subtypes. For instance, sub-subtypes A1 and A6 indicated
a significant rate difference in pol (2.18 × 10−3 vs. 1.08 × 10−3 ssy; p < 0.001, two-tailed
Mann–Whitney test). Since 54% of the A1 pol trees had failed the RTT test (Figure 1C,
Table 1), we reasoned the difference in the evolutionary rates between these closely related
sub-subtypes could have arisen from differences in the strength of temporal signal provided
by each dataset. To investigate this possibility, we recalculated the pol substitution rates
for A6 and A1 sub-subtypes by reconstructing new time-scaled phylogenies using larger
datasets, including all qualifying sequences up to 50 taxa per year in the rate estimation.
We analyzed a total of 426 A6 sequences sampled between 1997–2016 from countries in
the Former Soviet Union (FSU) and 244 A1 sequences (1985–2015) from SSA, Europe, Asia,
and Oceania.

The estimated pol substitution rates of sub-subtypes A6 and A1 still differed by 2-folds
(3.23 × 10−3 vs. 1.62 × 10−3 ssy) (Figure 3A) and were greater than the global pol median
(1.36 × 10−3 ssy) and medians calculated for these sub-subtypes previously in Figure 1
(2.186 × 10−3 vs. 1.08 × 10−3 ssy). Furthermore, the RTT test verified the existence of
sufficient temporal signal in both trees (r = 0.69 for A6 and 0.39 for A1). In A6, we could
identify three monophyletic partitions comprising of individuals sampled in Latvia and
other parts of the FSU (mainly Russia). While the 95% CIs for the three A6 partitions
overlapped with each other (Figure 3A), they excluded the 95% CIs calculated for A1
partitions (Figure 3B). For example, the largest A6 partition corresponding to individuals
sampled in the FSU had a mean rate of 4.68 × 10−3 ssy (95% CI = 3.6–6.65 ssy), which
excluded both the mean rates and 95% CIs for all four A1 partitions (Figure 3B). These
results therefore suggest that A6 is indeed a fast-evolving HIV-1 variant and evolutionary
rate heterogeneity exists even between closely related HIV-1M sub-subtypes.
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3.3. Substantial Substitution Rate Heterogeneity within Subtypes

Subtype B was amongst the slowest evolving subtypes in both pol and env analyses
(Figures 1 and 2). The B dataset included sequences from mostly North America and
European countries, with a presumably higher ART access and enrollment rate, certainly
at earlier dates. The dataset thus excluded the two major subtype B genetic variants
that circulate in several Asian countries (e.g., the Thai-B in China, Laos, Myanmar, and
Thailand, and Korean-B in South Korea) [19]. Therefore, we investigated substitution rate
heterogeneity within B by calculating the substitution rates for four major known B genetic
variants (i.e., the Brazilian-B, Trinidad and Tobago-B, Thai-B, and the Korean-B) [19], in
addition to B sequences sampled from rest of the World (primarily from North America,
Europe, and Oceania). We used env for this analysis, which by virtue of its faster evolution
is better suited to resolve genetic diversity among closely related strains. We analyzed
a total of 1153 B sequences (1981–2016), by allowing up to 50 sequences from each year,
as above.

The mean substitution rate for the larger subtype B tree was 2.90× 10−3 ssy (Figure 4A)
compared to 2.31 × 10−3 ssy calculated previously in Figure 2B, indicating a 25% increase.
The mean substitution rates for the four major B genetic variants, in increasing order, were
1.98 × 10−3 ssy in Thai-B [95% CI = 1.65–2.83 × 10−3 ssy], 2.19 × 10−3 ssy in Trinidad
and Tobago (1.61–4.48 × 10−3 ssy), 3.28 × 10−3 ssy in Brazil (2.73–6.23 × 10−3 ssy), and
5.9 × 10−3 ssy in Korea (4.62–7.83 × 10−3 ssy). These rates suggested significant rate
heterogeneity among subtype B variants, particularly a very fast evolutionary rate in the
relatively-younger Korean-B clade (Figure 4A). An earlier study also reported a very high
(8.0 × 10−3 ssy) env substitution rate in the Korean-B HIV epidemic but they also reported
higher rates for non-Korean B sequences (7.3 × 10−3 ssy) [30].
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temporal signal. Two partitions corresponded to the Trinidad and Tobago clade defined in (A) but were not analyzed
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Unfortunately, information about the prevalence of ART over time in a population
and dates about the origin or introduction of a subtype in a population cannot always be
reliably estimated. Hence, we were unable to associate calculated rates to these metadata.
Since the Korean HIV epidemic is likely a younger epidemic (with first reported cases in
1985) [31] compared to other subtype B variants, we reasoned that mutation saturation
over time could have caused observed sequence divergence to be lower than the actual
sequence divergence in the non-Korean B clades. Therefore, we reanalyzed the subtype B
tree by extracting virus sequences sampled over similar timescales. We calculated the node
height of the tMRCA of the Korean-B clade on the subtype B ML tree, which was used
as input to LSD (Figure 4B), and used this value to identify two additional non-Korean
monophyletic clades at the same height (Figure 4B). These clades included the entire
Thai-B clade (83/83 tips) and another clade of 22 individuals sampled from the USA. We
generated new time-scaled phylogenies for both clades, in addition to the Korean clade,
and recalculated the evolutionary rates. The Korean clade, once again, indicated a very fast
evolutionary rate with a mean of 7.85 × 10−3 ssy (6.17–10.5 × 10−3 ssy) versus the Thai-B
1.54 × 10−3 ssy (0.84–2.51 × 10−3 ssy) and USA 1.69 × 10−3 ssy (0.57–3.3 × 10−3 ssy) clades,
thus verifying substantial rate heterogeneity that exists within subtype B and especially a
faster genetic evolution of the Korean HIV epidemic.

The time-scaled subtype B tree suggested the existence of an underlying population
structure aligned with geography (Figure 4A). Therefore, we ran the treestructure program
to reveal six partitions in the time-scaled B phylogeny (Figure 5), shaped either by different
epidemiological and demographics histories or the same coalescent processes operating
at different degrees [28]. These included a monophyletic partition corresponding to the
entire Korean-B clade (80/80 tips, 100%), another monophyletic partition corresponding
to the Thai-B clade, and another polyphyletic partition that grouped the Trinidadian and
Brazilian-B sequences with the North American and European sequences. The treestructure
rank-sum test confirmed that each pair of the identified partitions had evolved under a
different coalescent process (p < 0.05). The analysis thus suggested that the Korean-B had
a different epidemiological or demographic history, relative to both the Thai-B and the
North American, Trinidadian, and the Brazilian-B clades. For example, the Thai-B epidemic
was initially characterized by rapid and explosive spread among injecting drug users in
Thailand [19], whereas the Korean epidemic mainly spreads (relatively slowly) via homo-
or heterosexual contact [31,32]. The evolutionary rate is thus influenced by the underlying
demographic and population history, which is responsible for establishing the virus contact
and transmission network and can cause observed rate heterogeneity. The analysis implies
that such processes can cause rate heterogeneity even within a subtype.
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4. Discussion

We performed a systematic calculation of the pol and env substitution rates in major
HIV-1 subtypes and CRFs. Similar to previous analyses [15,29,33], we uncovered significant
substitution rate heterogeneity both across the HIV-1 genome, between subtypes, and
even within subtypes (i.e., sub-subtypes and genetic variants of the same subtype). Such
variability is a likely and natural consequence of the differences in the rates of virus spread
in different epidemics and geographics, relative ages of different epidemics unfolding in
different parts of the World, and ART availability and enrollment rates, among other virus
genetic factors such as fast mutation, replication, and recombination rates.

In general, HIV outbreaks involving rapid virus spread (e.g., among people who
inject drugs) typically involve highly-similar viruses and thus report lower evolutionary
rates compared to epidemics where virus transmits steadily or slowly in a population [13].
Unfortunately, the metadata about risk route (e.g., sexual vs. intravenous) and gender
were largely missing in our filtered datasets. Thus, we could not explicitly analyze such
rate heterogeneities. However, the rate of virus spread in a population is not merely a
feature of the nature of the outbreak. It is also dictated by the underlying demographic
and population structure that may vary geographically. For example, the primary mode
of HIV transmission in Korea is via sexual contact (94–98%) [31,32], which explains the
three-times slower growth rate observed in the Korean HIV epidemic [30] and contrasts
with, for example, the Thai HIV epidemic, which was initially characterized by explosive
HIV spread among injecting drug users [19]. We noticed a very fast evolutionary rate in
the Korean-B clade compared to the non-Korean B clades, which can be explained by a
slower or steadier rise in the number of HIV infections in Korea over time [30].

In addition, several studies have reported a time-dependent bias in the estimation
of virus evolutionary rates, with shorter-timescales associated with faster evolutionary
rates [34,35]. While several factors have been proposed for such time-dependent bias [36],
mutation saturation and purifying selection are perhaps the most influential [35]. For
example, mutation saturation can cause the actual genetic diversity to be underestimated
and is likely to manifest more profoundly and severely over longer timescales. In turn,
purifying selection can remove deleterious mutations over time. However, its effect will
likely be limited on sequences sampled over short timescales that may carry several
transient and deleterious mutations. In other words, novel genetic variants emerging in
new parts of the world are likely to report a faster evolutionary rate until selection has
had the time to act. This can be an additional explanation for why we observed faster
evolutionary rates in the relatively younger A6 and Korean-B clades compared to A1 and
non-Korean B clades, respectively.

Another factor responsible for the observed rate heterogeneity is the access to and
cost of ART [12]. ART enrollment can suppress the viral load and decrease the risk of
virus transmission [37]. However, access to ART varies significantly across the World, with
much higher enrollment rates in North America and Europe compared to rest of the World.
Unfortunately, such metadata was largely unavailable for our datasets. For example, the
ART enrollment information was missing for the entire Pakistani A1 clade (82 individuals)
in Figure 3B. We were therefore unable to ascertain the possible impact of ART enrollment
in causing the observed rate heterogeneity. In addition to these biological reasons, technical
reasons such as the limitations of phylogeny estimation and tree-dating [20] and biases
in the sampling and sequencing trends across the world can also cause differences in the
quality of datasets available for such analyses and be ultimately responsible for observed
rate heterogeneities. For example, we kept only one sequence from each known outbreak
in our analysis. However, the epidemiological connections of the majority of virus se-
quences are not reported in public databases. Therefore, there is a small risk of including
epidemiologically-linked individuals (e.g., monophyletic FSU clusters in Figure 3) that
may have biased our rate estimates.

HIV-1M substitution rate heterogeneity can bias our estimates of the ages or dates
of evolutionary divergence events. Wertheim et al. (2012) revealed inconsistencies in
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the estimated ages of HIV-1 subtypes between a combined HIV-1M and subtype-specific
phylogenies in the presence of significant rate heterogeneity [15]. They suggested to focus
only on single subtype analyses, rather than inferring the tMRCA of all subtypes in a
combined HIV-1M phylogeny, as current relaxed clock models may be inadequate for
modeling extensive rate heterogeneity among HIV-1 subtypes. We now confirm that rate
heterogeneity not only exists between subtypes, but also within subtypes. This was made
explicit by drawing 100 random samples 100 times from the same subtype/CRF and
recalculating rates on the time-scaled phylogenies (Figures 1 and 2) and also by explicitly
quantifying rate heterogeneity among different genetic variants of the same subtype and
closely-related sub-subtypes (Figures 3 and 4). Thus, substantial rate heterogeneity, along
with the unaccounted factors of mutation saturation and purifying selection, cast doubts
on the estimated ages and dates of origins of HIV-1M major lineages.

Not accounting for rate heterogeneity can also misguide epidemiological inferences
derived from genetic or phylogenetic data. From a public health perspective, we are
interested in separating parts of the trees that are linked by recent, local, and contemporary
transmission (e.g., events that happened in the last 10 years) from the rest and presumably
epidemiologically-unlinked events. We can use the HIV evolutionary rate to determine
the cutoff separating transmission events happened, for example, in the last 10 years
from events that happened before. However, the position of the tree cutoff value, a so-
called the epidemiological horizon (Nasir et al., manuscript in preparation), will vary
based on the input evolutionary rate. Using a single value for all subtypes/CRFs will
cause differences in both the numbers and sizes of retrieved transmission clusters. For
example, depending on where the 10-year cutoff mark is set, we may risk including
longer branches and epidemiologically unlinked individuals. Such problems can even bias
tools that do not explicitly rely on phylogenetic trees for inferring transmission clusters
such as HIV-TRACE [38]. Depending on how fast or slow the evolutionary rate is, the
genetic distance cutoffs used to infer transmission clusters may represent widely different
timescales. Such rate heterogeneity should therefore be accounted for when performing
HIV-1M phylogenetic and phylodynamic studies and can cause unintended consequences.

5. Conclusions

We report substantial evolutionary rate heterogeneity in HIV-1M caused by a combina-
tion of genetic, demographic, and technical factors. The numbers reported in this analysis
provide a framework for relative comparisons of evolutionary rates among HIV-1M sub-
types and CRFs and do not represent absolute differences. The analysis is mostly based on
epidemiologically-unlinked individuals (one sequence per patient per year, one member
from each known outbreak/cluster). However, the distributions covering the variability
in the evolutionary rates for each major subtype/CRF can serve as informative priors for
future Bayesian inferences.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13091689/s1. Figure S1. The distribution of env sequences by length in the LANL HIV
database. All fragments relate to HXB2 coordinates. Figure S2. The distribution of pol sequences
by length in the LANL HIV database. All fragments relate to HXB2 coordinates. Figure S3. LOO
cross-validation for pol. The plots reveal the overlap between the estimated density distributions for
each subtype/CRF versus their corresponding LOO datasets. Figure S4. LOO cross-validation for
env. The plots reveal the overlap between the estimated density distributions for each subtype/CRF
versus their corresponding LOO datasets. Table S1. The calculated substitution rates along with 95%
confidence intervals, R2, RTT slope, and r values for all tree reconstructions. Trees with a negative
slope were removed (reduced 1800 trees into 1761). Trees indicating a weak r (i.e., <0.3) between
genetic divergence and sampling times are highlighted.
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