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Abstract: Tick-borne encephalitis virus (TBEV) causes 5−7 thousand cases of human meningitis and
encephalitis annually. The neutralizing and protective antibody ch14D5 is a potential therapeutic
agent. This antibody exhibits a high affinity for binding with the D3 domain of the glycoprotein E
of the Far Eastern subtype of the virus, but a lower affinity for the D3 domains of the Siberian and
European subtypes. In this study, a 2.2-fold increase in the affinity of single-chain antibody sc14D5 to
D3 proteins of the Siberian and European subtypes of the virus was achieved using rational design
and computational modeling. This improvement can be further enhanced in the case of the bivalent
binding of the full-length chimeric antibody containing the identified mutation.
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1. Introduction

Tick-borne encephalitis virus (TBEV) belongs to tick-transmitted flaviviruses and
causes severe arboviral infection in Europe and northeastern Asia [1]. The incidence of
TBE has significantly decreased over the past two decades; however, the number of cases
remains high. In 2019, more than 3200 cases were officially confirmed in European countries
according to the European Centre for Disease Prevention and Control (ECDC) report [2],
and approximately 1500 cases were registered in Russia [3]. There are three major subtypes
of TBEV, namely, the Far Eastern, Siberian, and European subtypes, each of which differs
in terms of severity of the disease [1]. Two new subtypes, Baikalian and Himalayan, have
been proposed recently; however, they are rare [4,5]. The mortality caused by the virus
depends on the subtype and ranges from 1–2% for the European subtype to 5–20% for
the Far Eastern subtype [6]. Long-lasting or chronic neuropsychiatric disorders leading
to disability were observed in 10–20% of infected patients [7,8]. Although the Siberian
and European subtypes are considered less pathogenic than the Far Eastern subtype, both
mild and severe cases of TBE are associated with infection by any of the subtypes [1,9]. In
addition, the Siberian subtype has a wide geographical distribution and has been found
from Eastern and Southern Europe to the Far Eastern regions [10]. Therefore, all three
major subtypes of TBEV require control and prevention.

Currently, there are no approved therapeutic agents to treat TBE [11]. Vaccination is
one of the most effective ways to prevent this disease; however, the level of vaccination is
insufficient in many European countries and Russia [12,13]. For example, the proportion of
vaccinated among people affected by tick bites was only 7–8% in Russia [3,14].

TBEV, like other flaviviruses, has a spherical enveloped virion approximately 50 nm
in diameter, containing a positive-sense RNA genome encoding a single polyprotein. TBEV
virion contains 180 copies of glycoprotein E, which are organized as homodimers and
form a herringbone-like pattern on the surface of the mature virus particle. The virion also
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contains 180 copies of the M protein. Glycoprotein E is an immunodominant protein and
contains three surface domains (D1, D2, and D3, also referred to as DI, DII, and DIII), as
well as stem and transmembrane regions [15]. The D3 domain is believed to mediate the
binding of the virion to the cell [16,17], which is supported by the fact that the majority
of virus neutralizing murine antibodies against flaviviruses are directed to this particular
domain [18–21].

Recombinant antibodies are promising medicines against flaviviruses, including
TBEV [15,22–24]. The chimeric antibody ch14D5 has been previously constructed and
characterized [22]. This antibody binds to the D3 domain of TBEV glycoprotein E (Sofjin-
Ru strain) with nanomolar affinity and was shown to provide protection for mice infected
with lethal doses of the Absettarov strain of the European subtype of TBEV [22]. Given such
prominent antiviral properties, this antibody was considered as a potential therapeutic
agent for the prevention and treatment of TBE. It was shown that this antibody has a higher
affinity for the recombinant D3 domain of the Far Eastern subtype; however, its affinity
for the D3 domains of the Siberian and European subtypes is 1–2 orders of magnitude
lower [25]. The affinity of the antibody to the Siberian and European D3 variants can be
increased by a rational design. This is supported by the fact that the D3 domains are highly
conserved and differ only in positions 313, 317, and 331 for the studied variants (according
to flavivirus glycoprotein E designation [26]). Since the neutralizing activity often increases
with increasing affinity [27], we believe that the development of antibody variants with a
higher affinity for the Siberian and European subtypes will further improve the protective
activity of this antibody against these subtypes.

When the spatial structure of the complex is available, rational design and computer
modeling methods can be used to increase the affinity of the antibody. There are several
approaches that have been successfully used for the rational design of antibodies in order
to increase their affinity [28–34]. In most studies, a positive effect was achieved by the
introduction of mutations that either create additional hydrogen bonds or enhance electro-
static or hydrophobic interactions between the antibody and antigen [35–37]. The choice of
the position for the introduction of mutations, and the choice of mutant residues, is still
not straightforward. Thus far, the process has been only partially automated, and human
verification of the generated variants and structures was required in most studies [28,29,38].
And even in spite of this, many of the designed variants turned out to be non-functional
when tested experimentally [28,32].

In this study, two approaches were used to increase the affinity of the ch14D5 antibody
and its single-chain fragment sc14D5 to the D3 domains of the Siberian and European
TBEV subtypes: optimization of the geometry of the antigen−antibody interface, and the
use of a predictive approach based on machine learning. Optimization of the interface
geometry provided the best results and made it possible to increase the affinity to these
proteins in comparison with the wild-type antibody sc14D5. We believe that these results
are valuable for the development of antibody-based medicines against TBEV.

2. Materials and Methods
2.1. Design of Mutant Antibody Variants with an Optimized Interface

The design of mutant variants was based on the X-ray structure of the ch14D5 antibody
Fab fragment in complex [22] with the D3 domain of the TBEV glycoprotein E, strain Sofjin-
Ru [39], obtained with resolution 2.3 Å [40]. Structural analysis and virtual mutagenesis
were performed using the UCSF Chimera version 1.13.1. To convert the D3 protein of
the Sofjin-Ru strain to the D3 protein of the European subtype within this structure, the
Ala331 residue of the D3_Sof protein was replaced by the Thr331 residue rotamer with
a chi1 torsion angle equal to minus 61◦ (according to pdb structures 1SVB and 6J5F).
Moreover, the Ile317 residue was replaced by the Ala317 residue using the “Rotamers”
tool in UCSF Chimera, with the “Dunbrack 2010” rotamer library being selected. The
clashes of the Thr331 residue with the antibody residues were analyzed using the “Find
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Clashes/Contacts” tool in UCSF Chimera, with a van der Waals radius overlap threshold
of 0.4 Å.

Then, different variants of amino acid residues were screened using the “Rotamers”
tool in UCSF Chimera at positions Tyr_L32 and Tyr_L50 of the antibody light chain, and
position Phe_H101 of the antibody heavy chain (sequential numbering starting from the
N-termini of the chains). Suitability of substituted amino acid residues was assessed
visually, and using the “Find Clashes/Contacts” tool in UCSF Chimera, with a van der
Waals radius overlap threshold of 0.4 Å. As a result, mutant residues were selected that
would not overlap with adjacent amino acid residues and, at the same time, would be in a
fairly probable conformation (within the top half of all possible rotamers for this residue)
according to the “Dunbrack 2010” rotamer library.

2.2. Predicting the Effect of Antibody Mutations on Binding Affinity Using the mmCSM-AB and
mCSM-AB2 Online Services

mmCSM-AB (http://biosig.unimelb.edu.au/mmcsm_ab/ accessed on 10 May 2021)
and mCSM-AB2 (http://biosig.unimelb.edu.au/mcsm_ab2/ accessed on 10 May 2021)
online services were used to predict the effect of introducing mutations into the Y32M
variant of the sc14D5 antibody. A model of the Y32M antibody Fv fragment bound to the
D3_Eu protein was used as input data. For this, the regions corresponding to the CH1 and
CL constant domains, water molecules and ions were removed from the X-ray structure
of the ch14D5 antibody Fab fragment bound to the D3_Sof protein. This X-ray structure
was determined previously at 2.3 Å resolution [40]. Thereafter, the Y32M mutation was
introduced into the L32 position of the antibody VL domain using UCSF Chimera v. 1.13.1.
Similarly, the Ala331 residue of the D3_Sof protein was replaced by the Thr331 residue
rotamer with a chi1 torsion angle equal to minus 61◦, and the Ile317 residue was replaced
by the Ala317 residue. Analysis using the “Antibody design” mode of the mmCSM-AB
service resulted in a list of the 100 most favorable triple mutations. The most abundant
single mutations were extracted from this list. The individual effect of each of the proposed
single mutations was predicted using the “Prediction mode” of the same service. The
mCSM-AB2 service was also used to analyze the structure of the Y32M-D3_Eu complex
and generate heat maps (Figure S5). The results obtained using the mmCSM-AB and
mCSM-AB2 services were almost identical.

2.3. Construction of Plasmid DNAs Encoding Single-Chain Antibody Fragments

Sixteen plasmids encoding mutant variants of the sc14D5 antibody were designed
in this study. Plasmid DNA pHEN2-14D5 [41] was used as a template for introducing
mutations. Mutagenesis was performed by PCR using a high-fidelity Phusion DNA
polymerase (Thermo Fisher Scientific, Waltham, MA, USA) and oligonucleotides containing
mutations. One part of the target sequence was amplified using the forward flanking
primer LMB3_mod_dir (Table S1) and the reverse mutant primer (Table S1), and the second
part was amplified using the forward mutant primer and the reverse flanking primer
pHEN_mod_rev (Table S1). The resulting DNA fragments were mixed in an amount of
0.5 ng each, and the overlap extension PCR was performed to form a DNA fragment of
about 900 bp. The resulting PCR fragments were cleaved with NcoI and NotI restriction
nucleases and ligated to NcoI/NotI-digested pHEN2-14D5 plasmid. E. coli XL1-Blue cells
were transformed with the resulting ligation products, plated onto LB-agar with 50 µg/mL
ampicillin, and cultivated. After obtaining bacterial clones, DNA isolation and sequencing
of the entire single-chain antibody gene using BigDye Terminator v3.1 cycle sequencing kit
(Thermo Fisher Scientific, Waltham, MA, USA) was performed.

2.4. Production of Single-Chain Antibodies in E. coli

Single-chain antibodies were produced by secretion into the periplasmic space of E.
coli cells. E. coli HB2151 cells transformed with the corresponding plasmid DNA were
grown in LB medium (100 µg/mL Amp and 0.1% glucose) at 180 rpm agitation rate at
37 ◦C. When the optical density OD600 reached 0.7–0.9, protein synthesis was induced by
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adding isopropyl-β-D-1-thiogalactopyranoside (IPTG) to a final concentration of 1 mM;
the cultivation was continued at 180 rpm agitation rate at 30 ◦C. After 6 h, the biomass
was separated by centrifugation for 10 min at 6000× g. The pellet was resuspended in a
buffer containing 20% sucrose and 10 mM Tris-HCl pH 7.5, taken in an amount of 1/10 of
the original volume of liquid culture. After incubation for 5 min at room temperature and
then 5 min at 0 ◦C, the cells were pelleted for 2 min at 10,000× g at 6 ◦C. After removing
the supernatant, the cell pellet was resuspended in a 5 mM MgSO4 solution, taken in an
amount of 1/10 of the initial volume of the liquid culture, and incubated for 5 min at 0 ◦C.
Spheroplasts were separated by centrifugation for 2 min at 10,000× g at 6 ◦C, and the
supernatant containing periplasmic proteins was used for protein purification.

Single-chain antibodies were isolated from the periplasmic extracts by Ni-NTA chro-
matography. The periplasmic protein fraction was applied at a flow rate of 1 mL/min to
a chromatographic column packed with 1 mL of Ni-NTA agarose (Qiagen, Hilden, Ger-
many). For column washing and elution, phosphate buffered saline (PBS) was used with
the addition of NaCl up to 300 mM, containing various concentrations of imidazole. Non-
specifically bound proteins were eluted with a buffer containing 25 mM imidazole, after
which the target protein was eluted with a buffer containing 200 mM imidazole. Proteins
were concentrated to 2–4 mg/mL concentration using Amicon ultra-4 filters (Millipore,
Burlington, MA USA) with a 10 kDa cutoff. The yield of single-chain antibodies was about
0.5 mg from 1 L of bacterial culture.

2.5. Production of D3 Proteins in E. coli

The D3_Sof, D3_Zau, and D3_Eu proteins used in this study were fragments of the
glycoprotein E of the Far Eastern (strain “Sofjin-Ru”, GenBank number: JN229223.1),
Siberian (Zausaev-like strain TBEV-317, GenBank number: MG598844.1), and European
TBEV subtypes (GenBank number: KT895092.1), including amino acid residues from 301
to 397 with an additional hexahidstidine tag at the C-terminus. Plasmid DNAs pHEN2-
rED3_301 [39], pHEN2-D3_Zau, and pHEN2-D3_Eu [25] were used to produce proteins
D3_Sof, D3_Zau, and D3_Eu, respectively. The method for production of D3 domains was
similar to that for the single-chain antibodies, except that Amicon ultra-4 filters with a
3 kDa cutoff were used for concentration.

2.6. Affinity Constant Measurement

D3 proteins comprising D3 domains of the glycoprotein E were used as antigens,
since it was previously shown that the affinity of the ch14D5 antibody for the D3 protein
of the Sofjin-Ru strain and for the glycoprotein E of this strain were the same, while D3
protein folded better [39]. The binding of the D3 proteins to antibody mutants was de-
termined by a surface plasmon resonance-based biosensor assay (SPR), using a ProteOn
XPR36 system (Bio-Rad Laboratories, Hercules, CA, USA). PBS supplemented with 0.005%
Tween-20 (PBST) was used as a system running buffer. The temperature of the sensor
chip and autosampler was 25 ◦C. Antibody screening was performed using D3 proteins
covalently immobilized on the surface of one of the vertical channels of the GLH chip
(Bio-Rad Laboratories, Hercules, CA, USA) to a 4000–6000 response units (RU) level. The
immobilization procedure was performed according to the manufacturer’s recommenda-
tions: carboxyl groups of alginate matrix were activated using a mixture containing equal
amounts of freshly prepared 10 mM N-hydroxysulfosuccinimide and 40 mM 1-Ethyl-3-(3-
dimethylaminopropyl)carbodiimide. Individual solutions of D3 proteins at a 5.5 µg/mL
concentration in 10 mM sodium acetate buffer, pH 4.5, were used for immobilization. As
soon as desired immobilization level was achieved, unreacted activated carboxyl groups of
chip surface were quenched with 1 M ethanolamine-HCl, pH 7.5. To perform screening,
periplasmic extracts (45 µL) containing the single-chain antibody were mixed with 195 µL
of system buffer and analyzed in the horizontal orientation of the micro channel module
(MCM) at a flow rate of 25 µL/min.
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Another screening scheme was also used as follows: The analyzed antibodies were
immobilized on the surface of the GLH chip to a level of 1000–1500 RU, similar to the process
described above. Next, a PBST solution containing one of the D3 proteins with a sufficiently
high concentration was passed: 100 nM for the D3_Sof protein and 1000 nM for the D3_Zau
or D3_Eu proteins. The results were monitored using the ProteOn Manager 3.1.0 software.
The chip surface was regenerated by passing 50 mM NaOH solution for 40 s.

The affinity measurement was carried out as follows: The analyzed antibodies were
immobilized on the surface of the GLH chip to a 1000–1500 RU level, similar to the process
described above. Serial three-fold dilutions of the D3 proteins in system buffer starting
from 3.24 µM concentration were analyzed at a flow rate of 25 µL/min and a horizontal
orientation of the MCM. The duration of both the association and dissociation phases was
300 s. D3 protein concentration ranges were determined based on data from scouting
experiments. The chip surface was regenerated by passing 50 mM NaOH solution for 40 s.
The signal measured at the part of the chip surface where no antibody was immobilized
was used as a reference. Global analysis of the experimental data based on a single-site
model was performed using the ProteOn Manager v. 3.1.0 software. The measurements
were repeated three times, and average dissociation constants (Kd) and their standard
deviations (SD) were determined.

3. Results
3.1. Optimization of the Geometry of the Antigen−Antibody Interface

The starting point for the rational design of the antibody was the X-ray structure of the
complex of the ch14D5 antibody Fab fragment with the D3 domain of the glycoprotein E of
the Far Eastern subtype of TBEV, strain Sofjin-Ru (D3_Sof protein). This X-ray structure
was determined previously at 2.3 Å resolution [40]. The analysis of the structure of the
antigen−antibody complex showed that the Ala331 residue of the D3_Sof protein is located
in a small, hydrophobic pocket on the antibody surface, formed at the contact of the VH
and VL domains. The pocket is formed by the aromatic amino acid residues Tyr_L32,
Tyr_L50, and Phe_H101 (Figure 1). However, there is not enough room in this pocket for
the amino acid residue Thr331, which is located in the same position in the D3 proteins
of the Siberian and European TBEV subtypes (D3_Zau and D3_Eu proteins). Increasing
the size of this pocket can enhance the affinity between the antibody and the D3_Zau and
D3_Eu proteins.
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Figure 1. The structure of the antibody−antigen interface adjacent to the Ala331 residue of the
D3_Sof protein: The amino acid residues Tyr_L32 and Tyr_L50 of the light chain are shown in orange;
the amino acid residue Phe_H101 of the heavy chain of the ch14D5 antibody is shown in blue; part of
the D3_Sof protein is shown in tan.
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Suitable variants of amino acid substitutions at these positions were determined using
structural modeling in the UCSF Chimera version 1.13.1 software. The main criteria for
choosing a mutant residue were its size, hydrophilicity/hydrophobicity, and the ability to
fit into the context without significant distortion of the geometry of the residue. Variants
for which suitable packaging was only achieved in extremely unlikely conformations of the
side chain were discarded. Since the OH- group of the Thr331 residue of the D3_Zau protein
is likely to be oriented in several different ways, both hydrophilic and more hydrophobic
residues were used at positions L32 and H101. A spatial model was generated for each mutant
antibody variant (Table 1, Group 1), and it was shown that there was no overlapping of atoms
or other structural inconsistencies caused by the introduced substitutions (Figure S1).

Table 1. Properties of parental antibodies and constructed mutant variants of the sc14D5 single-chain variable fragments.

Group Name Mutation 1 Kd (D3_Sof) ±
SD

Kd (D3_Zau) ±
SD Kd (D3_Eu) ± SD

Parental antibodies

ch14D5
(bivalently-bound)

No mutations
2.0 ± 0.3 nM 90 ± 20 nM 300 ± 50 nM

fab_ch14D5 44 ± 6 nM 1.7 ± 0.2 µM >6 µM
sc14D5 40 ± 5 nM 1.8 ± 0.2 µM >6 µM

Group 1
(optimized

interface geometry)

Y32H L_Y32H + 1.7 ± 0.2µM >2 µM
Y32M L_Y32M ~120 nM 0.80 ± 0.11 µM 1.6 ± 0.2 µM
Y32Q L_Y32Q − − −
Y50H L_Y50H − − −
Y50Q L_Y50Q − − −
F101L H_F101L − − −
F101M H_F101M − − −
F101Q H_F101Q − − −

Group 2
(mmCSM-AB

predicted
mutations)

Y32M-G91F L_Y32M + L_G91F − − −

Y32M-G91W L_Y32M +
L_G91W − − −

Y32M-G92E L_Y32M + L_G92E + 2.2 ± 0.2 µM >3µM

Y32M-G92W L_Y32M +
L_G92W + + −

Y32M-G92Y L_Y32M + L_G92Y + + −

Y32M-G100W L_Y32M +
H_G100W − − −

Y32M-G100Y L_Y32M +
H_G100Y − − −

Y32M-A102W L_Y32M +
H_A102Y − − −

The letters H and L indicate whether the mutation belongs to the heavy or light chain of the antibody. “−” indicates that no significant
binding was observed; “+” indicates that binding was observed, but no constant was calculated.

To assess the effect of mutations, single-chain antibodies were used. This antibody
format was appropriate for this goal because no significant differences were found between
the affinity of the ch14D5 antibody Fab fragment to the D3_Sof protein and the affinity of
the single-chain variant of the same antibody (sc14D5) to the D3_Sof protein (Figure S2).
Furthermore, the use of bacteria-produced proteins made it possible to significantly speed up
the process of producing mutant protein variants in comparison with full-length antibodies
produced in eukaryotic expression systems. Single-chain antibodies containing the proposed
substitutions (Table 1, Group 1) were prepared as purified proteins. Electrophoretic analysis
demonstrated that the preparations were highly homogeneous (Figure S3).

D3 proteins comprising D3 domains of the glycoprotein E were used as antigens.
These proteins form a stable immunoglobulin-like fold, which is stabilized by a disulfide
bridge [42]. Since it was previously shown that the affinity of the ch14D5 antibody for the
D3 protein of the Sofjin-Ru strain and for the glycoprotein E of this strain were the same,
D3 proteins were good model antigens [39]. The affinity of the obtained variants of the
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sc14D5 antibody to the recombinant D3 proteins was measured using the ProteOn XPR 36
biosensor (Bio-Rad Laboratories, Hercules, CA, USA) (Figure 2). Antibody variants were
covalently immobilized on the chip surface, and solutions of D3 proteins were passed as an
analyte. Since the affinity of the initial antibody ch14D5 for the D3_Eu and D3_ZauT331M
proteins (closely related to D3_Zau protein) was 1–2 orders of magnitude lower than for
the D3_Sof protein [25], the D3_Eu and D3_Zau proteins were used at a concentration of
1000 nM instead of 100 nM to obtain a sufficiently high signal. At the same time, a 100 nM
concentration was sufficient for the D3_Sof protein.
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Figure 2. Binding of recombinant D3 proteins to mutant variants of the sc14D5 antibody: (A–C)
Screening of antibody variants. D3_Zau, D3_Eu, and D3_Sof proteins were used in 1000 nM, 1000 nM,
and 100 nM concentrations, respectively. The differences in the concentrations used are due to the
differences in the affinity of the studied antibodies with respect to D3 proteins. (D–G) Measurement
of affinity constants. D3 proteins were used as threefold dilutions starting from 3.24 µM concentration.
Experimental curves are shown by colored lines, approximations are shown in black. The analysis
was carried out using a ProteOn XPR36 biosensor.

As expected, the affinity of certain mutant variants (namely Y32Q, Y50H, Y50Q,
F101L, F101M, and F101Q) to D3 proteins markedly decreased, as no significant binding
was observed. However, antibodies Y32M, Y32H, and sc14D5 effectively bound to these
proteins. Moreover, the affinity of the Y32M variant for the D3_Zau and D3_Eu proteins
was 2.2 times higher than that of the original antibody sc14D5 (Figure 2). This can be seen by
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the direct measurement of the affinity constants (Figure 2D,G). The range of concentrations
used for the D3 proteins in experiments (Figure 2D,E,G) was appropriate because the
calculated affinity constants fell within this range. In the case of the interaction of the
D3_Eu protein with the sc14D5 antibody (Figure 2F), the calculated affinity constant was
outside this range, but the estimate of Kd > 6 µM is sufficient.

3.2. Predicting Favorable Mutations Using Machine Learning-Based Methods

To further increase the affinity of the constructed Y32M antibody, a machine learning-
based method was used to predict the effect of introducing a particular mutation into an
antibody. MmCSM-AB was chosen as a computational method [33]. It is available as an
online service and uses the spatial structure of the antigen−antibody complex as input
data. An X-ray structure-based model of the complex between the Y32M Fv fragment and
the D3_Eu protein was used for analysis.

As a result, a set of mutations that could presumably enhance the stability of the
antigen−antibody complex was obtained. The most promising mutations were located at
positions L_G91, L_G92, H_G100, and H_A102 (Figure S5). Several variants of mutations
were chosen for each position (Table 1, Group 2). Structural analysis with the UCSF Chimera
was performed to ensure that there was no overlapping of atoms or other structural
inconsistencies. It was found that L_G91 position barely accommodates the CH3 group of
alanine, while there is no enough space for the more bulky phenylalanine and tryptophan
radicals (Figure S4A,B). However, a cavity was identified for the L_G92 position that could
be effectively filled with a bulky side chain (Figure S4C). The side chain of the mutant
residue at position H_G100 could occupy a rather spacious cavity formed between the D3
domainand the VH and VL domains of the antibody (Figure S4D). However, the H_E99
position seemed unsuitable for substitutions, since this glutamate residue forms a salt
bridge with the L_R96 residue of the antibody light chain and K311 lysine of the D3 protein
(Figure S4E). Considering that this L_R96 arginine residue is one of the least suitable
residues for mutation, as predicted by mmCSM-AB (Figure S5), it was not a good idea
to break the H-E99-L_R96 salt bridge. Finally, there was not enough room at position
H_A102 to introduce any bulky residues (Figure S4F). However, variants of antibodies
with mutated residues L_G91 and H_A102 were not excluded from the study, since it was
of interest which of the two methods, i.e., mmCSM-AB or structural assessment in UCSF
Chimera, would be more correct.

A screening of the obtained single-chain antibodies showed that the affinity of certain
mutant variants of antibodies (namely Y32M-G91F, Y32M-G91W, Y32M-G100W, Y32M-
G100Y, and Y32M-A102W) to D3 proteins was markedly decreased as compared to the
original antibody sc14D5. However, all variants at the L_G92 position (Y32M-G92E, Y32M-
G92W, and Y32M-G92Y) bound to D3 proteins (Figure 3A–C). From these variants, only
Y32M-G92E complexes have an off-rate comparable to the Y32M variant (Figure 3B,C, right
part of sensorgrams), while the off-rates of the Y32M-G92W and Y32M-G92Y antibodies
were much higher due to weaker complexes. Thus, affinity constants were only measured
for the Y32M-G92E antibody. The affinity of the purified Y32M-G92E antibody for the
D3_Eu and D3_Zau proteins was comparable to the affinity of the original sc14D5 antibody
for these proteins (Table 1). Compared to the Y32M antibody, the affinity of the Y32M-G92E
antibody was slightly lower (Figure 3D,E, Table 1).
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Figure 3. Binding of mutant antibody variants Y32M-G91F, Y32M-G91W, Y32M-G92E, Y32M-G92W,
Y32M-G92Y, Y32M-G100W, Y32M-G100Y, and Y32M-A102W to D3 proteins: (A–C) E. coli periplasmic
extracts containing antibody variants were used for screening at approximate antibody concentration
of 100–200 nM (as estimated by the intensity of the corresponding bands on the gel electrophoregram).
The G92F-Y32M antibody trace is shown in purple. (D,E) Measurement of affinity constants. Three-
fold dilutions of purified D3 proteins were used starting from 3.24 µM concentration. Experimental
curves are shown by colored lines, approximations are shown in black. The analysis was carried out
using a ProteOn XPR36 biosensor.

4. Discussion

Recombinant antibodies are one of the promising types of medicines against fla-
viviruses, TBEV in particular [15,22–24]. Several antibodies against TBEV have been
obtained [43–46]. Among these antibodies, only a few are virus-neutralizing, and even
fewer have a determined sequence. The spatial structure for the antibody−antigen complex
has only been determined for 19/1786, Mab 4.2 and T025 antibodies [15,24,47]. However,
none of these antibodies have been shown to protect animals against TBEV. The ch14D5
antibody used in this study has a high protective activity, and more pronounced antiviral
properties [22,39].

Optimization of the geometry of the antigen−antibody interface and the prediction of
stabilizing mutations using a machine learning-based method were used in this study to
increase the affinity of the ch14D5-based sc14D5 single-chain antibody for the D3 domains of
the Siberian and European TBEV subtypes. The best results were obtained when optimizing
the geometry of the antigen−antibody interface. The enlargement of the hydrophobic pocket
of the antibody favorably affected the binding of some antibody variants to the D3_Zau
and D3_Sof proteins. Of the three positions studied (L32, L50, and H101), only the first
position was suitable for introducing substitutions, while mutations at the other two positions
strongly destabilized the antigen−antibody complex, which led to a significant decrease in
the affinity of these variants. This may be due to the fact that, in the case of the ch14D5
antibody, tyrosine residues L_Y50, L_Y32, and phenylalanine H_F101 form a hydrophobic
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aromatic core (Figure 1), which stabilizes the interface. This is also confirmed by the fact
that these residues are highly conserved in antibodies with similar sequences of the L_CDR2
and H_CDR3 complementarity determining regions. The important role of the H_F101
phenylalanine residue was also shown for other antibodies [35,48]. In addition, analysis
using the mmCSM-AB service also predicted that most mutations in the H_F101 residue
would lead to destabilization of the complex (Figure S5).

Mutations at the L_Y32 position were generally more favorable, and the Y32M anti-
body variant had a 2.2-fold higher affinity for the target proteins as compared to the initial
single-chain antibody sc14D5. However, the introduction of more hydrophilic histidine or
glutamine residues (variants Y32H and Y32Q) was not as successful as the introduction of a
methionine residue. The advantage of the methionine residue in this case may be due to its
high flexibility and hydrophobicity. Therefore, several other mutant variants containing a
flexible and hydrophobic amino acid radical should be tested at position L32 in the future.

A predictive method based on machine learning algorithms was also used to fur-
ther improve the affinity of the constructed Y32M antibody. The mmCSM-AB method
was chosen because it previously showed the highest Pearson correlation coefficient be-
tween experimental data and the predicted results [33]. In addition, this method sug-
gested that the introduction of mutations in position H101 would strongly destabilize the
antigen−antibody complex (Figure S5), which is in good agreement with the experimental
data reporting a strong decrease in the affinity of antibodies F101L, F101M, and F101Q.
However, structural analysis of the mutations proposed by the mmCSM-AB method re-
vealed that some of them contradict the geometric requirements. It turned out that there
is not enough space in these positions for some of the proposed amino acid residues,
and any local displacements in the antibody can lead to the disruption of packaging and
destabilization of the interface. Apparently, this is the reason for the significant decrease
in affinity for antibody variants containing the L_G91F, L_G91W, or H_A102Y mutations.
At the same time, all variants carrying the mutation at position L92 remained capable of
binding to D3 proteins; therefore, exhaustive mutagenesis at this position can also lead to
increased binding.

Modification of the antibody−antigen interface in the case of the Y32M antibody
not only resulted in a 2.2-fold increase in affinity for the D3 proteins of the Siberian and
European subtypes, but also in an approximately threefold decrease in the affinity for the
D3 protein of the Far Eastern subtype. This was expected. We suggest that the optimized
Y32M-based antibody can be used as a cocktail with the original ch14D5 antibody, and that
the two antibodies will complement each other in preventing different TBEV subtypes.

To conclude, in this study computational and rational design of the sc14D5 antibody
against the glycoprotein E of TBEV was utilized in order to increase the affinity of this
antibody to the D3 domains of the Siberian and European TBEV subtypes. A 2.2-fold
increase in affinity in the monovalent binding mode can be considered a good result,
since the increase in the affinity caused by the introduction of single mutations in similar
studies was often of the same order [28,35]. In addition, it is well known that the affinity
of full-length antibodies upon bivalent binding is significantly higher than the affinity of
monovalent forms of antibodies [49–51]. Therefore, on the basis of the achieved results,
we can expect a 4–5-fold increase in the affinity of the chimeric antibody ch14D5-Y32M as
compared to the original chimeric antibody ch14D5.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13081494/s1, Figure S1: Models of complexes for mutant variants of the sc14D5 antibody
with the D3_Eu or D3_Zau proteins, Figure S2: Binding of the D3_Sof protein to the Fab-fragment of
the ch14D5 antibody (A) or the single-chain sc14D5 antibody (B), Figure S3: Gel electrophoresis of
single-chain antibody fragments in 12% polyacrylamide gel containing SDS, Figure S4: Analysis of
the positions predicted using the mmCSM-AB method, Figure S5: Heat map illustrating the effect of
additional mutations introduced into the Y32M antibody, predicted using the mCSM-AB2 service,
Table S1: Oligonucleotides used in the study.
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