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Abstract: In the last two decades, molecular surveys of arboviruses have enabled the identification
check for
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of several new viruses, contributing to the knowledge of viral diversity and providing impor-
tant epidemiological data regarding possible new emerging viruses. A combination of diagnostic
assays, Illumina sequencing and phylogenetic inference are here used to characterize two new
Massilia phlebovirus strains isolated from sandflies collected in the Arrabida region, Portugal. Whole
genome sequence analysis enabled their identification as reassortants and the recognition of genomic
variants co-circulating in Portugal. Much is still unknown about the life cycle, geographic range,

https:/ /doi.org/10.3390/v13071412 evolutionary forces and public health importance of these viruses in Portugal and elsewhere, and

more studies are needed.
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It is acknowledged that RNA viruses have the highest mutation and recombination
rates in nature, exhibiting a remarkable capacity to evolve [1]. Among these, the ones
that maintain their genomes as several distinct RNA molecules are called segmented
RNA viruses. They are widespread in nature and include important human, animal and
plant pathogens. A major consequence of such a genome structure is the capacity for
reassortment to occur during co-infection, whereby segments may be exchanged among
different co-infecting viral strains. This mechanism can create viral progeny carrying genes
that are derived from more than one viral parent, providing potential evolutionary avenues
for fitness and phenotypic changes to the progeny virus [2].

The genus Phlebovirus has been historically classified under the family Bunyaviridae,
along with Orthobunyavirus, Hantavirus, Nairovirus and Tospovirus genera. In 2016, the
International Committee on Taxonomy of Viruses (ICTV) created the order Bunyavirales
containing nine new families, also reorganizing previously existing genera, completely
replacing Bunyaviridae [3]. In this way, the genus Phlebovirus is now currently classified
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under the family Phenuiviridae. The viruses from the Phenuiviridae family are character-
ized by a tri-segmented negative-stranded RNA genome including a Large (L) segment
(encoding the RNA-dependent RNA polymerase, RdRp), a Medium (M) segment (encoding
the non-structural protein NSm and the two glycoproteins, Gn and Gc) and an ambisense
Small (S) segment (encoding the nucleocapsid protein, N, and a smaller non-structural
protein, NSs) [4]. According to ICTV [5], the genus Phlebovirus now includes a total of 66
viral species that can be found in the Old World and the Americas. The current phlebovirus
species demarcation criteria consider that viruses with <95% identity in the amino acid
sequence of RdRp, encoded by segment L, represent unique species.

The majority of known phleboviruses were first detected or isolated in sandflies
(e.g., Aguacate phlebovirus, Arbia phlebovirus) [6,7], although there are some phleboviruses
known to be circulating in other arthropods. Rift Valley fever phlebovirus, for example, the
most important phlebovirus from a public health point of view, is transmitted mainly by
mosquitoes from the genus Aedes and Culex [8]. While Mukawa phlebovirus has been detected
in ticks, currently most tick-borne viruses formerly included in the genus Phlebovirus are
now assigned to Uukuvirus genus [9-11].

For some viruses, e.g., Toscana phlebovirus (TOSV), transmitted by sandflies, the vector
is also believed to be the natural reservoir and humans to be dead-end hosts, while for oth-
ers such as, e.g., Gabek phlebovirus and Gordil phlebovirus, isolated from rodents, or Anhanga
phlebovirus isolated from opossums and Itaituba phlebovirus from sloths, the epidemiolog-
ical cycle is less clear, such that vectors and reservoirs remain to be elucidated [6,12-14].
TOSV is the most important sandfly-borne phlebovirus in the Mediterranean basin, since
it has been reported to cause neurological disease in humans, particularly in the summer
months [15]. Others, such as Naples or Sicilian phleboviruses, cause a febrile syndrome
commonly known as sandfly fever in the same region [12].

In Portugal, mosquito surveillance is mandatory and nationwide, specifically on
mosquitoes of the genus Aedes and Culex, which are vectors of viruses with significant
relevance for Public Health, such as dengue, Zika and West Nile viruses [16,17]. Although
surveillance and entomological surveys of sandflies remain scarce in the country, in sur-
veys performed in the summers of 2007 and 2008, the isolation and the Whole Genome
Sequencing (WGS) of two new phleboviruses (namely Arrdbida and Alcube viruses from
the Arrabida region (Setuibal county)) and the detection and WGS of two novel Massilia
phlebovirus variants (Massilia virus isolate 127 in Arrdbida region and Massilia virus isolate
130 in eastern Algarve, Olhao county) were achieved and reported [18,19].

Following results from the latter entomological surveys, in this work we present the
genetic characterization of two new Massilia phlebovirus isolates which resulted from recent
isolation attempts in sandflies from the same field collections. In addition, we introduce
evidence of the co-circulation of two Massilia phlebovirus genomic variants in the country.

2. Materials and Methods

Entomological field surveys took place in the Arrabida region (Settibal county), and
eastern Algarve (Loulé, Faro, Olhdo and Tavira counties), near or in animal facilities such as
kennels, rabbit hutches, pigsties, chicken pens or sheep corrals, between May and October
of 2007 and 2008. Sandflies were trapped with modified CDC light traps (John W. Hock
Company, Gainesville, FL, USA) baited with dry ice, which were set by sunset and collected
after sunrise, in periods of three consecutive nights. Alive sandflies were immediately
processed or stored in dry ice or at —80 °C. The sandflies were then organized in pools,
according to date, trapping origin and gender, in a maximum of 60 individuals, and
macerated in liquid nitrogen. Hank’s solution (Lonza, BioWhittaker, Walkersville MD,
USA) was added and the homogenate was centrifuged at 3000 x g for 20 min, at 4 °C.
PureLink Micro-to-midi Total RNA purification system (Invitrogen, Chemtrec, Carlsbad,
CA, USA) was used to perform the RNA extraction. Ten percent of the collected sandflies
were cleared, slide mounted and identified morphologically, according to morphological
taxonomic keys [20,21].
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A pan-phlebo RT-PCR assay was used for molecular screening [22]. RT-PCR positive
sandfly pools homogenates were seeded in Vero E6 cell (Cercopithecus aethiops kidney
epithelial cells, ATCC® CRL 1586™) monolayer flasks for tentative isolation. Briefly,
after incubation at 37 °C for one hour, Minimum Essential Medium (MEM 1X, Gibco®,
ThermoFisher Scientific, Life Technologies Limited, Paisley, UK) supplemented with 10%
fetal bovine serum (Gibco®' ThermoFisher Scientific, Life Technologies Limited, Paisley,
UK), and 1x Antibiotic-Antimycotic (Gibco®, Life Technologies Corporation, Grand Island,
NY, USA) was added and the flasks were incubated at 37 °C. Flasks were examined daily
for the presence of a cytopathic effect. All cultures presenting cytopathic effects were
screened by RT-PCR using the above-mentioned protocol and the obtained amplicons
were sequenced to confirm viral isolation, and proceeded for WGS. The samples were
processed according to the protocol of Wylezich and colleagues [23] and the sequences
were determined using an Illumina MiSeq (New England Biolabs, Inc., Ipswich, MA, USA),
with a v3 600 cycle kit in 2 x 300 Bp paired end mode. Assembly was done with the
454 /Roche assembler v3.0 with default settings. Automatically assembled sequences were
analysed in silico by comparison with most similar sequences and unconfirmed projected
termini (at 5" and 3’) were removed to guarantee full length sequence quality.

Homology searches within the GenBank database were performed using the BLASTn
and BLASTx algorithms [24]. Sequence alignment was performed using MAFFT (FFT-NS-2
algorithm) and visually inspected in AliView [25,26]. Phylogenetic analysis was performed
using RdRp amino acid (n = 27) and total concatenated nucleotide (n = 13) sequences
of genome segments, which were retrieved from GenBank (alignments available in Sup-
plementary Material). We estimated maximum-likelihood phylogenies in IQ-TREE [27]
by using the best-fit model of nucleotide substitution as indicated by the ModelFinder
application (implemented in IQ-TREE), while 1000 ultrafast bootstrap replicates and SH-
aLRT tests were applied to evaluate the robustness of the inferred tree. Phylogenetic trees
were edited in figtree v1.44 (http://tree.bio.ed.ac.uk/software/figtree/, accessed on 8
June 2021), and genetic distance matrices between amino acid alignments of RdRp and
glycoprotein precursor coding regions obtained from MegaX were plotted using in house
R scripts (v4.02) based on ggplot2 [28]. Sequence data used in the alignments are depicted
in Table S1: Phleboviruses sequence data. The used sequence alignments can be accessed
as supplementary fasta files (File S1: Phleboviruses” amino acid sequence alignment of L
segments and File S2: Phleboviruses’ nucleotide concatenated sequence alignment of all
segments). Since the presentation of concatenated trees is not common in the literature,
phylogenetic trees of amino acid glycoprotein precursor (segment M) and N and NSs
proteins (segment S) were also inferred, and are available for comparison in Supplementary
File S3: Additional Phleboviruses’ trees.

Finally, the alignment of concatenated whole-genome sequences (L + M + S) of 13
phlebovirus (with more than 70% pairwise sequence identity), also used for phylogenetic
analysis, was screened for recombination using Recombination Detection Program (RDP)
v4.101 using default settings [29]. RDP implements analysis of recombination using seven
different detection algorithms: RDP [30], GENECONYV [31], BootScan [32], MaxChi [33],
Chimaera [34], SiScan [35] and 3Seq [36]. Only recombinant sequences detected by at least
five implemented algorithms and with p-values of <1.0 x 10~® were further analyzed as
positive/possible recombinant events [29].

3. Results

A total of 6137 sandflies divided in 237 pools (110 from Algarve counties and 127
from Setuibal county) were screened. In the eastern region of Algarve four sandfly species
were found: Phlebotomus perniciosus, Ph. Sergenti, Ph. ariasi and Sergentomyia minuta (91%,
3%, 3%, 3%, respectively). In the Arrabida region, three sandfly species were identified:
Ph. perniciosus, Ph. sergenti and Ph. ariasi (94%, 4% and 2% respectively).

Isolation attempts from different sandfly pools were performed and cytopathic effect
was visible on the fourth day after infection, with two new isolates obtained, here named
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PoSFPhlebV /21/2007 and PoSFPhlebV /70/2007. These two pools were composed of 50
and nine sandfly females, respectively, collected in two different farms in the Arrabida
region. Sandfly specimens from the sample pools were morphologically identified as
Ph. perniciosus.

The WGS analysis displayed the characteristic tri-segmented genome organization of
phleboviruses. The complete sequence of PoSFPhlebV /21/2007 included 1854 nt, 4221 nt
and 6404 nt for the S, M and L segments, respectively (GenBank acc. no. MW448250-
MW448252), and PoSFPhlebV /70/2007 included 1873 nt, 4229 nt and 6386 nt (GenBank
acc. no. MW448253-MW448255). The phylogenetic analyses based on the RdRp proteins
showed that these two new isolates can be assigned to the Massilia phlebovirus species,
together with other Massilia phlebovirus variants and Arrabida and Granada viruses. Inter-
estingly, our analysis regarding Arrabida and Granada viruses species assignment conflicts
with the ICTV inclusion of these viruses in Naples phlebovirus species (Figures 1 and 2, and
Table S2: Estimates of evolutionary divergence between phleboviruses’ RdRp aa sequences).

Massilia phlebovirus
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Figure 2. Pairwise genetic distance heatmap of phleboviruses RNA-dependent RNA polymerase protein sequences. Each
cell shows the genetic distance between pairs of sequences (y versus x axis), colored according to the scale presented on
the right. The dendrogram on the right was built using the pairwise distances with the base function hclust in R, and is
reflective of the named sequences on the y axis. Sequence names in red and marked with an asterisk have been sequenced
in this study. The shaded areas on the axes highlight the classic Massilia phlebovirus group (blue) and the newly renamed
Naples phlebovirus group (green). The dashed black square in the heatmap highlights the distance results for the sequences
of the Massilia and Naples groups. The sequences used for this output are the same presented in Figure 1. Original pairwise
distance data is presented in Table S2: Estimates of evolutionary divergence between phleboviruses’ RdRp aa sequences.

The maximum likelihood phylogenetic tree of phleboviruses’ full nucleotide concate-
nated segments showed that the two new strains group with the previously described
Arrabida and Granada viruses with maximum statistical support (bootstrap = 100%,
Figure 3a). The two already reported Portuguese Massilia strains, including the one de-
tected in Arrdbida region (Massilia virus 127) and the other in Olhao county, eastern
Algarve (Massilia virus 130), appear to be more closely related with the Massilia virus W
strain, isolated in France. This seemingly separation into two clusters was also evident
by Blast analysis with segment M and pairwise distances within glycoprotein precur-
sor sequences (Table S3: Estimates of evolutionary divergence between phleboviruses
glycoprotein precursor sequences).
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Figure 3. Maximum likelihood phylogenetic tree of phleboviruses’ full nucleotide concatenated
segments and recombination results. (a) Phylogenetic tree. Sequence names in red and marked
with an asterisk have been sequenced in this study. According to the International Committee
on Taxonomy of Viruses 2020, sequence names in green have recently had their species renamed,
while those marked by “new” symbols on the right side of the tree have been assigned as new
species. Names of the sequences in the tree match the IDs in the alignment made available as a
supplementary File S2: Phleboviruses’ nucleotide concatenated sequence alignment of all segments.
Numbers on branches are the bootstrap support. The shaded area on the top shows the classic
Massilia phlebovirus group. (b) Schematic of genome data and recombination results from RDP
(created with https://biorender.com/). The full lines on the left link the genomes with highest

nucleotide homology in the segment L sequence.

This analysis and the previous reassortment events reported in Granada and Arrabida
viruses suggest the possibility of similar reassortment events in PoSFPhlebV /21/2007 and
PoSFPhlebV /70/2007 [18,37].

RDP analysis using full genome concatenated sequences (segments L + M + S) se-
quences confirmed recombination events in segment M of the two new Massilia viruses
PoSFPhlebV /21/2007 and PoSFPhlebV /70/2007 aside with Arrabida virus (Figure 3b).
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These events involve an unknown virus more closely related to Punique virus and show
high support in RDP analysis (Figure S1: Schematic analysis of RDP most supported recom-
binant results). In PoSFPhlebV /21/2007 M segment reassortment is assigned with segment
S, expressing a higher similarity to the Arrabida virus segment S sequence (Figure 3b and
Figure S1). This result agrees with the clusters obtained from whole genome analysis
(Figure 3a). Three additional recombination events (less supported but within the defined
parameters) were also detected by RDP, however possible misidentification of the recom-
binant is considered, and as such they were no further considered. More studies on phle-
boviruses’ diversity are needed to clarify the importance of recombination/reassortment in
their current phylogenetic structure and evolution.

Whole genome data analysis confirms the circulation of two Massilia phlebovirus
genomic variants. One including PoSFPhlebV /21/2007 and PoSFPhlebV /70/2007 strains,
Arrabida and Granada viruses, and the second including Massilia virus strain W from
France and the ones previously isolated in Portugal [18,19,38]. These variants are mainly
defined by segment M divergency, probably related to an ancient reassortment event
associated with the first variant. Blast analysis (BlastN and BlastX) also confirm these
results (Figure 3 and Table S3: Estimates of evolutionary divergence between phleboviruses
glycoprotein precursor sequences).

4. Discussion

As with many known viruses (e.g., flaviviruses), species of phleboviruses were initially
defined through serological inference, based on cross-reactivity or neutralization assays [39].
With the advent of molecular techniques, WGS and identification of an ever-growing
number of species, however, such criteria are no longer the standard [6]. The ICTV now
proposes that viral genomes with <95% amino acid sequence identity in RdRp represent
unique species, which is the current criteria for the distinction of 66 known species [5].
According also to ICTV, the Arrabida and Granada viruses are included in Naples phlebovirus
species [10]. However, considering the current ICTV definition of Phlebovirus species, the
new strains reported here and, similarly, Granada and Arrébida viruses should be assigned
to Massilia phlebovirus species, along with other Massilia phlebovirus strains.

Given the segmented nature of these viruses, co-infection with related lineages can
result in genetic reassortment. In other words, if two closely related viruses coinfect the
same host or cell, it is possible that RNA segments from either of the parental viruses will
be incorporated into progeny virions to give reassortant viruses [40]. Co-circulation of
viruses in the same geographic region increases the probability of co-infection of vectors
and/or hosts, which is essential to produce reassortant viruses in nature. Particularly
relevant is the apparent frequency of reassortment events in M segments, in which the
S and L segments of a parent virus and the M segment of an heterologous virus can be
combined to generate suitable progeny [6,18,37,40]. To date, most recognized bunyavirus
reassortants have been described as following this sort of arrangement [6,41]. In these
viruses, reassortment has seemingly occurred both between distant (intertypic) and closely-
related (intratypic) lineages [41,42]. As in the population biology of other viruses (e.g.,
Influenza A), reassortment is a mechanism of diversification and adaptation [43], with
potential implications for fitness, pathogenicity and host-range [44]. In general, reassortants
pose challenges to the current definition of species as per the ICTV criteria, highlighting
the possibility that more general considerations may be required for deciding under what
conditions particular reassortants should be considered as members of an existing or
new species.

In this work, we present a focused phylogenetic approach, analyzing the concatenated
genome of a small group of closely related phleboviruses’ sequences (13 sequences with
more than 70% pairwise sequence identity) and, in this way, integrating all genome signal
information. Since the L and S segments are clearly less divergent than the M segment
(that codes for antigenic traits), analysis including all genome data should provide a more
realistic perspective. The resulting phylogenetic tree using full nucleotide concatenated
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sequences showed two main clusters within Massilia phlebovirus not defined using solely L
segment data, in agreement with recombination analysis and detected genome features.
Although this approach may work using a small cluster of related sequences, a global
analysis within the genus with the addition of more divergent genome sequences should
be addressed carefully, since the obtained alignments lose robustness. These two Massilia
phlebovirus clusters are curiously also differentiated in recombination analysis, since the
sequences with a detected recombinant event in S (strains 127, 130 and W; minor parent
Arrabida virus, less supported event) are the variants that do not show reassorment of
segment M, suggesting a common ancestor sharing these features for each cluster. Both
Massilia phlebovirus genomic variants were detected in the south of Portugal, however a
more expanded geographic range is possible but unknown.

Following this line of reasoning, to date, phleboviruses included in the Massilia phle-
bovirus species have been isolated in sandflies from France, Spain and Portugal. Its public
health importance is largely unknown, but it is now clear that it is at least associated with
the vector Ph. perniciosus since the first isolation was made from one male Ph. pernicio-
sus [38]. Although seropositivity for Granada virus has been found in the local human
population, there is, to date, no demonstration that this group of viruses can cause symp-
tomatic infections [37,45]. Furthermore, studies are needed for the identification of potential
vertebrate hosts of Massilia phlebovirus beyond humans in order to clarify its ecological
cycle. There are examples of sandfly-borne viruses initially isolated from sandflies which
were then shown to be pathogenic to humans, such as TOSV which was isolated in 1971
and only associated with human disease in 1983, and Adria virus, isolated from sandflies
collected in 2005 and reported as a human pathogen due to its detection in a febrile child in
2011 [7,46—48]. The possibility that a wider number of unidentified but already circulating
viruses from this group could be of public health importance should also not be neglected.

The Arrabida region is located in the southern coastline of Lisbon (40 km away)
and involves a protected mountain chain area with typical Mediterranean vegetation. So
far, five phleboviruses with specific sequence signatures were detected in the Arrabida
region, namely, Arrabida virus, these two new reported isolates (comprising one Massilia
phlebovirus genomic variant), Massilia 127 (member of the other Massilia phlebovirus genomic
variant) and a more divergent phlebovirus recently recognized as a new species, Alcube
phlebovirus. Four of these viruses were detected in the same collection site, indicating that
this region may be a particular hotspot to study phleboviruses’ diversity.
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10.3390/v13071412/s1, Table S1: Phleboviruses’ sequence data, Table S2: Estimates of evolutionary
divergence between phleboviruses’ RdRp aa sequences, Table S3: Estimates of evolutionary diver-
gence between phleboviruses glycoprotein precursor sequences, Figure S1: Schematic analysis of
RDP most supported recombinant results, File S1: Phleboviruses” amino acid sequence alignment
of L segments, File S2: Phleboviruses’ nucleotide concatenated sequence alignment of all segments,
File S3: Additional Phleboviruses’ trees.
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