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Abstract: Bacteriophages that lyse Salmonella enterica are potential tools to target and control
Salmonella infections. Investigating the host range of Salmonella phages is a key to understand their
impact on bacterial ecology, coevolution and inform their use in intervention strategies. Virus–host in-
fection networks have been used to characterize the “predator–prey” interactions between phages and
bacteria and provide insights into host range and specificity. Here, we characterize the target-range
and infection profiles of 13 Salmonella phage clones against a diverse set of 141 Salmonella strains.
The environmental source and taxonomy contributed to the observed infection profiles, and geneti-
cally proximal phages shared similar infection profiles. Using in vitro infection data, we analyzed
the structure of the Salmonella phage–bacteria infection network. The network has a non-random
nested organization and weak modularity suggesting a gradient of target-range from generalist to
specialist species with nested subsets, which are also observed within and across the different phage
infection profile groups. Our results have implications for our understanding of the coevolutionary
mechanisms shaping the ecological interactions between Salmonella phages and their bacterial hosts
and can inform strategies for targeting Salmonella enterica with specific phage preparations.

Keywords: salmonella; bacteriophages; virus; bacteria; nestedness; modularity; infection; network;
evolution; speciation

1. Introduction

Salmonella enterica serovars Enteritidis and Typhimurium are major foodborne
pathogens of worldwide concern, which often cause severe diarrheal diseases sometimes
with fatal outcomes. According to the WHO report, 550 million people are infected an-
nually, including 220 million children under the age of five [1]. The majority of these
cases of domestically acquired salmonellosis are caused by various Salmonella serovars
transmitted through the food chain (The US Centers for Disease Control and Prevention) [2].
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Increasing antibiotic-resistance of this bacterium is aggravating the epidemic situation [3].
Due to the increasing problem of antibiotic resistance, the development of new strategies
to sustainably control food-borne pathogens is urgently needed. Bacteriophages (phages)
are potential alternative tools to target Salmonella infection. In post-Soviet Union coun-
tries, phage preparations have a long history of application for treatment and prophylaxis
against dysenterial diseases, such as shigellosis, escherichiosis, and salmonellosis. These
preparations have been successfully used for prophylaxis of salmonellosis among civilian
population as well as in Red Army units [4–6]. In Western countries phage applications
are used for biocontrol in foods [3]. Better understanding of phage–bacteria interactions
will facilitate the development of a more rational approach to select appropriate phages for
therapy, prophylaxis or biocontrol of Salmonella infections. Therefore, investigating the
host range of Salmonella phages is a key to understand their impact on bacterial ecology,
coevolution and inform intervention strategies.

One way to study a phage’s host ranges and ecological interactions is through the in-
vestigation of phage–bacteria infection networks [7–9] (PBINs). Essentially, these networks
(or graphs) represent predator–prey interactions between phages and bacteria, respectively.
These ecological relationships are graphed as a bipartite network where edges connect
nodes from two different subsets, i.e., phages and bacteria. In such networks, an interaction
between a single bacterium and a phage could have an impact on other members of the
network too. Studying the structure of PBINs essentially addresses the question of “who-
kills-whom” and provides important information regarding the ecological, biological and
coevolutionary mechanisms underlying the network’s structure [10–14]. For example, large
variation in host range species suggests that some phages have evolved to infect many
hosts (generalists with wide host ranges), while others have evolved to infect a few select
hosts (specialists with narrow host ranges). Equally, large variation in susceptibility host
species suggests that the network consists of hosts with generalist and specialist resistance
repertoires. At an evolutionary scale, large variation in host and susceptibility range sizes
could indicate that particular modes of coevolution are occurring [10,15].

In this study, we investigate the in vitro infection profiles of different Salmonella
phages against a wide range of Salmonella bacterium strains. We further use these data to
construct a Salmonella phage–bacteria infection network (PBIN) and study its structure.
Based on the above, we define a set of different Salmonella phage infection groups (or
clusters) and explore their association to known Salmonella phage characteristics. Our aim
is to better understand the underlying ecological and evolutionary dynamics that shape
the Salmonella phages’ host-range.

2. Materials and Methods
2.1. Phages and Bacterial Strains

Thirteen Salmonella-specific individual phage clones previously isolated from environ-
mental sources (sewage, the river and sea water samples, milk) [16,17] were used for testing
the Salmonella strains for susceptibility, these are GEC_vB_B1, GEC_vB_B3, GEC_vB_NS7,
GEC_vB_BS, GEC_vB_MG, GEC_vB_7A, GEC_vB_N5, GEC_vB_N8, GEC_vB_N3, GEC_vB
_M4, GEC_vB_M5, GEC_vB_HIL, and GEC_vB_TR. The genomes of eight out of the above
phages were previously sequenced and annotated by short-read high throughput sequenc-
ing [16] (MiniSeq Illumina NGS platform, Illumina, San Diego, CA, USA) (Supplementary
Table S1). Six genomes have been deposited in NCBI and are available via GenBank acces-
sion numbers in Supplementary Table S1. Five of these phages belong to the Myoviridae
family with two different genera: Felixounavirus (GEC_vB_B1, GEC_vB_B3, GEC_vB_NS7,
and GEC_vB_BS), and Seunavirus (GEC_vB_MG). Three phages belong to the Demerecviri-
dae family of the genus Tequintavirus (GEC_vB_N3, GEC_vB_N5, GEC_vB_N8). The
second group of phages, sequenced using long-read sequencing [18] (MinION, Oxford
Nanopore Technology, ONT, Oxford, UK), is composed of five members belonging to
Siphoviridae family, genus Jerseyvirus (GEC_vB_M4, GEC_vB_M5, GE_vB_HIL), Myoviri-
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dae family genus Felixounavirus (GEC_vB_7A), and Podoviridae family genus Leder-
bergvirus (GEC_vB_TR) (Supplementary Table S1).

Altogether, 141 Salmonella strains originating from Ireland [19] were included in this
study. These strains are related to various serovars: S. Typhimurium (n = 40), S. Dublin
(n = 22), S. Enteritidis (n = 21), S. Anatum (n = 10), S. Infantis (n = 8), S. Newport (n = 7),
S. Bredeney (n = 5), S. Derbey (n = 4), S. Braenderup (n = 2), S. Germinara (n = 2), S. Uganda
(n = 2), S. Senftenberg (2), S. Kentucky (n = 1), S. Java (1), S. Branderburg (n = 1), S. Bareilly
(n = 1), S. Virchow (n = 1), S. Goldcost (n = 1), S. Poona (n = 1), and unknown serotypes
(n = 9). Overall, 19 serotypes of Salmonella were included into the work. The majority of
these strains (n = 88) were of veterinary origin (bovine n = 36, porcine n = 34, poultry n = 17,
duck n = 1), 27 were isolated from humans, 6 strains were obtained from food products
(cheese, vegetables, fish) and 1 from terpene.

2.2. Antibiotic Susceptibility Tests

The antibiotic resistance profile of all isolates was determined using Kirby–Bauer
method applied to 16 antibiotics: Ampicillin (A, 10 µg/disk), Amikacin (Ak, 30 µg/disk),
Cefotaxime (Ctx 30 µg/disk), Chloramphenicol (C, 30 µg/disk), Ciprofloxacin (Cip,
5 µg/disk), Enrofloxacin (Enr, 5 µg/disk), Gentamycin (Cn, 30 µg/disk), Lomefloxacin
(Lom, 10 µg/disk), Nalidixic acid (Nal, 30 µg/disk), Norfloxacin (Nor, 2 µg/disk), Spectino-
mycin (Sp, 10 µg/disk), Streptomycin (S, 10 µg/disk), Sulfonamides (S3, 300 µg/disk), Te-
icoplanin (Tec, 30 µg/disk), Tetracycline (Te, 30 µg/disk) and Trimethoprim (W, 5 µg/disk).
Antibiotic susceptibility, intermediate resistance or resistance was determined according to
NCCLS standards [20].

Phage isolation and preparation of high titter phage stocks were performed as de-
scribed in Makalatia et al., 2020 [16].

2.3. Bacteriophage Susceptibility Test

Assessment of phage activity against different bacterial strains was performed using
the double layer agar method [16]. Briefly, overnight bacterial cultures and phage stocks
were diluted in the sterile lysogeny broth (LB) (Oxoid Limited, Basingstoke, UK) to final
concentrations of 108, 107, and 106 pfu/mL, respectively. Bacterial lawns were made
on pre-prepared LB agar (2%) plates using a 300 µL of each bacterial test cultures (titer
108 cfu/mL) mixed with 5 mL of the soft LB agar (0.7%) and air-dried for 10–15 min; 5 µL
of each phage clone and cocktail was applied on each plate. Thus, the ratio between
the infecting phage particles and bacterial cells, i.e., the multiplicity of infection (MOI)
were equal to 1.0, 0.1, and 0.01. The plates were incubated at 37 ◦C for 18 h and results
were recorded. Phage activity was assessed based on visualization. All types of lyses
(confluent lysis (CL), semi-confluent lysis (SCL), opaque lysis (OL), countable number of
phage plaques on the phage application spots (“taches vierges”, TV) were considered as
positive results designated as “S” (sensitive). Uninterrupted bacterial growth on the spot
was recorded as “R” (resistant).

2.4. Representation of In Vitro Infection Data in a Phage–Bacterium Infection Matrix

Successful infection experiments were translated to a binary dataset, with any evidence
of lysis becoming ‘True’, represented as 1, and phage–host pairs annotated as resistant
(score 0) remaining as 0 to represent ‘False’. The Salmonella dataset has some incomplete
rows (hosts that have not been tested against the complete set of phages), which were
discarded. Any hosts showing no evidence of lysis by any of the phage (rows in the
final matrix with only 0 s) were discarded. For the Salmonella dataset, 7 out of 148 hosts
(Armenian origin) were discarded due to missing data and a further 8 hosts were discarded
due to showing no lysis by any of the phage isolates. The Salmonella phage–bacteria
infection matrix with accompanying metadata can be found in the “Supplementary Data
File 1.csv” file in the Supplementary Materials.
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2.5. Assignment of Infection Profiles and Clustering

The Jaccard index was used to describe similarity between phages based on the bac-
terial strains they could infect, i.e., based on their infection profiles, and vice versa. The
Jaccard distances (dissimilarity) between phages and bacteria were annotated on principal
components. To identify groups of phages and bacteria based on similar infection profiles,
unsupervised agglomerative hierarchical clustering (complete linkage) of the Jaccard score
was performed. The cluster membership of the Salmonella phages and bacteria were
further annotated on the principal components. Principal component decomposition was
performed to monitor the percentage of variance explained in different components (di-
mensions). The Jaccard similarity, Jaccard distances, agglomerative hierarchical clustering,
and principal component analysis were performed in MATLAB R2018a. The Salmonella
phage taxonomy tree was produced using PhyloT v2 and iTOL v6 (a phylogenetic tree
generator, based on NCBI or GTD taxonomy) [21,22].

2.6. Construction of Salmonella Phage–Bacterium Infection Network

The Salmonella phage–bacterium infection matrix (PBIM) was transformed into a bi-
partite network (PBIN) [10]. Nodes represented Salmonella phages and bacteria connected
through edges. A basic description of the network is presented in Supplementary Table S2.
PBIN visualization and annotation was performed using NAViGaTOR [23]. Phage nodes
are presented as polygons and bacterial nodes as spheres. Node and edge colors represent
phage infection profile groupings as described above. The network was arranged using
the GRIP layout (Graph Drawing with Intelligent Placement) [23]. Clique assignment was
performed using NAViGaTOR [23]; a clique is the strictest possible definition of a graph
cluster. In a k-clique, k vertices are fully connected i.e., there is an edge between every pair
of distinct vertices. Cliques have an edge density of 1.

2.7. Calculating Nestedness and Modularity

Nestedness was quantified by the NODF metric, calculated using the R package
vegan [24,25]. Modularity was calculated using Barber’s modularity, implemented and
optimized by the R package bipartite [26–28]. Nestedness and modularity scores were
compared to null models Sim1, Sim8 and Curveball. Sim1 and Sim8 were implemented
using the R package EcoSimR [29], while Curveball was implemented using the R function
provided by Strona et al. [30]. For each dataset, 1200 matrices were simulated for each
null model. Nestedness and modularity scores were computed for each of these null
matrices, producing a distribution of scores. These distributions can be compared to the
scores for the observed Salmonella PBIN. A threshold for nestedness and modularity
scores can then be defined, above which less than 5% of null matrix scores fall. Scores for
observed data beyond this threshold can be annotated as significant (p < 0.05, one-tailed).
Briefly, Sim1 assigns equal probabilities of infection to each cell (phage–host pair); Sim8
assigns probabilities proportional to row and column totals; Curveball performs sequential
swapping of cell values, preserving row and column totals. These null models can be
thought of as a range of stringency: Sim1 being least stringent and making the fewest
assumptions of the data, and Curveball being most stringent. Simulation of null matrices
and computation of nestedness and modularity scores was performed in parallel using the
R packages doParallel [31]. The R code for the nestedness and modularity analyses can be
found in the “SalmonellaPBIN.Rmd” file in the Supplementary Materials. The input data
can be found in the “salmonellaPBIN.csv” file in the Supplementary Materials.

2.8. Statistical Analysis

The distribution of variables was tested using the Shapiro–Wilk test. The non-
parametric Friedman test was used to compare repeated measures between phage groups
or phages. Pairwise comparisons of multiple variables were corrected using the Dunn’s
multiple comparison test. Statistical significance was assigned below 0.05. The pair-
wise comparisons amongst the 13 Salmonella phages are described in the “Supplemen-
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tary Data File 2” in the Supplementary Materials. Statistical tests and graphical visu-
alizations were produced in GraphPad Prism 9. The correlation of distance matrices
was tested using the Mantel test (9999 permutations). The code is available in R (https:
//www.rdocumentation.org/packages/ade4/versions/1.7-16/topics/mantel.rtest) (ac-
cessed 10 April 2021).

3. Results

We analyzed the infection profiles of 13 Salmonella phage species against a set of
141 bacterial strains related to various Salmonella serovars (Supplementary data file 1). The
Salmonella bacteria strains demonstrated different resistance patterns. The vast majority
of isolates had resistance to at least one antibiotic. Multiresistance (resistance to two or
more families of antibiotics) was also common. A great number of isolates had resistance
to at least three antibiotics with the majority showing a penta-resistance profile. The most
common resistance profile was ACSSuTSh, which was mainly associated with Salmonella
Typhimurium, many of which have additional resistance to Trimethoprim (ACSSuTTmSh).
Resistance to the quinolones was relatively low. Nine had resistance to Nalidixic acid. Only
three isolates expressed resistance to the third-generation cephalosporin Cefotaxime. These
three isolates were Salmonella Newport [19].

3.1. The Salmonella Phage Target-Range Varies between Clones of Different Taxonomic Lineages
and Isolated from Different Environmental Sites

The Salmonella phage clones were isolated from four different environmental sources:
water samples from the river Mtkari (n = 8), the Black Sea (n = 3), the artificial Tbilisi Sea
(n = 1), and a raw cow milk sample (n = 1) (Supplementary Table S1) (Figure 1a). Based
on the isolate source we observed a broad range of phage targets (Figure 1a). The broad
target range of multiple phages isolated from the same environmental source suggested
that there is a co-occurrence of generalist and specialist species in the same environmental
site (Table 1). For example, phage clones from the Mtkvari river lysed 52 (GE_vB_7A)
to 111 (GE_vB_B1) bacterial strains, and clones from the Black Sea lysed 33 (GE_vB_M4)
to 107 (GE_vB_BS) Salmonella strains (Table 1). The Salmonella phages were taxonomi-
cally clustered in four families and six genera (Table 1). Phage clones of the Myoviridae
family (n = 6) and a subset of them, classified as subfamily Ounavirinae (n = 4), infected
on average the highest number of different Salmonella bacterial strains and serotypes
(mean: 88, 95%CI: 52–111, and mean: 105, 95%CI: 97–111 strains, respectively) (Figure 1b,c).
Based on the phage taxonomic cladogram, phage species of clade 1 infected the highest
number of bacteria (mean: 105, 95%CI: 96–115) and clade 2 species the lowest (mean:
54, 95%CI: 29–79) (Figure 1d,e). Notably, species of both clades 1 and 2, belonged to the
Myoviridae family, however, clade 1 species belonged to the rank of subfamily Ounaviri-
nae; genus Felixounavirus, whereas clade 2 species belonged to the family Myoviridae;
genera Felixounavirus and Seunavirus, suggesting a diversification of Salmonella phage
target-range within the Myoviridae family. Similar variability was observed within the
family of Siphoviridae with species of the Jerseyvirus genus targeting a broad range of
Salmonella bacterial strains (n = 3, range: 33–82). The target range for phages in the family
Demerecviridae of the Tequintavirus genus (clade 3) was lower (n = 3, range: 76–96) poten-
tially being influenced by the isolate source which was the same for all clade 3 species (the
samples from the river Mtkari).

https://www.rdocumentation.org/packages/ade4/versions/1.7-16/topics/mantel.rtest
https://www.rdocumentation.org/packages/ade4/versions/1.7-16/topics/mantel.rtest
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Figure 1. Salmonella phages target-range. The number of phage-infected Salmonella bacteria strains are presented according
to the phage (a) environmental source, (b) taxonomic family, (c) taxonomic genus, (d) taxonomic lineage, and (e) taxonomic
clade. The Salmonella phage taxonomic tree in (e) includes a circular heatmap which is analogous to the absolute number of
infected bacterial strains (log10 transformed) and the colored nodes represent the phage infection profile cluster that each
phage was assigned to (see Figure 2); red: cluster 1, black: cluster 2, green: cluster 3, and blue: cluster 4.
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Figure 2. Salmonella phage–bacteria infection profiles and clustering. (a) Binary heatmap of the Salmonella phage–bacteria
infection matrix representing positive (yellow) and negative (blue) in vitro infections. The matrix is organized according to
the unsupervised hierarchical agglomerative clustering of the Jaccard similarity amongst the viral species (horizontal) (b)
and the bacterial strains (vertical) (c). Strains and species with similar infection preferences (profiles) are positioned closer
together in the cladograms in a bottom-up organization.

Table 1. Characteristics of the Salmonella phage species. The table includes metadata on the characteristics of the 13
Salmonella phage species investigated in this study. These include the environmental source, the taxonomic clustering at
the family and genus level and the phylogenetic clade, the infection profile cluster, and the target range.

Source Name Study id Tax id Family Genus Taxonomic
Clade

Infection
Profile

Infected
Hosts

Mtkari river
water

Salmonella phage
GEC_vB_B1 GE_vB_B1 2108164 Myoviridae Unclassified

Ounavirinae Clade 1 Cluster 1 111

Salmonella phage
GEC_vB_B3 GE_vB_B3 2108165 Myoviridae Unclassified

Ounavirinae Clade 1 Cluster 1 106

Salmonella phage
GEC_vB_HIL GE_vB_HIL 2108167 Siphoviridae Unclassified

Jerseyvirus Clade 4 Cluster 1 82

Salmonella phage
GEC_vB_7A GE_vB_7A 2108163 Myoviridae Unclassified

Felixounavirus Clade 2 Cluster 2 52

Salmonella phage
GEC_vB_TR GE_vB_TR 2108174 Podoviridae

Unclassified
Leder-

bergvirus
Clade 5 Cluster 2 57

Salmonella phage
GEC_vB_N5 GE_vB_N5 2108171 Demerecviridae Unclassified

Tequintavirus Clade 3 Cluster 3 76

Salmonella phage
GEC_vB_N8 GE_vB_N8 2108172 Demerecviridae Unclassified

Tequintavirus Clade 3 Cluster 3 76

Salmonella phage
GEC_vB_N3 GEC_vB_N3 2777377 Demerecviridae Unclassified

Tequintavirus Clade 3 Cluster 3 96
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Table 1. Cont.

Source Name Study id Tax id Family Genus Taxonomic
Clade

Infection
Profile

Infected
Hosts

Black sea
water

Salmonella phage
GEC_vB_BS GE_vB_BS 2108166 Myoviridae Unclassified

Ounavirinae Clade 1 Cluster 1 107

Salmonella phage
GEC_vB_M4 GE_vB_M4 2108168 Siphoviridae Unclassified

Jerseyvirus Clade 4 Cluster 4 33

Salmonella phage
GEC_vB_M5 GE_vB_M5 2108169 Siphoviridae Unclassified

Jerseyvirus Clade 4 Cluster 4 52

Raw cow
milk

Salmonella phage
GEC_vB_NS7 GE_vB_NS7 2108173 Myoviridae Unclassified

Ounavirinae Clade 1 Cluster 1 97

Tbilisi
sewage
water

Salmonella phage
GCE_vB_MG GE_vB_MG 2108170 Myoviridae Unclassified

Seunavirus Clade 2 Cluster 2 56

3.2. The Salmonella Phages Are Grouped into Clusters with Different Infection Profiles

The phages with the broadest range of Salmonella targets were GE_vB_B1 which
infected 111 Salmonella strains (79%), GE_vB_BS infected 107 strains (76%), and GE_vB_B3
that infected 106 strains (75%). The phages with the narrowest range of bacterial targets
were GE_vB_M4 that infected 33 strains (23%) and GE_vB_M5 and GE_vB_7A that both
infected 52 Salmonella strains (37%) (Table 1). To gain a better understanding of target-
range and specificity, the Jaccard distance was used to measure the pairwise similarity
amongst phages based on the bacteria that were able to infect, and vice versa (Figure 2a).
Based on these distances, phages and bacteria were annotated in principal components
(Supplementary Figure S1a,b). We observed a divergence of the infection profiles for
phages GE_vB_MG, GE_vB_M4, and GE_vB_M5 (Supplementary Figure S1a), suggesting
differences in their infection profiles compared to the rest of the phages. Unsupervised
Agglomerative hierarchical clustering (complete linkage) was used to identify groups of
phages, and bacteria, with similar infection profiles (Figure 2b,c); phages were grouped
into four infection profile clusters (Table 1) (Figure 3a–d). The Salmonella bacterial strains
were grouped into 21 clusters (Supplementary data file 1). Phage cluster 1 contained
generalist species that infected on average 100 Salmonella bacterial strains (95%CI: 82–111),
equal to about 71% of total Salmonella strains tested, followed by phages of cluster 3
(58%, mean: 83, 95%CI: 75–96), cluster 2 (39%, mean: 55, 95%CI: 52–57), and cluster 4
(30%, mean 43, 95%CI: 33–52) (Figure 3e). About 36% (n = 48) of Salmonella bacterial
strains were infected by at least one phage from each phage infection cluster (Figure 3f).
In phage clusters 1 and 2 we observed the co-clustering of phage clones from different
environmental sources, taxonomic families and genera (Table 1), whereas clusters 3 (river
Mtkari; Demerecviridae; Tequintavirus) and 4 (Black Sea; Siphoviridae; Jerseyvirus) were
more homogenous (Table 1). Therefore, no clear association between phage target-range,
environmental source, taxonomy and infection profiles alone was observed.



Viruses 2021, 13, 1261 9 of 18

Figure 3. Target-range of Salmonella phages in different phage infection profile clusters. The number of infected Salmonella
bacteria strains per each phage are presented for (a) cluster 1, (b) cluster 2, (c) cluster 3, and (d) cluster 4. (e) The number
of infected Salmonella bacteria strains per phage cluster: Median values and 95%CIs are presented. (f) Venn diagram of
phage-target overlap amongst phage clusters.

To further investigate phage speciation, we analyzed the phage infection profiles
considering their targets’ taxonomic group at species level, environmental source (isolate
type), and infection clusters (bacterial groupings based on hierarchical clustering). Com-
parison of the absolute count of infected bacterial strains belonging to different bacterial
species (serotypes) we observed significant differences (ANOVA Friedman statistic = 26.71,
p < 0.0001) between phage clusters 1 and 4 (Dunn’s multiple comparison test adjusted
p = 0.0004, Rank sum diff. 33.5) and clusters 3 and 4 (Dunn’s multiple comparison test
adjusted p = 0.002, Rank sum diff. 30.0) (Figure 4a). The number of infected bacterial strains
with unknown serotype was highest in clusters 1 and 2 (n = 8), followed by cluster 3 (n = 5),
and cluster 4 (n = 4). Phages grouped in infection clusters 1 and 3 demonstrated the widest
diversity of targets, infecting 19 out of 20 different known bacterial species followed by
cluster 2 (14 out of 20) and cluster 4 (9 out of 20) (Figure 4a). These findings suggest that
phage clones from clusters 1 and 3 infect a significantly higher number of bacterial strains
and from a more diverse pool of bacterial serotypes compared to cluster 4. As a result,
the compositional infection profiles of phages in cluster 4 seem to diverge from the other
phages (Figure 4b).
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Figure 4. Clusters of Salmonella phage infection profiles. The infection profiles for each Salmonella phage cluster are
presented based on three factors: (a,b) the type of Salmonella bacteria species that were infected, (c,d) the type of envi-
ronmental isolates of the bacteria, and (e,f) the infection cluster that the bacteria belonged to. For each factor the absolute
number of infected Salmonella strains is presented in a heatmap format (a,c,e), as well as stacked bar plots representing
compositional infection profiles (b,d,f). Heatmap color is analogous to the log10 transformed number of absolute counts of
successful infections (high—yellow to low—blue). Significant differences were observed amongst clusters 1 and 4, and 3
and 4. Significance tests: * p < 0.05, ** p < 0.001, *** p < 0.0001.
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Similar differences (ANOVA Friedman statistic = 19.34, p = 0.0002) were observed
between phage clusters 1 and 4 (Dunn’s multiple comparison test adjusted p = 0.0012, Rank
sum diff. 22.5), and clusters 3 and 4 (Dunn’s multiple comparison test adjusted p = 0.023,
Rank sum diff. 17.5) based on the bacterial isolate source (Figure 4c); phages grouped in
clusters 1 and 3 successfully infected 9 out of 10 known Salmonella isolate types, followed
by cluster 2 phages (8 out of 10) and cluster 4 phages (5 out of 10) (Figure 4d). With
respect to bacterial groups based on their infection profiles, significant differences (ANOVA
Friedman statistic = 18.30, p = 0.0004) were observed between phage clusters 1 and 4
(Dunn’s multiple comparison test adjusted p = 0.0006, Rank sum diff. 25.5) (Figure 4e);
cluster 1 and 2 phages infected Salmonella strains from 12 out of 21 bacterial infection
clusters, cluster 3 phages infected 11 out of 21, and cluster 4 phages infected 4 out of
21 (Figure 4f). No significant correlation was observed between the number of phages
in each phage cluster and the number of different bacterial species, bacterial isolates or
bacterial clusters (Spearman correlation p < 0.05), suggesting that our observations are not
influenced by the number of phages within each phage infection cluster. Comparisons of
the infection profiles amongst each phage species are described in Supplementary Figure
S2 and statistical testing in Supplementary Data 3. Collectively, our analysis suggests that
these Salmonella phages exhibit a hierarchical distribution based on their target-range
(generalist to specialist). This distribution is also evident in the infection profile clusters.
The phages grouped in cluster 1 are able to infect a high number of different Salmonella
strains including a diverse set of bacterial members from different Salmonella serotypes,
isolate type and infection profiles. In contrast, phages grouped in the phage infection
cluster 4 are much more specific targeting a certain subset of Salmonella strains.

3.3. The Genetic Distances of the Salmonella Phages Are Positively Associated to Their
Infection Profiles

To further investigate the hierarchical target range of the phages, we hypothesized
that there is a possible association between the heterogeneity of the phage infection profiles
and the genetic distances between the phages. To address this, we performed phage whole
genome sequence alignments of the available phage complete genome references in NCBI
(12 out of the 13 phages) and calculated the genetic distances (Jukes–Cantor and p-distance)
between all possible phage pairs. A hierarchical clustering and principal component
annotation of the phage genetic distances are described in Supplementary Figure S3. We
then tested the association between the genetic and the infection-profile distances described
above. We observed a positive association (Jukes–Cantor r 0.14, P distance r 0.17) between
the matrix entries, suggesting that smaller differences in infection profiles are generally
seen among pairs of phages that are genetically close to each other than far from each other.

3.4. The Salmonella Phage–Bacteria Infection Network Is Nested

We represented the Salmonella phage–bacterium infection matrix as a bipartite phage–
bacterium infection network (PBIN) (Supplementary Figure S4), where edges can connect
only nodes from two different subsets, i.e., phages and bacteria, and analyzed the structure
of the network (see Section 2). Interestingly, the topological organization of the Salmonella
network reflects the divergence of specific phage clones based on their infection profiles, in
line with the topological organization of the Jaccard distances in the coordinate system,
suggesting that PBINs can capture differences in the phage infection profiles. PBINs can be
characterized by four different structures (or patterns) (example in Figure 5a) [10]; PBINs
can share features of modularity and/or nestedness, i.e., interactions happening between
certain sets of bacteria and phages with no interactions across different sets (modular)
and/or a range of specialist to generalist bacteria and phages, with interactions forming
nested subsets (nested) [8,11]. Visual inspection of the rearranged Salmonella PBIM and
PBIN suggested that the networks organization was not random but possibly nested
(Figure 5b,c). Nestedness was calculated using NODF (see Section 2). Modularity was
calculated using Barber’s modularity, with optimization by the method of Beckett [28] (see
Section 2). Nestedness and modularity scores were compared to null models Sim1, Sim8
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and Curveball. We find that the Salmonella PBIN is significantly nested when compared to
both Sim1 and Sim8 (NODF = 73.76, p < 0.001), but not when compared to the Curveball null
matrices (Figure 5d). We also observed that the Salmonella PBIN is significantly modular
compared to all three null models (Q = 0.1514, p < 0.001). However, this modularity score
may not be practically convincing, as many interactions are seen outside of the computed
modules (Figure 5e). To further investigate this, we followed a network-based approach,
and asked if we could observe cliques within the network, i.e., an n-clique of an undirected
graph is a maximal subgraph in which every pair of vertices is connected by a path of
length n or less. We identified four cliques of phage and bacteria species suggesting that
some level of modularity was present (Supplementary Figure S5).

Figure 5. Investigation of the structure of the Salmonella phage–bacteria infection network.
(a) Expected host–phage interaction matrices (adopted by [8]). Bacteria–phage interactions can
be (a) A—unique; B—modular; C—nested; D—random. (b) The Salmonella phage–bacteria infection
matrix (PBIM): Rows—Salmonella bacterial strains arranged with decreasing order based on the
number of different phage species that can be infected by. Columns—phage species arranged with
decreasing order based on the number of different Salmonella bacterial strains that can infect. Color
coding: blue—infection, white—no infection. (c) The Salmonella PBIN; the network is arranged in
accordance with the data from the PBIM. Circular nodes—Salmonella bacterial strains; polygonal
nodes—phage species. Color coding—high (pink) to low (red) number of interactions (infections).
Color coding refers to phage and bacterial node degree (number of successful infections), respectively.
(d) Analysis of nestedness in the Salmonella PBIN. Distributions of nestedness scores (NODF) for
the three null models (1200 simulations each) are shown, with the arrow indicating the score for the
observed matrix. A NODF score for the observed matrix greater than 95% of the null matrix scores
indicates the observed data is significantly nested (p < 0.05). Null models: red—Sim1; green—Sim 8;
blue—Curveball. (e) Analysis of modularity in the Salmonella PBIN. Distributions of modularity
scores for the three null models (1200 simulations each) are shown, with the arrow indicating the
score for the observed matrix. A modularity score for the observed matrix greater than 95% of the
null matrix scores indicates the observed data is significantly modular (p < 0.05). Matrix visual-
ization of the module assignment giving the highest modularity score. Red—Sim1; green—Sim 8;
blue—Curveball.

Overall, we show that the Salmonella PBIN has a non-random structure. The infectiv-
ity patterns suggest a gradient of target-range from generalist to specialist phage species
with nested subsets and weak modularity, both of which are also evident in the phage
infection profiles.
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4. Discussion

In this study we characterized the target-range of a taxonomically diverse set of
Salmonella phages isolated from different environmental sources. Based on the bacteria
the phages could infect in vitro, they were robustly assigned to four groups. No clear asso-
ciation between the environmental source, taxonomy and infection profiles was observed,
suggesting that none of these factors alone can explain the heterogeneity in infection pref-
erences. This is in line with the recently reported data by Gencay et al. on Salmonella
phages isolated from animal, environmental and wastewater samples where phage genus
or receptor alone explained less than 50% of variance [32]. Interestingly, we observed a
positive association between the genetic distances of the phages and their infection pro-
files. Genetically related phages often shared more similar infection profiles compared
to the distantly related ones, suggesting that the phage genomic composition is linked to
target preferences.

Phages assigned to different clusters demonstrated differential infection profiles.
Specifically, phages of clusters 1, 3 and 4 infected a variable amount of Salmonella strains
from different serotypes, environmental isolates, and bacterial groups. Phage clusters 1
and 2 were quite similar based on the bacterial composition of their infection profiles,
whereas phage cluster 4 was the most dissimilar compared to the other three clusters.
Notably, the highest variability amongst phage clones was observed when considering
the serotype composition of their infection profiles, rather than the environmental source.
Indeed, the phages originated from the Georgian environmental samples lysed Salmonella
strains isolated from diverse sources including human, veterinary, and food in Ireland.
Moreover, in previous studies we have demonstrated that these phages can successfully
lyse genetically diverse MDR strains of the S. enterica ssp. enterica isolated from patients in
Armenia and Georgia [33,34], as well as Spectrum β-Lactamase (CTX) producing S. enterica
Serovar Typhi strains from the Democratic Republic of the Congo [18].

Notably, we observed phage stratification based on host-range. This was evident
within most phage clusters (generalist to specialist clones) and amongst the clusters them-
selves. For example, phage clones in cluster 1 infected on average the highest number
of bacterial strains followed by clusters 3, 2 and 4. This suggests that even though there
are different infection profiles shared to some extent amongst the different phage clones,
the capacity to infect a high (generalist) or low (specialist) number of bacterial strains
may be a specific property of a phage (see below). The high effectiveness of cluster
1 phages may be explained by the fact that three out of its five members belong to My-
oviridae family genus Felixounavirus, in particular the phages GEC_vB_B1, GEC_vB_B3
and GEC_vB_NS7. Myoviridae phages correspond to phages with contractile tails that
have been reported as strictly lytic [35], and Felixounaviruses are known to be virulent
representatives of Salmonella phages [36,37], possibly due to their receptors located on
the O-antigen and core polysaccharide portions of the LPS [38–40]. Therefore, the attach-
ment of bacteriophages to specific receptors of the host bacteria may be a deterministic
factor for the extent of the observed target-range. Phage cluster 3 was mainly composed
from representatives of the family Demerecviridae genus Tequintavirus (GEC_vB_N3,
GEC_vB_N5 and GEC_vB_N8). Genomic analysis revealed that the phages GEC_vB_N5
and GEC_vB_N8 are closely related. Phage GEC_vB_N5 has 94.69% sequence similarity to
phage T5 [16,41–43], which has both a receptor-binding tail protein Pb5 and a L-shaped
tail fiber protein on the phage tail that targets the host outer membrane protein and LPS,
respectively [43,44]. Cluster 2 phages are related to the Myoviridae genera Seunavirus and
Felixounavirus (GEC_vB_MG and GEC_vB_7A), with the exemption of phage GEC_vB_TR
of the Podoviridae family, genus Lederbergvirus. This is the only temperate phage amongst
the 13 used in this project. In general, the representatives of Podoviridae are known to
be temperate having narrow host ranges. Finally, cluster 4 included two phages of the
Siphoviridae family, genus Jerseyvirus (GEC_vB_M4, GEC_vB_M5), which appeared to
be closely related [16]. These viruses were part of the same clique in the Salmonella PBIN
suggesting possible coevolution leading to increased speciation and narrow target-range
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(see below). Interestingly, the phage from phage cluster 1 with the narrowest target range
is also a Jerseyvirus of the Siphoviridae family (GEC_vB_HIL).

Very little is known about the ecological interactions between Salmonella bacterio-
phages and bacteria, such as the general structure of infection and resistance patterns
between them. By studying these patterns, we can gain a better understanding regarding
the underlying coevolutionary dynamics [45] and their effect on shaping specific prey–
predator interactions [15]. For example, whether they are idiosyncratic and hard to predict
from one ecosystem to another [46]. This is particularly important since the vast majority
of phages and microbes are hard to isolate and propagate in the laboratory. Therefore, we
studied the structure of the Salmonella phage–bacteria infection network (PBIN) using
the available in vitro infection data. A first important observation is that the PBIN is not
random, i.e., the pattern of “who-infects-whom” is statistically different from what would
be expected if cross-infection occurred by chance. This means that there are factors control-
ling the outcome of the infection and shape the structure of the network. For example, it is
known that cross-infection at the community scale depends on the underlying genetics of
host defense and phage counter-defense mechanisms, but also on the ecological context in
which evolution acts [10]. Moreover, the PBIN did not have a “one-to-one” organization,
suggesting that there is not elevated speciation, such that each phage would only infect
one host and each host would only be infected by one phage [10]. If that was the case,
in the rearranged Salmonella phage–bacteria infection matrix we would observe a nearly
diagonal matrix since phages would infect a unique host or a limited number of closely
related host. In contrast, the PBIN was nested when compared to Sim1 and Sim8 null
matrices, i.e., the specialist phages infect the most susceptible hosts to infection. As a result
of this effect, the PBIN contains interactions that form a hierarchy for both phages and
their hosts [10]. Notably, the nested pattern is predicted to arise as a result of gene-for-gene
processes [10,47,48], in which acquiring new bacterial mutations confer bacterial resistance
to recently evolved phages, while maintaining resistance to past phages. In a similar way,
phages acquire mutations expanding their host range without losing their ability to infect
ancestral host genotypes [10]. Interestingly, as a result of this process we would expect the
co-occurrence of specialist and generalist phage species in the same environmental source
rather than the presence of specialist or generalist species alone in specific sites. This was
also observed in our study. For example, in the Mtkari river water, we isolated Salmonella
phages with a broad range of infectivity spanning from the generalist GEC_vB_B1 (My-
oviridae) infecting 111 strains to the GEC_vB_7A (Myoviridae) infecting 52 strains. Or in
human isolates we observed bacteria being infected by all 13 phages (T65 S. Enteritidis)
but also the hard-to-infect T66 S. Typhimurium (no infections) and T45 S. Typhimurium
(infected by three phages). The nested pattern also suggests that the observed host range
of the Salmonella phages are subsets of each other and the phage susceptibility of the
Salmonella bacteria are also subsets of each other. The gene-for-gene coevolution process
also implies that taxonomy is strongly associated with the infection outcome [10,49]. In
support of this, Wichels et al. observed a gradient of host ranges from Myoviridae to
Siphoviridae to Podoviridae in the North Sea, and that the host ranges of these viruses are
nested [50]. This is also what we observed in our study. Myoviridae infected on average
much more Salmonella bacteria strains than Siphoviridae, than Podoviridae. Overall, the
nested pattern characterizing the PBIN is in line with the weak correlation between the
infection profiles of the Salmonella phages and the environmental source or the taxonomic
lineage alone, since both generalist and specialist species are present with overlapping
target-range. Interestingly, we detected a weak signal of modularity. A modular PBIN con-
tains interactions that occur among distinct groups of phages and hosts and arise as a result
of speciation [10]. There are many possible drivers of modularity, including geographic
isolation, which can facilitate the divergent coevolution of interacting species [51,52]. In our
study we observed that phages GEC_vB_7A and GEC_vB_TR belonged to the same PBIN
clique (clique 4). Notably, both viruses were isolated from the same environmental site
(Mtkari river), shared similar infection profiles (cluster 2 phages), and presented extremely
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narrow target range. Therefore, it is possible that these viruses coevolved towards increased
speciation. However, in the other PBIN cliques we also observed the co-occurrence of phage
species isolated from different environmental sources (e.g., Mtkari and Black Sea). This
could happen if different environmental sites share similar microbial isolates but that their
geographic separation or different community niches facilitated local coevolution to take
place, which enabled divergences in functional interactions [46,53,54]. Overall, nestedness
and modularity are not mutually exclusive; there is evidence of trade-offs between the two
processes [55,56], and nested patterns could form within modules [10,57,58].

Our results have important implications for Salmonella phage therapy. One of the
challenges in phage therapy is the isolation and characterization of phage clones with
specific infection profiles. Therefore, understanding the underlying factors that contribute
to the phages target preferences is important in creating an arsenal of phages with different
target ranges. For example, based on our data, Salmonella phages isolated from different
geographical and environmental sources could infect similar bacteria species. Alternatively,
phage clones belonging to different taxonomic lineages could infect a variable number
of bacteria. Notably, genetically similar phages were also more similar in their infection
profiles. All the above can aid in the prediction of the Salmonella phages target-range
and help in the design of phage mixtures with different therapeutic capacity. Valuable
information can also be obtained from the analysis of the Salmonella PBINs. The observed
nested structure suggests the presence of phage clones with a gradient of target-range from
generalists to specialists. As we demonstrated, generalists can coexist with specialists in
the same environmental site, suggesting that phages with variable infection characteristics
can be isolated from the same ecological niche. The nested pattern in combination to the
modular can inform strategies to prepare phage cocktails with effectiveness against both a
broad range of bacteria species but also towards “hard-to-infect” cases. Finally, in this study
we provide an analytical pipeline that can be used in different phage infection datasets,
and it can be incorporated and inform in vitro and in vivo experimental processes.

5. Conclusions

We characterized the infection profiles and target-range of a set of Salmonella phages
against a broad range of Salmonella strains isolated from different environmental sites.
These phages may be used for interventions such as therapy, prophylaxis, biocontrol,
food, water, and surface decontamination. Within this dataset we identified groups of
phages with similar infection profiles and characterized their targets. Genetically similar
phages shared similar infection profiles. By studying the structure of the Salmonella phage–
bacteria infection network we provide evidence of nonrandom nested organization and
weak modularity with important implications for the coevolution mechanisms shaping the
ecological interactions between Salmonella phages and their bacterial host.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13071261/s1, Figure S1: Principal component analysis of the Salmonella phage–bacteria
infection profiles; Figure S2: Salmonella phage infection profiles; Figure S3: Salmonella phage genetic
distances; Figure S4: Salmonella phage–bacteria infection network; Figure S5: Cliques within the
Salmonella phage–bacteria infection network; Table S1: Description of the Salmonella phages used in
this study; Table S2: Basic characteristics of the Salmonella PBIN; Supplementary Data File 1.csv: The
Salmonella phage–bacteria infection matrix, SalmonellaPBIN.Rmd: The R code for the nestedness and
modularity analyses, salmonellaPBIN.csv: Input data for the analysis of nestedness and modularity;
Supplementary Data File 2: The pairwise comparisons amongst the 13 Salmonella phages.
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