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Abstract: Phage lytic proteins are a clinically advanced class of novel enzyme-based antibiotics,
so-called enzybiotics. A growing community of researchers develops phage lytic proteins with the
perspective of their use as enzybiotics. A successful translation of enzybiotics to the market requires
well-considered selections of phage lytic proteins in early research stages. Here, we introduce PhaLP,
a database of phage lytic proteins, which serves as an open portal to facilitate the development
of phage lytic proteins. PhaLP is a comprehensive, easily accessible and automatically updated
database (currently 16,095 entries). Capitalizing on the rich content of PhaLP, we have mapped the
high diversity of natural phage lytic proteins and conducted analyses at three levels to gain insight
in their host-specific evolution. First, we provide an overview of the modular diversity. Secondly,
datamining and interpretable machine learning approaches were adopted to reveal host-specific
design rules for domain architectures in endolysins. Lastly, the evolution of phage lytic proteins on
the protein sequence level was explored, revealing host-specific clusters. In sum, PhaLP can act as
a starting point for the broad community of enzybiotic researchers, while the steadily improving
evolutionary insights will serve as a natural inspiration for protein engineers.

Keywords: phage lytic proteins; endolysins; machine learning; biological database; conserved protein
domains; protein architectures

1. Introduction

Bacteriophages are infective viral particles targeting bacterial cells. During their lytic
replication cycle, phages face twice the challenge to cross the bacterial cell wall of their
host [1]. Therefore, phages make use of two types of phage lytic proteins: virion-associated
lysins (VALs) and endolysins [2]. A VAL is part of the virion and forms a local and small
pore in the peptidoglycan layers at the site of infection, while the cell remains intact.
The phage genome is ejected through this pore. VALs are mostly a structural part of the
virion but can also occur as internal capsid proteins [3,4]. Endolysins are responsible for
the massive degradation of the peptidoglycan layer at the end of the lytic cycle. In the
canonical phage lysis system, they accumulate in large numbers in the cytoplasm and
their release into the periplasmic space is timed by pore-forming holins in the cytoplasmic
membrane. The sudden degradation of the peptidoglycan, assisted by the high osmotic
pressure inside the cell, causes cell lysis and the concomitant release of newly matured
phage particles [5,6].

Phage lytic proteins comprise one or more functional domains categorized into two
classes: enzymatically active domains (EADs) and cell wall binding domains (CBDs) [7].
Additionally, VALs contain domains with a function other than peptidoglycan degradation
such as structural anchoring to the viral particle. At the biochemical level all phage lytic pro-
teins have the same purpose, i.e., peptidoglycan degradation, yet variation in environment
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and host has led to highly diverse domains and architectures [1,3,4,8]. This variety largely
springs from the diversity of peptidoglycan chemotypes among bacterial species, along
with the high diversity of secondary cell wall-associated carbohydrate polymers [9,10].
Endolysins have either a globular (one EAD) or modular architecture (multiple domains;
at least one EAD and optionally one or more CBDs) [11]. CBDs target the glycan or peptide
moieties of peptidoglycan, or specific components of (lipo)teichoic acids, increasing the
proximity of EAD to its substrate [12,13]. Five classes of EADs are distinguished based on
the bond they cleave in peptidoglycan (Figure 1). (i) N-acetylmuramoyl-L-alanine ami-
dases (EC 3.5.1.28) hydrolyze the amide bond between N-acetylmuramic acid (MurNAc)
and L-alanine residues, effectively cleaving the peptide moiety from the glycan strand.
(ii) N-acetyl-β-D-glucosaminidases catalyze the hydrolysis of glycosidic β-1,4 linkages
between N-acetylglucosamine (GlcNac) and MurNAc. (iii) N-acetyl-β-D-muramidases
(EC 3.2.1.17) and (iv) lytic transglycosylases (EC 4.2.2.n2) cleave these linkages between
MurNAc and GlcNAc. N-acetyl-β-D-glucosaminidases and N-acetyl-β-D-muramidases
are glycosidases (EC 3.2.1.-) that use a hydrolytic mechanism resulting in a terminal reduc-
ing GlcNAc or MurNAc residue, respectively. Lytic transglycosylases, on the other hand,
use an intramolecular mechanism that creates a 1,6-anhydro bond at the MurNAc residue.
Peptidases (EC 3.4.-.-) cleave the bond between two amino acids within the peptidoglycan
stem peptide, cross-link or cross-bridge [14]. The specific epitope and chemical bond
targeted by the CBD and the EAD, respectively, brings about a well-defined spectrum of
activity for phage lytic proteins [15,16]. The modularity of phage lytic proteins, along with
the diverse range of domains, has been exploited by protein engineers to modulate the
specificity, activity and solubility by domain swapping [11,17].
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can types. (A) peptidoglycan chemotype A1γ is the most common in Gram-negative bacteria; (B) peptidoglycan chemo-
type A3, either α or γ depending on the presence of L-Lys or mDAP in the third position of the peptide subunit, is a type 
example for Gram-positive bacteria such as Staphylococcus aureus [10]. The colored scissors indicate cleavage sites of dif-
ferent classes of EADs. GlcNAc and MurNAc in the glycan strands of each structure refer to N-acetylglucosamine and N-
acetylmuramic acid, respectively. 

  

Figure 1. Cleavage sites of the different enzymatic classes of EADs on the primary structures of two common peptidoglycan
types. (A) peptidoglycan chemotype A1γ is the most common in Gram-negative bacteria; (B) peptidoglycan chemotype A3,
either α or γ depending on the presence of L-Lys or mDAP in the third position of the peptide subunit, is a type example for
Gram-positive bacteria such as Staphylococcus aureus [10]. The colored scissors indicate cleavage sites of different classes of
EADs. GlcNAc and MurNAc in the glycan strands of each structure refer to N-acetylglucosamine and N-acetylmuramic
acid, respectively.

As early as 1957, it was observed that phage lytic proteins can cause “lysis from
without” upon exogenous addition to bacteria [18,19]. It was not until 2001 that their
use as enzyme-based antibacterial agents, coined “enzybiotics”, was demonstrated in a
murine model against Gram-positive bacteria [20]. The presence of an outer membrane was
initially prohibitive for the use of phage lytic proteins as enzybiotics against Gram-negative
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bacteria, but meanwhile various protein engineering approaches have been developed
to overcome this barrier, including the use of outer membrane permeabilizing peptides
(Artilysins®) [11], bacteriocin domains (lysocins) [21] and phage receptor binding proteins
(Innolysins) [22]. Today, enzybiotics are considered the most advanced alternative class
of antibacterials under clinical investigation [23]. They offer a necessary response to the
alarming threat of antibiotic resistance across global health care systems. Their mode
of action is fundamentally different from any existing class of antibiotics. Enzybiotics
actively degrade the peptidoglycan component without the need for an active bacterial
metabolism, unlike classic antibiotics. This is reflected in a faster cell death and effectiveness
against metabolically inactive cells like persisters. In addition, their spectrum is typically
narrower (genus, species or strain level) compared to classic antibiotics, causing less harm
to beneficial microflora. Finally, the conserved molecular target makes enzybiotics less
prone to the inevitable fate of many traditional antibiotics: the emergence and spread of
resistance mechanisms [11,24]. A growing community of researchers and companies is
therefore investigating their applications, including clinical trials, and engineering their
properties to kill a broad diversity of bacteria [8]. Phage lytic proteins have the inherent
potential to be developed against any bacterial species, thus representing an unprecedented
extensive class of antibiotics with narrow spectrum.

To be successful in the development of phage lytic proteins for such specific applica-
tions, it is crucial to make well-considered selections of phage lytic proteins during early
research stages. Due to the rich diversity among phage lytic proteins and their annotations,
querying databases to retrieve a collection of phage lytic proteins is often cumbersome
and requires expert knowledge. Additionally, relevant information is scattered across
many specialized databases and often biased by automatic annotation tools. It is therefore
challenging to get an overview of this diversity and make proper selections using generic
databases. To facilitate this, a dedicated database of phage lytic proteins is needed [16].
Two databases of phage lytic proteins are currently available, i.e., phiBIOTICS [25] and
EnzyBase [26]. However, with respectively 21 and 1844 entries, they are still far from
covering the diversity available in biological sequence databases. Moreover, their data are
collected manually and therefore updating is time intensive.

Here, we introduce PhaLP, a database of currently 16,095 phage lytic proteins. PhaLP
is a comprehensive database that is automatically updated with each new UniProt release.
PhaLP aims to serve as a portal for researchers to access all relevant information of the
current diversity of phage lytic proteins, facilitated by easily accessible search engines.
With a focus on protein architecture, evolution, and bacterial hosts of the corresponding
phages, we conducted a quantitative analysis of the phage lytic proteins present in the
PhaLP database. Datamining approaches reveal host-specific design rules in relation to the
protein domain architecture, providing insights in the natural evolution process of phage
lytic proteins.

2. Materials and Methods
2.1. Database Structure and Construction

The PhaLP database runs on MySQL 5.7.32-0ubuntu0.16.04.1 with an InnoDB storage
engine. The schema structure of PhaLP is visualized with an enhanced entity-relationship
(EER) diagram (Figure S1). It provides users who want to query the database on the
MySQL level with a detailed overview of all tables and table relationships. Per table, the
corresponding column names, MySQL data types, primary and foreign key information are
listed. The process to collect data from primary source databases, process them and store
them in PhaLP is automated in Python 3.6.12. The UniProt query (PhaLP.py lines 63–138)
is composed of a taxonomic part, to include only sequences of known phage taxons, and a
functional part, to filter proteins with a function (gene ontology; GO) or protein domain
(InterPro) that indicates a phage lytic protein.

The version number of each PhaLP release corresponds to that of the UniProt version.
The analyses described in this manuscript are based on PhaLP v2019_10. This version
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comprises 11,838 curated protein entries. The latest version of PhaLP is v2021_02 and
contains 16,095 protein entries.

2.2. Type Classification

First, a training dataset was constructed with examples of both classes, using a semi-
manual classification. Based on the presence of specific UniProt annotations, GOs, con-
served domain profiles and protein names in the UniProt record itself and all identical
proteins, 1604 VALs and 2492 endolysins were manually classified out of 7957 unique
protein sequences. The classifying annotations were carefully selected to include as many
proteins as possible of each specific class without introducing false positives.

Next, all 7957 protein sequences were represented by a 1024-dimensional continuous
vector, a SeqVec embedding, with the bio_embeddings package (v0.1.3) [27]. A random
forest classifier with 100 estimators and balanced weights was trained on the training
dataset, using the scikit-learn package (v0.22.2.post1) [28]. First, the performance of this
method was estimated in a stratified 10-fold cross-validation, rendering an average F1
score of 0.98433. The “UniProt” table contains the PhaLP type, the evidence source and the
predicted probability for the annotated type. For the proteins from the training dataset,
the type of the annotation used for classification is specified as evidence source. Their
class probability is predicted by the model from the stratified 10-fold cross-validation
where the corresponding protein is withheld from the training subset. The type of the
remaining 3861 proteins was predicted by a model trained on the complete training dataset.
Further elaboration on the methodology is available on GitHub (https://github.com/
bjcriel/PhaLP/blob/master/type-classification/PhaLP-type-classification.ipynb; accessed
on 25 June 2021)

2.3. Accessing Data

The Django web framefork (v2.2.2) was used to build the website (https://www.
phalp.org; accessed on 25 June 2021) [29]. BioMart (v0.9) was used to build the advanced
user interface [30].

2.4. Quantitative Exploration of the Modular Composition

The domains table in PhaLP contains signatures as annotated by InterPro [31]. The
latter is a database consortium grouping fourteen member databases, but only four member
databases (Pfam, CDD, SMART, PROSITE profiles) were included for the analyses of PhaLP.
The remaining ten member databases were omitted because they describe small motifs
that are either not actual protein domains, full-length proteins, too specific/broad domain
signatures or had no matches in PhaLP. Still, many domain profiles of these four member
databases overlap with each other because they are related. To obtain an unambiguous
domain architecture for each protein, we have resolved these overlaps, either by joining
the overlapping domains in one cluster or by omitting one of the domain profiles. A
cluster analysis based on the overlap of each two domains (fraction between overlapping
section and largest domain) across all phage lytic proteins was used to manually make
domain clusters (File S1). The clustering was done with the “clustermap” function from
the seaborn package (v0.11.0) and correlation as distance metric [32]. The resulting clusters
were manually curated and adjusted where needed. The resulting domain clusters, together
with the absolute number of annotations in PhaLP are described for EADs and CBDs in
Tables 1 and 2, respectively.

https://github.com/bjcriel/PhaLP/blob/master/type-classification/PhaLP-type-classification.ipynb
https://github.com/bjcriel/PhaLP/blob/master/type-classification/PhaLP-type-classification.ipynb
https://www.phalp.org
https://www.phalp.org
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Table 1. EAD clusters observed in phage lytic proteins and their related domain accessions from various protein databases,
grouped per enzymatic activity.

Enzymatic Activity a Domain Cluster Name b Occurrences in PhaLP c Domain Accessions (Occurrences in PhaLP) d

(A)
Ami_2 2309 SM00644 (2078), SM00701 (302), cd06583 (1923),

PF01510 (2291)
Ami_3 294 SM00646 (269), cd02696 (290), PF01520 (294)
Ami_5 314 PF05382 (314)

(B)
CHAP 1127 PF05257 (955), PS50911 (958)

NLPC_P60 747 PF00877 (747)

(C)

PET_M15 1081
cd14814 (103), cd14852 (2), PF02557 (55),

cd14849 (1), cd14844 (210), PF08291 (248),
cd14845 (632), PF13539 (724)

PET_M23 782 PF01551 (782)
PET_C39 260 PF13529 (260)
PET_U40 38 PF10464 (38)
PET_C70 19 PF12385 (19)

YkuD 10 PF10908 (1), cd16913 (10), PF03734 (4)

(D) GLUCO 541 PF01832 (541), SM00047 (504)

(E)

GH24 1834 cd00737 (466), cd00736 (181), cd16900 (424),
cd16901 (121), PF00959 (1546), cd00735 (642)

GH19 748 cd00325 (743), PF00182 (283)

GH25 388
cd00599 (90), cd06417 (1), cd06415 (83), cd06414
(4), cd06525 (3), PF01183 (388), SM00641 (304),

cd06522 (1), cd06523 (32)
GH108 254 cd13926 (254), PF05838 (250)
MUR 162 PF11860 (162)

DUF1906 30 PF08924 (30)
GH46 10 cd00978 (10), PF01374 (10)

Pesticin_C 6 cd16902 (6), PF16754 (6)
GPW_gp25 1 PF04965 (1)

Pesticin_lyz_like2 1 cd16904 (1)

(F)
SLT_related 2202

PS51348 (1), cd16899 (16), PF00062 (1), cd13399
(21), cd16896 (17), PF01464 (1138), cd00254 (517),

cd13401 (52), cd01021 (33), cd16893 (21),
cd16894 (101), cd13400 (94), cd13403 (79),

cd13925 (273), PF06737 (203), cd13402 (529),
PF18013 (329)

LT_GEWL_like 24 cd16891 (24), PF13702 (24)

(G)
Hydro_2 32 PF07486 (32)
DPBB_1 2 PF03330 (2)

a The enzymatic activity, b the cluster name, c the number of occurrences in PhaLP v2019_10, d the accession numbers of the associated
domain profiles with the number of occurrences in PhaLP v2019_10 between brackets. (A) N-acetylmuramoyl-L-alanine amidase, (B) N-
acetylmuramoyl-L-alanine amidase and peptidase, (C) peptidase, (D) N-acetyl-β-D-glucosaminidase, (E) N-acetyl-β-D-muramidase,
(F) N-acetyl-β-D-muramidase, lytic transglycosylase, (G) lytic transglycosylase. Domain accessions have a hyperlink to the InterPro page of
the respective domain profile in digital versions.
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Table 2. CBD clusters observed in phage lytic proteins and their related domain accessions from
various protein databases.

Domain Cluster Name a Occurrences in PhaLP b Domain Accessions
(Occurrences in PhaLP) c

CBD_PlyG 54 PF12123 (54)
CW_7 186 PF08230 (186), SM01095 (186)
CW_1 757 PF01473 (628), PS51170 (757)

DUF3597 8 PF12200 (8)
LGFP 276 PF08310 (276)

LysM 427 PF01476 (422), cd00118 (425), PS51782
(425), SM00257 (415)

PG_1 640 PF01471 (640)
PG_3 235 PF09374 (235)

PSA_CBD 18 PF18341 (18)

SH3 552 PF08239 (34), PF08460 (462), PS51781
(179), SM00287 (414)

SLH 2 PS51272 (1), PF00395 (1)
SPOR 22 PF05036 (21), PS51724 (17)

ZoocinA_TRD 250 PF16775 (250)
a The cluster name, b the number of occurrences in PhaLP v2019_10, c the accession numbers of the associated
domain profiles with the number of occurrences in PhaLP v2019_10 between brackets. Domain accessions have a
hyperlink to the InterPro page of the respective domain profile in digital versions.

2.5. Host-Specific Evolution of Phage Lytic Proteins by Recombination

The probability P(di
∣∣hj) for all CBD and EAD domain clusters di ∈ [d1 · · · d39]

(Table 1) given a host genus hj ∈ [h1 · · · h172] was set out and visualized using the seaborn
package in Python 3.7.4. The supplementary material also holds analogous figures for all
105 domain clusters, as well as for the probabilities P(hj

∣∣di) for both CBDs and EADs as
for all domains (Figures S2–S4).

2.6. Modular Organization: Architectures and Adjacency

The probability P(ai
∣∣gj) for all architectures ai given a host Gram-type gj was set

out and visualized using the seaborn package in Python 3.7.4. This was done using the
4434 unique endolysin sequences with known architectures consisting out of three domains
or less. For this figure, solely endolysins classified with a probability of at least 75% were
used. CBD homorepeats were condensed to a single CBD.

Count-based directional adjacency matrices were also generated for these endolysins
based on their composition and arrangement of the domains. Visualizations were made
using the circlize package (v0.4.12) in R version 3.6.1 [33].

2.7. Aggregating Differences in Modular Compositions and Orders into Nature’s Design Rules

Host-specific designs were examined in a two-pronged approach. The first one was
based on a machine learning model built to estimate the importance of each domain (and
combinations thereof) to a protein’s ability to target a clade of hosts. The second approach
used an exhaustive search for each branch to determine the most widely applicable archi-
tecture for it. These approaches were selectively applied on a set of 36 bacterial species
as this allowed a sample size of at least 25 endolysins per host species. The results were
manually combined.

2.7.1. Machine Learning Approach

First, the patterns in domain occurrence and combinations thereof were sought after
on each branch. To this end, a decision rule-based classifier implemented in Python 3.7.4 in
the SkopeRules package (v1.0.1) was utilized [34]. This model was chosen not only for its
predictive power, but also for its high translucency, as it enabled to extract the decisions
made by the predictive model and their ensuing precision and recall.
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Counts of occurrence of individual domains, as well of duos and trios of adjacent
domains were used to construct 466 features for the set of 5052 endolysins for which the host
species is annotated. Each feature corresponds to a specific domain or domain combination
that is present in the PhaLP database. Depending on the level on which predictions were
made, host taxonomy on phylum-, class-, order-, family-, genus- or species-level were used
as labels. The resulting set of extracted decision rules projected onto the host phylogenetic
tree is available in Figure S5. For the sake of relevancy, only decision rules of both precision
and recall above 0.5 were taken into account.

2.7.2. Data Mining Approach

Since the order of domains in endolysins carries non-negligible information, an ex-
haustive search of all possible architectures was employed to complement the results
of the machine learning approach. To this end, regular expressions were set up in Julia
1.3.1 consisting of three blocks (representing adjacent domains) which were each filled
by a maximum of three domains. Modifiers were set in place to allow the second and/or
third block(s) to be ignored as to accommodate for single or bi-modular architectures. All
possible combinations of these blocks, with and without modifiers were tested to match
the largest possible selection of architectures (or substructures of architectures) within a
subset of endolysins targeting a clade of hosts. The best performing expression, based on
an F-score calculated on the precision and recall with which endolysins and the largest
possible fraction of their architectures were matched, was extracted.

2.8. Vertical Evolution of Endolysins

Through local pairwise sequence alignment of 7957 distinct protein sequences in
PhaLP, conservation was more closely examined. The BLOSUM62 substitution matrix was
used as it is optimized for average similarities of 20% to 40%. This alignment was per-
formed in BioJulia 1.2. Alignment scores were subsequently extracted, scaled on sequence
length and clustered on similarity via the SciPy (v1.3.1) implementation of the UPGMA
agglomerative hierarchical clustering algorithm [35]. Visualization was performed in the
seaborn package in Python 3.7.4. A detailed overview of the first 44 clusters and the data
they envelop is supplied in File S3. The remaining clusters are grouped under cluster 45.

3. Results and Discussion
3.1. Database Structure and Construction

The MySQL-based PhaLP database (https://www.phalp.org; accessed on 25 June 2021)
integrates nine data types (proteins, phages, hosts, conserved domains, coding sequences
(CDSs), GO annotations, enzymatic activities (ECs), tertiary structures, experimental evi-
dence) originating from multiple sources databases (UniProt, UniParc [36], NCBI taxonomy,
Virus-Host DB [37], InterPro [31], GenBank, QuickGO, ExPASy ENZYME database, PDB
and PubMed). Figure 2 provides an overview of these data types and their mutual relation-
ships.

The protein data form the central hub of PhaLP and describe single phage lytic
proteins, corresponding to UniProt entries. UniProt was chosen as primary data source
because it provides high-quality, curated and functionally annotated sequence data [36].
To collect a set of phage lytic proteins, UniProt is programmatically queried. The query is
carefully constructed to include as much phage lytic proteins as possible without including
other proteins. The resulting dataset was manually curated.

Due to increasing sequencing efforts, the amount of available sequence data in bi-
ological databases is increasing at an exponential rate [36]. A common problem with
many so-called secondary databases is that, while their data sources (primary databases)
keep expanding, the authors stop updating the database, resulting in outdated secondary
databases. Therefore, the algorithm to gather data from primary databases for PhaLP is
automated in a Python script. With every eight-weekly UniProt release, the algorithm is
rebooted, adding new entries and updating data that have changed in the source databases.

https://www.phalp.org
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Curation of the new entries remains essential for continuous fine-tuning of the initial query.
The latter task can be facilitated by users through the online contact form by reporting new,
non-curated entries that are suspected of not being actual phage lytic proteins.
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Figure 2. Diagram of the nine data types of PhaLP. Each data type is represented by a box containing a description of the
data, the corresponding MySQL table(s), the number of entries in PhaLP v2019_10 and the source database. Relationships
between data types are indicated with a crow’s foot notation. A relationship is indicated by a line between two data types
with a double perpendicular line at a “one” side and a crow’s foot at a “many” side. The “one-to-many” relationship
between for example “phages” and “proteins” can be interpreted as: one phage entry can be linked to multiple protein
entries, but each protein entry can only be associated with one phage entry. The “many-to-many” relationship between
“hosts” and “phages” can be interpreted as: a phage can have multiple hosts, but a host can also be associated with multiple
phages.

For efficient storage and querying, the nine data types are stored in fourteen tables on
the MySQL level (Figure S1). The protein data of single UniProt entries are stored in the
“UniProt” table. The protein sequence-related data for each unique protein sequence are
stored in the “UniParc” table. These include a stable and unique identifier (UPI) as defined
in UniParc, the protein sequence and its predicted physicochemical properties (ProtParam).
As such, redundancy is avoided in the database, while conserving the original source
information. For each unique sequence, the domain annotations predicted by InterPro are
stored in the “link_UniParc_domains” table. The information on each InterPro annotation
is stored in the “Domains” table. Although a major part of InterPro annotations are
protein domains, other functional annotations such as short motifs, conserved residues,
protein (super)families are also included. Info on the phage encoding the phage lytic
protein and its host(s) is stored in tables with the “phages” and “hosts” tables, respectively.
Info on which phage can infect which host(s) is stored in the “link_phage_host” table.
Additional features of phage lytic proteins, including the CDS, experimental evidence
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published in literature, tertiary structures, enzymatic activity (EC number) and GO terms,
are stored in the respective tables: “CDSs”, “experimental_evidence”, “tertiary_structures”,
“link_EC_UniProt”, and “gene_ontologies”. Identified sequence conflicts between the
protein sequence from UniProt and the translation of the CDS from GenBank are stored
in the “sequence_conflicts” table. More detailed info on each EC number is stored in an
additional “EC” table, again to reduce data redundancy.

3.2. Type Classification

There is a clear discrepancy between VALs and endolysins because of their biological
function. However, annotating the correct type of a phage lytic protein is not trivial.
Phage lytic proteins whose type is described in literature are relatively low compared to
the number of entries in the PhaLP database. It is possible to make an educated guess
based on protein annotations, protein length, physicochemical properties, the presence
or absence of certain conserved domains or the genomic environment. However, such
manual classification implies a time-consuming effort, the outcome would depend on the
expert and this approach is not in line with the automated nature of PhaLP. Therefore, a
machine learning approach was adopted for this classification task. The random forest
classifier is described in more detail in the materials and methods section. Using this
classification approach, 8487 endolysins and 3351 VALs were annotated in PhaLP, with
5477 and 2480 unique sequences, respectively (Figure 3A).
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Figure 3. Overview of the types of proteins in PhaLP and the domain clusters observed in them. (A) A bar plot of the total
number of entries and unique amino acid sequences divided into endolysins and VALs; (B) a Venn diagram of the number
of CBDs unique to each protein type; (C) a Venn diagram of the number of EADs unique to each protein type. The third
group (unclassified) denotes proteins that were not classified as either endolysin or VAL with a certainty of at least 75%.

Caution should be taken in using the annotated types shown in PhaLP. Although the
annotations used to construct the training dataset were carefully selected and originate
from one of the highest quality biological databases available (UniProt), the majority of
them are electronically assigned. The same is true for the phage lytic proteins classified
by the abovementioned predictive model. Therefore, the probability of the predicted type
is included in the database. The difficulty in classifying phage lytic proteins is inherent
to their rich biological diversity. Only a good overview of this diversity combined with
experimental verification can provide the knowledge required to provide a high-quality
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annotation of phage lytic protein type. Therefore, the remainder of the results concerning
the PhaLP type only include proteins with a predicted probability of at least 75%.

3.3. Accessing Data

PhaLP can be consulted through two user-friendly web interfaces. The first is a basic
searchable and sortable table that displays basic info on each protein entry and the phage
encoding the protein (https://www.phalp.org/database; accessed on 25 June 2021). Upon
clicking on the UniProt accession number, the user is sent to an overview page with all
data linked to that entry. Additionally, the page contains links to the original data sources,
as well as two interactive graphical viewers: a representation of the conserved domains on
the sequence and a representation of the genomic neighborhood for every CDS linked to
the protein.

The second interface is a BioMart that allows the user to customize the selection of
attributes that is shown from all tables in the database as well as filter on all these attributes
(https://www.phalp.org/biomart; accessed on 25 June 2021). The resulting customized
dataset is provided in a tabular format that can be viewed in the interface or downloaded
as a “tab-separated values” file. The latter can be loaded into any software of choice to
perform further analyses. To allow even more advanced querying, the database is available
for download as a MySQL dump file, making it possible to integrate the PhaLP database in
customized workflows. Both user interfaces will display the latest version of PhaLP. Older
versions will remain available for download as a MySQL dump file.

3.4. Quantitative Exploration of the Modular Composition

PhaLP v2019_10 encompasses 11,838 phage lytic proteins with 7957 unique amino
acid sequences. The machine learning classifier described above with a cutoff of 75% on the
predicted probability, results in 7067 endolysins, 2763 VALs and 2008 unclassified proteins.
Each class contains 4515, 2084 and 1358 unique sequences, respectively (Figure 3).

The annotated domain profiles (InterPro) were clustered in 105 custom domain clusters
(File S1). The latter are grouped into 26 EAD clusters (Table 1), 13 CBD clusters (Table 2)
and 66 miscellaneous domain clusters. They were obtained by grouping similar domain
profiles that would otherwise overlap, thereby allowing the unambiguous annotation of
modular architectures. These domain clusters will be used in the analyses below and will
further be referred to as domains. The InterPro domain annotations described by InterPro
and those available in the PhaLP database are further referred to as domain profiles.

A proportion of 60.7% (n = 7188) of the entries comprise a single annotated domain,
which is most often an EAD. Phage lytic proteins with multiple annotated domains in their
architecture (37.1%, or n = 4396) mostly carry both CBDs and EADs. Nonetheless, around
8.8% (n = 1046) contain multiple distinct EADs and no annotated CBDs. Multiple distinct
EADs may not only augment efficacy of the enzymatic digestion but may also add to the
robustness of phage lytic proteins against bacterial resistance as two EADs are presumed
to be more resilient to resistance development than one. Even if a bacterial cell gains
resistance against one EAD, it will still be susceptible to the other one [38,39]. Two EADs of
the same type in a single phage lytic protein have not been described in literature and are
neither present in the PhaLP database. The observation of multiple CBDs in a phage lytic
protein is rare, occurring only in 4.1% (n = 490). Mostly, these are repeats of the same CBD
(3.6%; n = 429), specifically for CW_1, CW_7, LysM, LGFP, PG_1, SH3 and PSA_CBD. Such
repeats can occur up to seven-fold in the case of CW_1. The low occurrence of multiple
distinct CBDs (0.5%; n = 61) is likely due to their strong influence on the host-specificity of
the phage lytic protein. Finally, in 2.2% (n = 254) of the phage lytic proteins, no domain
is annotated thus far. These phage lytic proteins were identified based on the presence
of at least one more general (super)family profile annotation from non-included InterPro
member databases like CATH-Gene3D and SUPERFAMILY, for which the selected domain
profile databases (Pfam, CDD, SMART, PROSITE profiles) do not contain a domain profile
yet, likely due to a too low number of occurrences.

https://www.phalp.org/database
https://www.phalp.org/biomart
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So far, CBDs were only described in endolysins. In VALs, they are considered unnec-
essary because the structural mechanism of phage infection is responsible for bringing
the EAD in close proximity of the peptidoglycan [3,40]. In PhaLP, however, 16 VALs
are identified that do contain a LysM domain accompanied by an SLT_related domain.
They are described by the following UniProt accession numbers: V9VF10, A0A0A7DMV4,
A0A0D3MT00, A0A0E3T6B7, A0A1W6JJ84, A0A1W6MV9, A0A1X9SI30, A0A1W6JJQ3,
A0A1W6JKB3, A0A1W6JKP8, A0A1W6JL93, A0A1W6JLT2, A0A1W6JME4, A0A1W6JNB9,
A0A3G6JGR4 and E0YJ17. They are all encoded by Siphoviridae phages with Lactococcus,
Lactobacillus or Bacillus as a host. Similarly, baseplate proteins with LysM-like structures
have been identified in Gram-negative-infecting Myoviridae phages [41]. One possibility
is that LysM (or even CBDs in general) may have a receptor-binding role in VALs rather
than an assisting role to the EAD, as they have in endolysins. VALs are on average nearly
four times as large as endolysins (endolysins have a median length of 250 amino acids
compared to 954 amino acids for VALs). While they generally lack a CBD, VALs often com-
prise structural domains that are part of the virion particle [3]. Due to the large variation
in virion morphologies, the domain compositions of VALs are more diverse than those of
endolysins.

3.5. Host-Specific Evolution of Phage Lytic Proteins by Recombination

Evolution is driven by the accumulation of mutations and recombination of gene
fragments. Natural domain recombination driven by horizontal transfer events has played
a major role in shaping the existing diversity of phage lytic proteins [11,42]. Analogously,
synthetic domain recombination is a proven protein engineering approach to create enzybi-
otics with increased activity, altered host specificity or other improved properties [11,42–45].
While plausibly all modular combinations have been tested in nature, those recombination
events that resulted in modular combinations with the highest fitness to exert the biolog-
ical function during phage replication have been retained throughout natural evolution
(survival of the fittest). Based on an analysis of the modular composition of all phage lytic
proteins in the PhaLP database, we aimed to grasp nature’s design rules that eventually
determined the composition of the (currently mapped) diversity of phage lytic proteins.
First, we analyzed the presence and absence of the composing domains in relation to the
different genera that are targeted by the corresponding phages. PhaLP includes proteins
targeting 518 distinct bacterial species across eight different phyla. A number of 4624 en-
tries are encoded by phages that infect Gram-positive hosts and 4826 from phages with
a Gram-negative host. The remaining 1510 entries with an annotated host are encoded
by phages that infect Mycobacteriaceae. Substantial correlations between the presence
of a specific CBD or EAD and the specific genus are observed (Figure 4). For instance,
the likelihood of a CBD occurring in a phage lytic protein if the corresponding phage has
a Gram-negative host is 7.48%, while for a Gram-positive host it is 32.03%. The current
hypothesis for this differential occurrence of CBDs is that a binding domain prevents the
uncontrolled diffusion of the endolysin that could otherwise kill nearby potentially new
hosts. In Gram-negative bacteria, the outer membrane naturally protects the peptidoglycan
layer, eliminating this risk [7]. CBDs of phage lytic proteins from Gram-positive infecting
phages also show the highest diversity with 11 out of 13 CBDs present. PG_3 appears
to be exclusively present in phage lytic proteins from Gram-negative background. In
Figure 4, many genera are linked to a single annotated CBD. In a few cases, this may be
due to the limited number of phage lytic proteins reported for this genus (e.g., Nocardia,
Brochotrix), but others (e.g., Lactococcus: LysM; Staphylococcus: SH3) appear to preferably
comprise a specific CBD. Yet, this does not exclude that the latter species also rely on other
unknown CBD(s) that remain to be discovered in an unannotated region of the protein,
as was recently shown for the CBD of LysSA97, the endolysin of a S. aureus phage [46].
Other host genera are associated with two or three CBD types. The Bacillus genus cor-
responds to phage lytic proteins with the highest diversity in CBDs (six out of 13 CBDs
occur). Some CBDs are also unique for certain host genera. For example, DUF3597 and
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PSA_CBD are only present in endolysins of Bacillus and Listeria phages, respectively. On
the contrary, more prevalent CBDs such as SH3 and LysM do convey less specificity, as they
bind peptidoglycan, which is a more generic ligand. Modular phage lytic proteins occur
less frequently in Gram-negative infecting phages, and only contain nonspecific CBDs,
such as PG_3, PG_1, SH3 and LysM. Note that protein entries in PhaLP are typically linked
to a single host species, i.e., the species infected by the phage that encodes the respective
phage lytic protein. Therefore, this does not exclude that the specific protein can also be
active against other host species, as a phage lytic protein can typically have a broader
spectrum than its corresponding phage [38]. Indeed, other and additional determinants
including the presence of a suitable bacterial receptor and intracellular phage defense
mechanisms further constrain the host spectrum of the parental phage compared to the
activity spectrum of its phage lytic proteins.

A much higher diversity of EADs is known and annotated. Some domains appear
to be nearly ubiquitous in phage lytic proteins across all host genera, such as Ami_2,
NPLC_P60, PET_M15 and SLT_related, whereas other EADs are more strictly related to the
cell wall structure of either Gram-positives or Gram-negatives. N-acetyl-β-D-muramidase
domains GH25 and GH108, for instance, exclusively occur in phage proteins targeting
Gram-positive and Gram-negative hosts, respectively. The MUR domain is exclusive to
those targeting Proteo- and Cyanobacteria. N-acetyl-β-D-glucosaminidase domains are
the rarest but occur in phage lytic proteins associated to both Gram-positive and -negative
genera. The Gram-type summary in the lower right-hand corner (Figure 4) indicates that
N-acetyl-β-D-muramidases are predominantly associated with Gram-negative genera,
whereas Gram-positive-targeting phage lytic proteins contain domains more evenly spread
across the domain classes but with N-acetylmuramoyl-L-alanine amidases and peptidases
being the most prevalent. In contrast to CBDs, there are no EAD types linked to specific
genera, showing that EADs contribute less to specificity compared to CBDs.

3.6. Modular Organization: Architectures and Adjacency

Natural evolution has not only resulted in the selection of genera-dependent specific
domains in the corresponding phage lytic proteins but has also retained specific architec-
tures of CBDs and EADs. As mentioned earlier, the diversity among VALs is higher than
among endolysins, often containing at least one of the many miscellaneous domains. There-
fore, the following sections will focus solely on architectures of endolysins (151 unique
architectures). Figure 5A shows the relative fractions of different architectures with one,
two and three annotated domains for all endolysins, and subdivided for endolysins from
phages infecting Gram-positive, Gram-negative and Mycobacteriaceae hosts. The single
domain architecture is by far the most prominent architecture in the PhaLP database. How-
ever, note that these architectures do not take into account potential unannotated domains
and thus may reflect a simplification of the true architecture. The majority of the single
domain endolysins (1569 out of 2816) have stretches of unannotated sequence of at least
40 amino acids in length, potentially containing one or more unannotated domains. A
scatter plot comparing the annotated length and the full length of the endolysins with
a single annotated domain indicates that such unannotated regions occur substantially
more frequently in endolysins of phages with Gram-positive and Mycobacteriaceae hosts
(Figure 5B). On the contrary, endolysins from Gram-negative infecting phages with a single
annotated domain are on average smaller and the EAD almost covers the full length in
most cases, leaving no space for an unknown domain. We hypothesize that many host-
specific CBDs, not covered by the domain profiles in Table 2, remain to be discovered in the
C-terminal unannotated region of endolysins from Gram-positive and Mycobacteriaceae
infecting phages. In a few cases, such domains have been experimentally verified, but
there is no corresponding domain profile available in InterPro, and are thus not covered
by our domain clusters [46,47]. Some endolysins apparently only containing a single CBD
can also be found (n = 30). These possibly include (i) endolysins with a yet unknown or
unannotated EAD, (ii) separate CBDs for multimer phage lytic proteins (such as PlyC [48]),
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(iii) non-functional proteins truncated due to a frameshift or mutations in start or stop
codon, or (iv) wrong delineation of the CDS due to sequencing errors.
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and (ix) Spirochaetes. The enzymatic domains from left to right, separated by dashed lines, are: (A) N-acetylmuramoyl-L-
alanine amidases, (B) domains with mixed N-acetylmuramoyl-L-alanine amidases and peptidase activity, (C) peptidase
domains, (D) N-acetyl-β-D-glucosaminidase domains, (E) N-acetyl-β-D-muramidase domains, (F) domains with N-acetyl-
β-D-muramidase and lytic transglycosylase activity and (G) lytic transglycosylase domains. On the bottom, probabilities
are grouped given the host Gram-types as well as the phage families and on the right, the overall probability of domains of a
given activity are set out for each bacterial host. The column of the right shows the number of proteins in PhaLP that target
each host genus. Due to the sparsity in occurrence of the miscellaneous domains, only CBDs and EADs were examined in
this figure. Figures S2–S4 illustrate the inverse relation, and the distributions including miscellaneous domains, respectively.
Due to their size, these figures are best viewed digitally.
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for endolysins from phages infecting Gram-positive bacteria (blue), Gram-negative bacteria (yellow) and Mycobacteriaceae
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sequence length of EAD-only architectures. To accommodate for the variable numbers of repeats of a single CBD, they were
condensed into a single occurrence of the domain. This analysis shows that mainly endolysins targeting Gram-positive and
Mycobacteriaceae hosts comprise unannotated domains.

When a CBD is present in a bi- or trimodular phage endolysin, it is mainly positioned
at the C-terminus (EAD-CBD, EAD-EAD-CBD, or EAD-CBD-CBD). In the case of Gram-
negatives, for which modular endolysins are scarcer, more entries adopt an EAD-CBD
architecture than a CBD-EAD architecture. This contrasts with the preceding assumption
that a CBD is most commonly positioned N-terminally in modular endolysins targeting
Gram-negatives [11]. A CBD-EAD architecture is nearly inexistent for Gram-positives, an
observation corroborated by earlier works [5,24]. In the case of Gram-positive-active en-
dolysins, the CBD can also occupy the middle position (EAD-CBD-CBD, EAD-CBD-EAD).
EAD-EAD architectures have mainly been described for Gram-positive and Mycobacte-
riaceae infecting phages [16]. However, a small group of Gram-negative Cyanobacteria
phage endolysins (n = 40) display an EAD-EAD architecture as well. The presence of this
architecture can be explained by the thicker peptidoglycan of Cyanobacteria compared
to other Gram-negatives. For the genus Synechoccus in particular, a more extensive cross-
linking of the peptidoglycan has been reported as well [49], putatively necessitating the
presence of two EADs.
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Besides domain architectures, some specific domain combinations are observed more
frequently than others. Figure 6 sets out the observed adjacent domains in the endolysins
in PhaLP, as well as the frequency of those adjacencies. For example, GH108, an EAD with
N-acetyl-β-D-muramidase activity, is in 94.3% (n = 216) of its occurrences in endolysins
observed N-terminally to a PG_3 domain. In the remaining cases, it is observed as a single
domain architecture. Furthermore, while CW_1 appears mostly in repeats (83.0% of its
occurrences in endolysins; n = 606), it is also often observed (14.1% of its occurrences
in endolysins; n = 103) C-terminal to Ami_2. Ami_2 is the most ubiquitous EAD among
endolysins and occurs N-terminally to 12 out of 13 CBDs (PG_3 being the only one excluded
since this domain is only found in combination with GH108). Repeats of domains are fairly
uncommon, occurring in only 5.8% (n = 401) of endolysins in PhaLP, and are exclusively
CBD repeats in endolysins (notably of CW_1, LGFP or LysM domains).
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C-terminus. Domains are color-coded based on their annotation as EAD, CBD or miscellaneous. Although miscellaneous
domains are not expected in endolysins, the few that occur here are suspected to be yet uncharacterized CBDs/EADs or to
be erroneously introduced by an incorrect delineation of the CDS in GenBank.
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3.7. Aggregating Differences in Modular Compositions and Orders into Nature’s Design Rules

The aforementioned selective pressures steering domain composition, domain archi-
tecture and domain adjacencies in endolysins have strong ties with the host range of the
respective phages. Here, we leverage the size of PhaLP to model the modular composition
of endolysins in relation to the phage’s host, through data mining and machine learning
approaches. As such, components which are determinant or co-evolutionary signals for the
host range can be revealed. These components should not only help to better understand
phage-bacteria interaction and co-evolution, but will help set in place guidelines for effec-
tive, host-specific engineering of endolysins as enzybiotics. In this analysis, 36 different
host species were examined.

The interpretable machine learning approach outputs discriminatory rules for the
various taxonomic branches of bacterial hosts (Figure S5). Combining the results of the
machine learning and data mining approaches yields a design tree, a guideline of the
most prominent endolysin architectures with the corresponding domains for the different
clades of hosts. Note the prominence of exclusion rules on the higher clades (i.e., phylum
and class), meaning that the machine learning model predicts hosts mostly based on the
absence of certain domains rather than their presence, whereas more concrete design rules
are specified for the lower clades up until species level. The design tree for the Bacilli class
is shown in Figure 7. These design rules were generated through an exhaustive search
within the endolysins of phages with a specific clade of host. This was set up to identify
the rule to which the highest possible fraction of architectures corresponded. For a good
understanding, this also implies that not all endolysins belonging to that specific clade
follow the specific design rule. Completely clade-exclusive domains are most noticeably
present among the CBDs (File S2). For instance, LGFP for the Corynebacteriales order
(likely to target the arabinogalactan covalently linked to their peptidoglycan [50]), SH3
for the Bacilli class and ZoocinA_TRD for the Lactobacillales order. Among Streptococcus
species, the species-specific CBD, CW_1, appears exclusively in endolysins of phages
infecting Streptococcus pneumoniae, and most often C-terminally to an Ami_2 domain.

3.8. Vertical Evolution of Endolysins

The distribution and exchange of conserved domains of endolysins reflects their
evolution to fit to their respective environment (horizontal evolution). This diversification
is further enhanced by the accumulation of mutations (vertical evolution), especially
given the relatively high turnover and mutation rates of phages [51,52], further conveying
an increased fitness to the endolysins. Sequence-level conservation in endolysins was
examined to gain insight into this vertical evolution process. All unique amino acid
sequences of endolysins in PhaLP were clustered on conservation of subsequences (Figure 8
and File S3). These clusters generally contain sequences targeting only one genus or family
of hosts, indicating an increased fit for specific sequences in relation to their host or the
accumulation of permissive mutations. In general, sequence conservation is less stringent
for proteins targeting Gram-negative hosts, resulting in clusters with hosts from different
classes of Proteobacteria. Vertical (and horizontal) transfer likely has a lesser impact on
host range for these proteins as peptidoglycan in Gram-negative bacteria is rather uniform
(A1γ-chemotype) [10], and when a CBD is present, they all target the peptidoglycan itself.

In Figure 8 we note the peculiar cluster A, which contains 243 endolysins targeting
Proteobacteria (Gram-negative) and six targeting Bacillus species (Gram-positive). The
Proteobacteria-targeting proteins all have a single GH24 domain, whose amino acid se-
quence is identical to the same domain in the GH24-LysM-LysM architecture of the proteins
targeting Bacillus. The latter shares the A1γ-chemotype with Gram-negatives. These obser-
vations suggest a recent horizontal transfer of either the gene fragment encoding the GH24
domain or that encoding the LysM domains, thereby enabling the endolysin to switch host
specificity and corresponding Gram-type.
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Figure 7. Design tree of phage lytic proteins targeting bacteria from the Bacilli class. Per position, square brackets contain
different domains that can occur at that position. To simplify the designs, CBD homorepeats were condensed to a single
occurrence of the domain. To accommodate for architectures of one up to three domains, the subscript “x0-1” has been
added to indicate domains that either do not occur or occur once. Domains are color-coded based on their annotation as
EAD (blue), CBD (red) or miscellaneous (yellow). The figure also provides the F-score as a measure of how many of the
actual architectures fit the rule, as well the support, signifying the total amount of proteins corresponding to this branch.
Due to its size, this figure is best viewed digitally. An analogous design tree of phage lytic proteins targeting bacteria from
all phyla in PhaLP is available in the supplementary material in text-based format (File S2).
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in PhaLP was pairwise aligned against every other endolysin sequence to locate conserved subsequences in the pair. The
resulting 4515 × 4515 alignment scores were subsequently normalized on length and clustered to find the most conserved
subsequences in the database overall. This figure shows a heatmap of these alignment scores. The cluster discussed in the
text is marked by the letter A. The complete set of clustered endolysins with annotation on architecture, accession and host
is available in File S3.

4. Conclusions

While resistance against conventional antibiotics is at an all-time high, research into
new antimicrobial is sparse, and often niche in application [23]. To facilitate large-scale
analyses into one of the most promising novel antimicrobials, we present PhaLP: a database
of phage lytic proteins. With PhaLP, we aim to provide a well-considered selection of phage
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lytic proteins as a starting point for a successful translation of enzybiotics to the market.
PhaLP provides a central data hub to access, explore and collect data relevant for one’s
own research interests. A BioMart user interface allows users to customize and filter the
data to obtain a custom dataset to conduct bioinformatic or computational analyses.

While automation of curation and incomplete or inconsistent annotation from source
databases remain stumbling blocks—some of which have been tackled in this work—the
analyses conducted here already showcase the potential of PhaLP. Our initial analyses
provide new insights in the modular diversity of phage lytic proteins and might guide the
development of host-specific enzybiotics. However, we have only scratched the surface
and, depending on one’s research interests, the possible findings in PhaLP are endless.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13071240/s1, Figure S1: Enhanced entity-relationship (EER) diagram of the MySQL-based
PhaLP database, Figure S2: Distribution of bacterial genera across EADs and CBDs, Figure S3: Distri-
bution of all domains across bacterial genera, Figure S4: Distribution of bacterial genera across all
domains, Figure S5: Decision rules for phage lytic proteins targeting bacteria from all clades that have
more than 25 related proteins in PhaLP as predicted by SkopeRules, File S1: Pairwise comparison
of overlapping domain profiles, File S2: Design tree for phage lytic proteins targeting bacteria from
all clades that have more than 25 related proteins in PhaLP; File S3: Cluster analysis of the pairwise
protein sequence similarity between endolysins.
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