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Abstract: Animal models are frequently used to characterize the within-host dynamics of emerg-
ing zoonotic viruses. More recent studies have also deep-sequenced longitudinal viral samples
originating from experimental challenges to gain a better understanding of how these viruses may
evolve in vivo and between transmission events. These studies have often identified nucleotide
variants that can replicate more efficiently within hosts and also transmit more effectively between
hosts. Quantifying the degree to which a mutation impacts viral fitness within a host can improve
identification of variants that are of particular epidemiological concern and our ability to anticipate
viral adaptation at the population level. While methods have been developed to quantify the fitness
effects of mutations using observed changes in allele frequencies over the course of a host’s infection,
none of the existing methods account for the possibility of cellular coinfection. Here, we develop
mathematical models to project variant allele frequency changes in the context of cellular coinfection
and, further, integrate these models with statistical inference approaches to demonstrate how variant
fitness can be estimated alongside cellular multiplicity of infection. We apply our approaches to
empirical longitudinally sampled H5N1 sequence data from ferrets. Our results indicate that previous
studies may have significantly underestimated the within-host fitness advantage of viral variants.
These findings underscore the importance of considering the process of cellular coinfection when
studying within-host viral evolutionary dynamics.

Keywords: within-host dynamics, viral evolution, influenza H5N1, viral modeling

1. Introduction

Zoonotic pathogens are often poorly adapted to their spillover hosts. Viral adap-
tation, however, can occur during epidemiological spread following spillover, resulting
in increases in viral transmission potential as the pathogen establishes itself in the host
population [1]. This was observed most notably in influenza viruses that have successfully
established in humans (e.g., [2,3]). The pandemic coronavirus SARS-CoV-2 provides a
more recent example, with variant lineages that are better adapted to human hosts (such as
D614G [4]) emerging and replacing earlier viral lineages. Viral adaptations that improve
transmission potential often arise from their effect on within-host replication dynamics.
For example, mutations that enable viruses to replicate more efficiently within hosts (in
particular, in transmission-relevant tissues) could enhance transmission potential, as could
mutations that allow for a more effective evasion of the host immune response.

In vivo studies could in principle be used to identify mutations that improve viral fit-
ness in a spillover host. For example, experiments using the ferret animal model identified
a set of influenza A subtype H5N1 mutations that increase viral replication within the nasal
turbinate of hosts (a transmission-relevant tissue) and also increase transmissibility [5,6].
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The fitness effects of mutations such as these have been estimated by interfacing quanti-
tative models with data on how variants carrying these mutations change in frequency
over the course of infection [7–9]. However, these approaches assume that fitness is an
individual-level property of a variant. While this may be the case when cells are only singly
infected, many viral infections involve significant levels of cellular coinfection. For exam-
ple, due to incomplete viral genomes, influenza viruses heavily rely on complementation
to produce viral progeny [10–12]. High levels of cellular coinfection in other viruses, such
as HIV, is also likely, given the pervasiveness of recombinant genomes that are identified
during viral sequencing [13,14].

Cellular coinfection can impede the ability of high-fitness variants to rise to high
frequencies within an infected host. This is because of the phenomenon of ‘phenotypic
hiding’ [15,16]. Phenotypic hiding comes about as a consequence of viral protein products
being shared within coinfected cells. Delivery of a viral genome carrying a highly beneficial
mutation results in the production of a viral protein that can provide a replicative benefit
to all of the viral genomes present in the coinfected cell. Similarly, a viral genome carrying
a deleterious (and potentially even lethal) mutation can be rescued by protein products
derived from coinfecting viral genomes. Cellular coinfection thus results in natural selec-
tion no longer acting on individual viral genomes, but instead on viral collectives. This
effectively reduces the strength of selection, such that deleterious mutations are purged
more slowly [17] and beneficial mutations are also fixed more slowly [18]. As a result,
the extent of cellular coinfection impacts the dynamics of allele frequency changes in an
infection and affects fitness inference.

Here, we first develop a set of mathematical models to project changes in the allele
frequencies of viral variants within infected hosts. Our models specifically allow for
cellular coinfection and the effect of phenotypic hiding on allele frequency changes. Using
Bayesian inference approaches, we then demonstrate how these mathematical models can
be interfaced with longitudinally sampled allele frequency data to jointly estimate the
relative fitness of a variant and cellular multiplicity of infection levels. Finally, we apply
our developed methods to estimate the fitness effect of an adaptive mutation that was
identified in an influenza H5N1 experimental challenge study performed using the ferret
animal model. Our findings indicate that the fitness effect of this mutation is considerably
higher than previously estimated and that cellular coinfection precipitously slowed down
the rate of within-host influenza virus adaptation.

2. Materials and Methods
2.1. Deterministic Within-Host Evolution Model

Several studies have used longitudinal allele frequency data to estimate the relative
fitness of a mutant allele over a wild-type allele within an infected host or from passage
studies [9,19,20]. None of these models, however, account for the impact that cellular
coinfection can have on variant allele frequency changes over time. To accommodate
cellular coinfection, we first start with an evolutionary model that projects allele frequencies
from one viral generation to the next in the absence of coinfection:

qm(tg+1
)
=

qm(tg
)
eσm

qm
(
tg
)
eσm +

(
1 − qm

(
tg
))

eσw
(1)

where qm(tg
)

is the frequency of the variant (mutant) allele in viral generation g, σm
(with range −∞ to ∞) is the selective advantage/disadvantage of the focal mutation,
and eσm (with range ≥ 0) is the relative fitness of the variant allele over the wild-type allele.
The fitness of the wild-type allele (eσw ) is defined as 1. This model is a simplification of a
model first presented in [9]. That model considers an arbitrary number of viral haplotypes
and further incorporates de novo mutation in its projection of allele frequencies. Here, we
ignore de novo mutation over the course of infection and limit our analysis to two viral
haplotypes: a wild-type viral genotype and a variant genotype carrying a mutant allele
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at a single locus. We adopt these simplifications to focus attention on the effect of cellular
coinfection in within-host evolution.

To extend this initial model to allow for the effect of cellular coinfection, we first
assume that viral genomes enter cells independently of other viral genomes. Under this
assumption, viral genomes are distributed across cells according to a Poisson distribution.
Given a mean overall cellular multiplicity of infection (MOI) of M, the variant’s mean MOI
in viral generation tg is simply given by Mm = qm(tg

)
M and the wild-type virus’s mean

MOI is simply given by Mw = (1 − qm(tg
)
)M. The probability that a cell is infected with k

variant viral genomes and l wild-type viral genomes is then:

P(k, l) =

(
e−Mm(Mm)k

k!

)(
e−Mw(Mw)l

l!

)
(2)

Under the assumption that viral protein products within cells have additive effects,
the fitness of a viral genome present in a cell carrying k variant viral genomes and l
wild-type viral genomes is given by:

F(k, l) =
k

k + l
eσm +

l
k + l

eσw (3)

Note that this fitness does not depend on whether the focal genome is a variant viral
genome or a wild-type viral genome, since all viral genomes within a cell share their
protein products and thus have the same fitness.

The realized mean fitness of a viral variant in the context of cellular coinfection is
calculated by taking a fitness average of the viral variant across its cellular contexts:

eσm =
∑∞

k=0 ∑∞
l=0 kP(k, l)F(k, l)

Mm
(4)

Similarly, and the realized mean fitness of the wild-type virus in the context of cellular
coinfection is given by:

eσw =
∑∞

k=0 ∑∞
l=0 lP(k, l)F(k, l)

Mw
(5)

Examination of these equations indicates that the realized mean fitness of the viral
variant and of the wild-type virus approach eσm and eσw , respectively, as cellular MOI
becomes small, as expected. As cellular MOI becomes large, eσm and eσw converge in their
values, as expected.

Variant allele frequency changes in the context of cellular coinfection can then be
projected using a modified version of Equation (1), where realized mean fitnesses replace
individual-level viral fitnesses:

qm(tg+1
)
=

qm(tg
)
eσm

qm
(
tg
)
eσm +

(
1 − qm

(
tg
))

eσw
(6)

2.2. Stochastic Within-Host Evolution Model

A recent study highlighted the important role that stochastic processes can play in
shaping patterns of within-host viral evolution [21]. The extent to which in vivo viral
evolution is governed by stochastic processes can be quantified by the within-host effective
viral population size, which we here refer to as Ne. Low values of Ne indicate that genetic
drift plays a large role in shaping within-host viral populations, while high values of
Ne indicate that genetic drift plays a more minor role. The within-host effective viral
population size Ne for seasonal influenza A viruses has recently been estimated as being on
the order of 30-70 [22]. Given estimates such as these, we develop here a stochastic version
of the within-host evolutionary model presented in the previous section. For simplicity,
in the equations below, we use N rather than Ne to denote the effective viral population size.
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With a variant allele frequency of qm(tg) in generation tg, the variant’s effective population
size is given by:

Nm(tg) = Nqm(tg) (7)

and the effective population size of the wild-type virus in generation tg is given by:

Nw(tg) = N
(
1 − qm(tg)

)
(8)

Defining the number of target cells as C, the mean cellular multiplicity of infection is
given by N/C, the mean cellular MOI of variant virus is given by Nm/C, and the mean
cellular MOI of the wild-type virus is given by Nw/C. Under the same assumption as before
that viral genomes enter cells independently of one another, we stochastically determine
the distribution of variant viruses across target cells using a multinomial distribution with
the event probability of being in a cell given by 1/C (for all C cells) and the number of
trials given by the variant population size Nm. We similarly stochastically determine the
distribution of wild-type viruses across target cells using a multinomial distribution with
the event probability of being in a cell given by 1/C (for all C cells) and the number of
trials given by the wild-type viral population size Nw. The mean fitness of a viral variant
in the context of cellular coinfection can then be calculated in a manner similar to the one
specified in Equation (4). With F(ki, li) as the fitness of a viral genome present in cell i with
ki variant viral genomes and li wild-type viral genomes, the mean fitness of a viral variant
is obtained by considering the stochastically realized viral content in each cell:

eσm =
∑C

i=1 kiF(ki, li)
Nm

(9)

Similarly, the mean fitness of the wild-type virus is given by:

eσw =
∑C

i=1 liF(ki, li)
Nw

(10)

We then use Equation (6) to project the frequency of the viral variant in the next
generation. Calling this projected frequency pm(tg+1

)
, we generate a stochastic realization

of this frequency by letting the variant effective population size Nm be drawn from a
binomial distribution with N trials and a probability of success of pm(tg+1

)
. The realized

frequency of the viral variant, qm(tg+1
)
, in generation tg+1 is then given by Nm/N.

2.3. Simulated Data

We simulated the models described above to ascertain the effect of cellular coinfection
on variant allele frequency changes at various levels of coinfection. We also simulated
mock datasets and used them to test the statistical inference methods described in detail
below. We simulated one mock dataset using the deterministic within-host evolution
model, with observed variant allele frequencies that include measurement noise (noise
that is due to an inaccurate measuring process, rather than underlying noise in the viral
dynamic process) . To implement measurement noise, we let the observed variant allele
frequency in generation tg, qm

o (tg), be drawn from a beta distribution with shape parameter
α = νqm(tg) and shape parameter β = ν(1 − qm(tg)):

qm
o (tg) ∼ Beta(νqm(tg), ν(1 − qm(tg)))

where ν quantifies the degree of measurement noise. The parameter ν is constrained to
be positive, with higher values corresponding to less measurement noise. We simulated
a second mock dataset using the stochastic within-host model, similarly assuming beta-
distributed measurement noise.
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2.4. Empirical H5N1 Data

As an application of the approaches developed here, we used longitudinal allele fre-
quency data from an influenza A subtype H5N1 experimental challenge study in ferrets [23].
We specifically focused on inferring the relative fitness of a single nucleotide variant on
the hemagglutinin gene segment (G788A) in the VN1203-HA(4)-CA04 virus. This variant
was present in the viral inoculum stock at a frequency of 4.40% and increased in frequency
over the course of infection in each of the four ferrets that were challenged with this in-
oculum. Although G788A allele frequencies were measured in [23] on days 1, 3, and 5
post-inoculation, we excluded the day 5 samples from our analyses. This is because up to
(and including) day 3, the viral population in each of the four ferrets exhibited low levels
of genetic diversity, with G788A being the only variant present at substantial frequencies.
By day 5, additional variants on the hemagglutinin gene segment had emerged, with some
reaching high frequencies. Because there is genetic linkage between these later variants
and G788A, the G788A frequency changes between days 3 and 5 are likely due in part
to selection acting on these later variants. Because our model does not reconstruct viral
haplotypes or consider epistatic interactions between loci, we thus decided to exclude day
5 from our analysis to be able to focus more specifically on estimating the fitness of G788A
in the context of cellular coinfection.

2.5. Statistical Inference

The deterministic within-host model contains four parameters: the relative fitness of
the variant virus (eσm ) over the wild-type virus, the mean cellular multiplicity of infection
(M), the initial frequency of the variant virus in a host (qm(t0)), and the magnitude of mea-
surement noise (ν). When interfacing this model with longitudinal allele frequency data, we
estimate the first three parameters but do not estimate ν. We do not estimate ν because it can
be parameterized from allele frequency measurements from replicate samples. To estimate
eσm , M, and qm(t0), we rely on Markov Chain Monte Carlo (MCMC) approaches.

The stochastic within-host evolution model contains the same four parameters as the
deterministic model, and one additional parameter: the effective viral population size N.
(The number of target cells C is not an additional parameter because it is given by the
product of the effective viral population size N and the mean cellular MOI M.) We use
particle MCMC (pMCMC) [24] to infer eσm , M, and qm(t0), and set ν and N as given. Particle
MCMC is a Bayesian inference approach that combines particle filtering with MCMC to
estimate parameters of stochastic state-space models and to reconstruct unobserved state
variables. This statistical inference method is increasingly used in the infectious disease
modeling community [25,26] but as of yet has not been applied to within-host viral models.

For both the deterministic and stochastic within-host models, let P(qm
o (tg)) be the

probability of observing a variant allele frequency of qm
o in generation tg. This probability

is given by the beta probability density function, with shape parameters νqm
sim(tg) and

ν(1 − qm
sim(tg)), evaluated at qm

o (tg), where qm
sim(tg) is the model-simulated allele frequency

in generation tg. This simulated variant allele frequency depends on parameters eσm , M,
and qm(t0), and for the stochastic model also N. For the deterministic model, the likelihood
of the model is then given by:

∏
g

P(qm
o (tg)) (11)

where g indexes the generation times of all the measured variant allele frequency data
points. For the stochastic model, P(qm

o (tg)) is used to calculate the particle weights in the
pMCMC algorithm.

Statistical inference code was implemented using Python 3.7.4 and Matlab R2020A
and is available from https://github.com/koellelab/withinhost_fitnessInference.

https://github.com/koellelab/withinhost_fitnessInference
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3. Results
3.1. The Extent of Cellular Coinfection Impacts Variant Frequency Dynamics

The within-host models developed above differ from previous models focused on
within-host viral evolution by incorporating the possibility of cellular coinfection and
its effects on variant frequency dynamics. Simulations of our deterministic model show,
as expected, that a beneficial mutation does not increase in frequency as rapidly when
cellular coinfection levels are high compared to when they are low (Figure 1A). Our
simulations also show that a deleterious mutation does not decrease in frequency as
rapidly when cellular coinfection levels are high compared to when they are low (Figure
1B). Both of these effects are a direct consequence of phenotypic hiding that occurs in cells
that are infected by more than one viral genome.

Figure 1. Model simulations showing changes in variant frequencies over viral generations. (A) Frequency changes of
a beneficial mutation under the deterministic within-host model, parameterized at different mean cellular multiplicities
of infection M. For all simulations shown, the variant’s fitness is eσm = 1.1 and its initial frequency is qm(t0) = 0.4.
(B) Frequency changes of a deleterious mutation under the deterministic within-host model, parameterized at different
mean cellular multiplicities of infection M. For all simulations shown, the variant’s fitness is eσm = 0.9 and its initial
frequency is qm(t0) = 0.4. In (A,B), we consider MOI values of 0.1, 1, 5, and 20. Labeled as ‘No coinfection’, we also
plot simulations of the model presented in Equation (1), which assumes that fitness is an individual-level property of
a viral genome. (C) Frequency changes of a beneficial mutation (red; eσm = 1.1) and of a deleterious mutation (blue;
eσm = 0.9) under the stochastic within-host model, parameterized with a mean cellular MOI of 5. Dashed lines show 10
stochastic realizations under each parameterization. Solid lines show simulations of the deterministic model under the
same parameterization. Stochastic simulations used an effective viral population size of N = 1000. (D) Frequency changes
of mutations, as in (C), only using an effective viral population size of N = 100.

Our stochastic within-host evolution model recapitulates the general patterns ob-
served in simulations of the deterministic model, with demographic stochasticity playing a
more pronounced role at lower effective viral population sizes, as expected (Figure 1C,D).
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3.2. Statistical Estimation of Variant Fitness Using the Deterministic Within-Host Model
3.2.1. Statistical Inference with Simulated Data

We first aimed to determine if longitudinal allele frequency data could be used to infer
variant fitness in the context of cellular coinfection under the assumption of deterministic
within-host evolutionary dynamics. We therefore first generated a mock dataset by forward
simulating the deterministic model and adding measurement noise (Figure 2A). Prior to
applying the MCMC methods described above to this mock dataset, we assessed the
identifiability of the two parameters of greatest biological interest: variant fitness eσm

and mean cellular mulitiplicity of infection M. We did this by setting the magnitude
of measurement noise ν and the initial mutant allele frequency qm(tg = 0) to their true
values and plotting the model likelihood over a range of MOIs and over a range of variant
fitnesses. Our results indicate that there is a likelihood ‘ridge’ from low MOI-low fitness
parameter combinations to high MOI-high fitness parameter combinations (Figure 2B).
The presence of this likelihood ridge is expected, given that higher variant fitness in the
context of higher MOI compensates for the phenotypic hiding phenomenon that does not
occur at lower MOI.

Figure 2. Variant fitness estimation under the assumption of deterministic evolutionary dynamics. (A) Mock data (red
dots) generated from a forward simulation of the deterministic within-host evolution model with added measurement
noise. The underlying deterministic dynamics are shown with a red line. The model is parameterized with variant fitness
of eσm = 1.5, a mean cellular MOI of M = 2.0, and an initial frequency of the variant of qm(t0) = 0.10. Measurement
(observation) noise is set to ν = 100. Grey lines show 10 model simulations, with parameters drawn from the MCMC
posterior distributions. (B) Log-likelihood landscape, showing the log-likelihood of the model over a broad range of MOI
and variant fitness values. When calculating these likelihoods, the initial frequency of the variant and the measurement noise
were fixed at their true values. The red dot shows the true set of parameters used to simulate the mock data. The yellow
dot shows the parameter combination yielding the highest log-likelihood. White boundary lines show the 95% confidence
interval of parameter estimates. (C) Posterior distribution for the initial frequency of the variant. (D) Posterior distribution
for the mean cellular multiplicity of infection M. (E) Posterior distribution for variant fitness. In (C–E), black solid lines
show the median values of the posterior density, black dashed lines show the 95% credible intervals, and red solid lines
show the true values.
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Given this likelihood ridge, it would be difficult to use MCMC to obtain posterior
distributions of the model parameters without an informative prior on either variant fitness
or MOI. We decided, for the sake of illustration, to adopt a prior on MOI. Specifically, we
assumed a lognormal prior on MOI, with a mean of log(2) and a standard deviation of
0.5. We ran the MCMC chain for 20,000 iterations (Figure S1). Posterior distributions for
the initial frequency of the variant, MOI, and variant fitness are shown in Figure 2C–E.
All true parameters fell within the 95% credible intervals of the estimated parameter
values. In Figure 2A, we further plot 10 forward simulations, parameterized with draws
from the posterior distributions, alongside the mock data. These results indicate that the
deterministic within-host evolution model can be successfully interfaced with longitudinal
variant allele frequency data to infer model parameters using MCMC.

3.2.2. Statistical Inference with Experimental H5N1 Challenge Study

We now apply the same MCMC approaches to experimental data from an influenza
A subtype H5N1 challenge study performed in ferrets. Figure 3A shows the frequencies
of the G788A variant that was present in the inoculum stock at a frequency of 4.40%
and increased in all four of the experimentally infected ferrets. For the reasons provided
above, we used only days 1 and 3 for estimation of variant fitness. We also used the
measured stock frequency of 4.40% as the day 0 data point for all ferrets. While technically
the stock frequency and the ferrets’ day 0 data points constitute very different samples,
we felt comfortable with this assumption because of the likely very large transmission
bottleneck size between the inoculum and index ferrets. Although an estimate of this
transmission bottleneck size is not reported on in [23], a study using barcoded virus found
that three-quarters of viral barcodes present in the inoculum were transmitted to index
(donor) ferrets in experimental challenges that used 104 plaque-forming units (p.f.u.) of
virus inoculum [27], which is two orders of magnitude less virus than used in [23]. In the
barcoded virus study, some of the barcodes that were transmitted had frequencies as low
as 0.5% in the stock, indicating that the transmission bottleneck size was likely hundreds
to thousands of virions. Under the assumption of random sampling of virions from the
stock, this means that the frequency of G788A on day 0 of the ferrets was likely very close
to 4.40%, with measurement noise significantly outweighing any noise stemming from the
wide transmission bottleneck. Indeed, calculations involving the binomial distribution (for
the transmission bottleneck) and the beta distribution (for measurement noise) indicate that
measurement noise dominates transmission bottleneck process noise when the bottleneck
size is larger than the measurement noise parameter ν. With a bottleneck size in the
hundreds to thousands and the value of ν we use for this dataset (see below), measurement
noise is much larger than transmission bottleneck size noise, therefore allowing us to make
the assumption that the day 0 allele frequencies of G788A in the ferrets is equal to the stock
frequency of G788A.

In fitting our model to these data, we first converted days post inoculation to viral
generations by assuming an 8 h influenza virus generation time based on [28]. Replicate
samples for this experiment were not available, so we set the degree of measurement noise
ν to 100, but consider the sensitivity of our results to this value (see below). We used an
informative prior on the mean cellular MOI, specifically a lognormal prior with a mean of
log(4) and a standard deviation of 0.4. We used this prior based on studies that indicate
that 3–4 virions are generally required to yield progeny virus from an infected cell [11].
However, we note that a wide range of estimates exist in the literature on the extent of viral
complementation required for successful influenza virus progeny production, with findings
indicating that this depends on the host cell type and on the viral strain considered [10,12].
We ran the MCMC chain for 20,000 iterations (Figure S2). Posterior distributions for mean
cellular MOI and variant fitness are shown in Figure 3B,C, respectively. The joint density
plot of MOI and variant fitness (Figure 3D) indicates that there is a positive correlation
between these two parameters, consistent with our findings on simulated data (Figure 2B).
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Posterior distributions for the initial frequencies of the variant in each ferret are shown
in Figure S3.

Figure 3. Fitness estimation for variant G788A, assuming deterministic within-host dynamics. (A) Measured G788A allele
frequencies over the course of infection for 4 experimentally infected ferrets. Days 0 (stock frequency), 1, and 3 are used
in the estimation of variant fitness. (B) Posterior distribution for the mean cellular multiplicity of infection. (C) Posterior
distribution for variant fitness. In (B,C), black solid lines show the median values of the posterior densities and black dashed
lines show the 95% credible intervals. (D) Joint density plot for MOI and variant fitness.

The results shown in Figure 3B indicate that cellular MOI is relatively high, al-
though the informative prior used played a large role in shaping this parameter’s posterior
distribution. Our estimate of variant fitness (relative to wild-type fitness) lies between 2.11
and 7.91, with a median value of 3.15. This stands in stark contrast to a previous fitness
estimate for this variant of approximately e0.35 = 1.42 [9]. However, this previous estimate
was based on a model that did not consider cellular coinfection. With high levels of coin-
fection thought to occur in within-host influenza virus infections [11] and our inference of
relatively high cellular MOI (Figure 3B), higher fitness was inferred for G788A to be able to
account for its observed rapid rise in the context of phenotypic hiding. Indeed, the joint
density plot shown in Figure 3D indicates that if we had constrained MOIs to be lower
(closer in line with the estimates from [10]), our variant fitness estimates would have been
considerably closer to those previously inferred for G788A.

Our inferred fitness estimate of ∼ 2 − 8 for G788A may initially seem unreasonably
large. However, several studies that have estimated variant fitness using in vitro experi-
ments have arrived at estimates of similar magnitude. For example, a recent in vitro study
of dengue virus evolution performed at low MOI found that, of the beneficial mutations
that were identified, some had relative fitness effects exceeding 2 [29]. An in vitro study
focused on HIV similarly found that beneficial mutations could have pronounced effects
on viral fitness, with the largest estimated relative fitness of a single mutation being 6.6 [30].
These studies show that the fitness effects of viral mutations can be quite high, particularly
when under strong selection pressure. While our relative fitness estimate of ∼ 2 − 8 for
G788A falls in the range of other estimates present in the viral literature, there are also
studies that have inferred lower fitness values for beneficial mutations. For example,
the highest relative fitness value estimated for an influenza B mutation that conferred
resistance to a neuraminidase inhibitor was 1.8 [31].

The results presented in Figure 3 assume measurement noise ν of 100 and a viral
generation time of 8 h. To ascertain the effects of these assumptions on our results, we first
re-estimated MOI, variant fitness, and initial variant frequencies under the assumption of
both higher (ν = 25) and lower (ν = 400) levels of measurement noise (Figures S4 and S5).
With higher levels of measurement noise, 95% credible interval ranges for MOI and variant
fitness were both wider than when measurement noise was set to ν = 100. In contrast,
with lower measurement noise, 95% credible interval ranges for MOI and variant fitness
were both considerably more narrow than when measurement noise was set to ν = 100,
with variant fitness estimates falling in the range of 2.25–3.6. At both higher and lower
levels of measurement noise, median estimates for MOI and variant fitness were not
considerably impacted. We also considered the sensitivity of our results to the viral
generation time assumed (Figures S6 and S7). With a shorter generation time of 6 h,
the posterior distribution for MOI remained similar to one inferred using a viral generation
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time of 8 h. However, variant fitness estimates were lower, with the 95% credible interval
range of 1.66–3.47 and a median value of 2.36. With a longer generation time of 12 h,
the posterior distribution for MOI again remained similar to one inferred using a viral
generation time of 8 h. Variant fitness estimates using a 12 h viral generation time were
considerably higher, however, with the 95% credible interval range of 2.88–9.31 and a
median value of 4.58. These results underscore the importance of accurately parameterizing
the viral generation time when performing variant fitness estimation.

In Figure 4, we show 10 forward simulations of the deterministic model, param-
eterized using draws from the posterior distributions. These indicate that the model,
simulated using parameter estimates inferred from MCMC, reproduces observed G788A
allele frequency patterns on days 0, 1, and 3 (the days included in the statistical analyses).
The model, however, significantly over-predicts G788A frequencies on day 5 in ferret 15
and ferret 21 (Figures 4B,D). It is interesting to note that in both ferrets 15 and 21, one addi-
tional variant (G738A) rose to high frequencies between days 3 and 5. Previous work has
inferred a large relative fitness value for this variant (e0.9 = 2.5) as well as (slightly negative)
epistatic interactions between it and G788A [9]. Haplotype reconstruction indicates that the
‘A’ allele at site 738 arose in the genetic background of the ‘G’ allele at site 788 [9,23]. With
the ‘A’ allele at site 738 conferring a large fitness advantage, and its genetic linkage to the
‘G’ allele at site 788, we would anticipate that this mutation would slow or even reverse the
rise of variant G788A between days 3 and 5 in these ferrets due to this process of clonal
interference. Indeed, our model projections significantly overestimate the frequency of
G788A on day 5 in both of these ferrets, indicating that selection efficiently acted on G738A,
impeding the projected increase in the frequency of G788A between days 3 and 5. It is also
interesting to examine the dynamics of additional variants in ferrets 13 and 17, where the
model predicts G788A frequencies relatively well on day 5, although this data point was
not used during model fitting. Ferret 13 had one other variant arising between day 3 and
day 5 (variant G496T). A previous study using these data inferred a large relative fitness
value for this variant (e0.7 = 2.0) [9]. Our model simulations, however, projected the allele
frequency of G788A on day 5 well in the absence of considering this variant. As such, we
would predict that this G496T variant had lower relative fitness than previously estimated.
Ferret 17 also had one other variant rising to high frequencies between day 3 and day 5
(variant C736A). It is unclear whether previous work inferred this mutation to be strongly
beneficial or strongly deleterious, since A736C (rather than C736A) was the mutation
identified as being under positive selection. Regardless, our model slightly over-projects
the frequency of G788A on day 5, such that we expect C736A to have contributed to some
extent to allele frequency changes of G788A through linkage effects.

Figure 4. Deterministic model simulations (grey lines) and observed data points (red dots) are shown for (A) ferret 13,
(B) ferret 15, (B) ferret 17, and (D) ferret 21. Only days 0, 1, and 3 were used in model fitting. Parameters for the model
simulations were drawn from the posterior distributions of the parameters. Purple lines show model simulations under the
same parameterizations of variant fitness and initial variant frequencies as the grey lines, but simulated in the absence of
cellular coinfection. These no-coinfection projections were simulated using Equation (1).

In Figure 4, we further plot model simulations that assume no cellular coinfection.
Specifically, we simulate Equation (1) where the dynamics are driven by the variant’s
individual-level fitness eσm rather than by eσm . The frequency of G788A rises consid-
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erably faster in these simulations compared to those that incorporate cellular coinfec-
tion. This indicates that the speed of within-host viral adaptation is severely reduced by
cellular coinfection.

3.3. Statistical Estimation of Variant Fitness Using the Stochastic Within-Host Evolution Model
3.3.1. Statistical Inference with Simulated Data

The within-host evolutionary dynamics of viral pathogens may not be appropriately
described by a deterministic model, even though viral population sizes within infected indi-
viduals over the course of infection are often times very large. Indeed, recent studies have
highlighted the role that stochastic processes play in within-host viral dynamics [21,22].
We therefore next aimed to determine if longitudinal allele frequency data could be used to
infer variant fitness in the context of cellular coinfection under a model of within-host evo-
lution that incorporated stochastic effects. As described above, we incorporated stochastic
effects by implementing the within-host model with a small effective viral population
size, specified by the parameter N. As such, we are modeling demographic stochasticity,
with genetic drift being the driver of random changes in variant allele frequencies. We
generated a mock within-host dataset by forward-simulating the stochastic model and
adding measurement noise (Figure 5A). This dataset was generated under the same param-
eterization as the deterministic dataset shown in Figure 2A, with stochastic effects included
by setting the viral population size N to 100.

Figure 5. Variant fitness estimation under the assumption of stochastic evolutionary dynamics.
(A) Mock data (red dots) generated from a forward simulation of the stochastic within-host evolution model
with added measurement noise. The underlying stochastic dynamics are shown with a red line. The model is parameterized
with variant fitness of eσm = 1.5, a mean cellular MOI of M = 2.0, an initial frequency of the variant of qm(t0) = 0.10.
Measurement (observation) noise is set to ν = 100. The viral effective population size is set to N = 100. Grey lines show the
dynamics of 10 reconstructed allele frequency trajectories. These trajectories are unobserved state variables that have been
reconstructed using pMCMC. (B) Posterior distribution for the initial frequency of the variant. (C) Posterior distribution for
the mean cellular multiplicity of infection M. (D) Posterior distribution for variant fitness. In (B–D), black solid lines show
the median values of the posterior densities, black dashed lines show the 95% credible intervals, and red solid lines show
the true values. 200 particles were used in the pMCMC.
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Using the same prior on MOI as with the deterministic analysis and under the assump-
tion that ν and N are known, we ran the MCMC chain for 50,000 iterations (Figure S8).
Posterior distributions for the initial frequency of the variant, mean cellular MOI, and vari-
ant fitness are shown in Figures 5B–D. All true parameters fell within the 95% credible
intervals of the estimated parameter values. In Figure 5A, we plot 10 reconstructed variant
allele frequency trajectories. These results indicate that the stochastic within-host evolution
model can be successfully interfaced with longitudinal variant allele frequency data to
infer model parameters and underlying variant frequency dynamics using pMCMC.

3.3.2. Statistical Inference with Experimental H5N1 Challenge Study Data

We now apply the same pMCMC approaches to the H5N1 experimental data ana-
lyzed already using the deterministic model. We again used only days 0, 1, and 3 for
estimation of variant fitness, assumed a viral generation time of 8 h, and set the degree
of measurement noise ν to 100. We used the same informative prior on the mean cellular
multiplicity of infection M. We set the effective viral population size to N = 100 in our
analyses, but consider a scenario of even higher stochasticity below. We ran the pMCMC
chain for 50,000 iterations (Figure S9). Posterior distributions for mean cellular MOI and
variant fitness are shown in Figures 6A–B, respectively. The joint density plot of MOI and
variant fitness (Figure S10) again indicates that there is a positive correlation between these
parameters, consistent with the results from our analysis using the deterministic model.
Posterior distributions for the initial frequencies of the variant in each ferret are shown in
Figure S11. Our results are consistent with the findings from our deterministic analysis: we
estimate that the fitness of the G788A variant is considerably (2-10.5 times) higher than that
of the wild-type virus. These results are robust to higher levels of stochasticity; we show,
for example, the posterior distributions for M and variant fitness under the assumption
that the viral effective population size N is 40 (Figure S12).

Figure 6. Fitness estimation for variant G788A, assuming stochastic within-host dynamics.
(A) Posterior distribution for the mean cellular multiplicity of infection M. (B) Posterior distribution for variant
fitness. In (A,B) the model was parameterized with an effective viral population size of N = 100. In (A,B) black solid lines
show the median values of the posterior densities and black dashed lines show the 95% credible intervals.

4. Discussion

Here, we developed mathematical within-host models that can take into consideration
cellular coinfection when projecting changes in viral allele frequencies over the course
of an infection. We further described and demonstrated how these evolutionary models
can be statistically interfaced with viral sequence data to jointly estimate variant fitness
relative to the wild-type allele along with the mean cellular multiplicity of infection. Our
results indicate that ignoring the possibility of cellular coinfection can result in significant
underestimation of a variant’s selective advantage. This is important because a variant
with a much higher selective advantage, once established monomorphically within a
host, is expected to have a more precipitous impact on within-host viral dynamics than a
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variant with a smaller selective advantage. We might, for example, expect a variant with
a higher selective advantage to result in higher peak viral loads and potentially longer
durations of infection. This would impact both symptom development as well as onward
transmission potential.

Our models, like all models, make some simplifying assumptions. First, we assume
low viral diversity, with diversity comprising just one locus and two alleles (a wild-type
and a variant allele). We chose to model evolution at a single locus to highlight the impor-
tant contribution that cellular coinfection may play in the within-host evolution of viral
pathogens. Our application to the G788A mutation in the H5N1 experimental challenge
study in ferrets satisfied this assumption between days 0 through 3. Because other sites
became polymorphic in each of the four studied ferrets by day 5, we excluded this time
point from our statistical analyses. To consider the effect of cellular coinfection within
a system with higher levels of genetic diversity, and the possibility of new variants aris-
ing over the course of infection, the models developed here should be extended using
approaches developed already in [9]. These approaches include inference of viral haplo-
types and the incorporation of de novo mutations into the presented model structures.
With these additions, full genetic linkage between loci can be considered, and epistatic
interactions between loci can also be inferred. Our models, as presented here, however,
could still be applied to higher diversity viral systems if recombination occurred freely
between loci, as may be the case between influenza gene segments or some viruses with
high recombination rates.

A second assumption present in the current formulation of our models is that viral
fitness is additive: if a coinfected cell harbors both variant and wild-type viral genomes,
then the fitness of each viral genome is not only assumed to be equal, but also equal to the
arithmetic mean fitness of the involved genomes. This may be a good assumption if the
focal mutation impacts, for example, polymerase activity, with the viral polymerase protein
being used for the replication of all viral genomes. However, it may also be the case that a
mutation has a disproportionate effect on intracellular viral fitness. Future work should
therefore examine the impact of a mutation’s ‘dominance’ [32] on in vivo viral evolution.

A third assumption is one that is somewhat less transparent in the structure of our
models, namely that we assume that there is no intracellular viral competition for host
cell machinery. This assumption is reflected in the calculation of a variant allele’s mean
fitness (eσm ). A single viral genome’s fitness in a cell depends on the genotypes of the
other genomes present in the cell, but not on the cellular multiplicity of infection directly.
If a variant genome is in a cell alone or with a large number of other variant genomes,
for example, its fitness will be the same. However, if host cell machinery is limiting, one
would expect the per genome fitness—which can be interpreted here as per capita viral
yield or reproductive success—to be lower in highly coinfected cells. Indeed, empirical
studies with influenza virus indicates that there is a saturating relationship between viral
input and viral output from a cell [33]: at low cellular MOI, doubling the viral input yields
a doubling of viral output, such that viral competition is not readily apparent; at high MOI,
however, doubling the viral input does not appreciably change the overall viral output,
indicative of limiting host cell machinery. Future work should therefore also examine the
impact of intracellular viral competition on within-host viral evolution and extend models
such as the ones we presented here to account for intracellular viral competition.

Finally, our model assumes that the mean cellular multiplicity of infection (MOI) is
fixed across viral generations and that virion entry into cells is governed by a Poisson
process. In terms of the former assumption, it is conceivable that MOI might change over
the course of an infection. For example, at the beginning of a viral infection, MOI may be
low because a very small viral population is initiating infection in a large environment of
host cells. As viruses replicate within their host, viral population sizes increase and the
number of target cells decreases. This may result in more individual-level selection at the
beginning of the infection (due to low MOI), followed by a greater degree of phenotypic
hiding later on in the infection (due to higher MOI). To accommodate these changes in MOI,
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the structures of the within-host models presented here would not need to be significantly
altered; MOI could simply be made into a time-varying parameter. For simplicity, we
here instead decided to assume that MOI is fixed over the course of infection, in part
because of the lack of empirical data to inform MOI at multiple time points over the
course of an infection. A further argument against incorporating dynamic changes in MOI
is that spatially structured within-host viral dynamics, such as those characterized for
influenza [34], may result in cellular MOIs that are more uniform over time than expected
from a spatially unstructured setting. In terms of the latter assumption (Poisson-distributed
virions), there are several reasons why this assumption may not be met. Virions could
aggregate, such that virion entry into cells is not an independent process. Cells could also
be heterogeneous with respect to their susceptibility to infection, for example due to their
cell cycle state or due to antiviral states triggered by interferon. Both of these factors would
result in virions being overdispersed across cells, rather than Poisson-distributed. While
considering different assumptions of how virions are distributed across cells is beyond the
scope of this study, future work should address the effect of viral overdispersion on variant
fitness estimation.

Despite these limiting assumptions, a general takeaway from the evolutionary models
presented here is that cellular coinfection will slow down the rate of viral adaptation
within hosts when adaptation occurs through selection acting on single point mutations
(or insertions/deletions) as we considered here. (A caveat here is that cellular coinfection
could accelerate viral adaptation if it heavily relies on genetic exchange, i.e., recombination
or reassortment.) Slower rates of viral adaptation is good news from the perspective of the
host population, as this will also slow down viral adaptation at the population-level. This
finding has clear implications for emerging zoonotic viruses that are adapting to a new
host population. Analogously, cellular coinfection will result in less effective purging of
deleterious mutations. By making natural selection a weaker evolutionary force, cellular
coinfection may thus be one reason why stochastic processes appear to dominate within-
host viral dynamics and why selection does not seem to act efficiently over the course of
an acute infection for viruses such as seasonal influenza [21,35]. There are other factors,
however, that may also limit the ability for positive selection to act efficiently within hosts.
For example, the temporal asynchrony between the timing of the immune response and
when virus diversification occurs may explain why antigenic immune escape variants do
not readily arise in individuals with some pre-existing immunity [36]. A second takeaway is
that variants whose fitness levels (relative to wild-type) have been quantified using models
that do not include cellular coinfection may have significantly underestimated variant
fitness. Underestimation of variant fitness may underestimate the effect of a mutation
on viral replication dynamics once those dynamics involve only the variant virus. Our
results—that the fitness effect of certain mutations can be large—speak to the adaptive
potential of these viruses to new or changing host populations, even if adaptation may
occur more slowly than might be expected.

Supplementary Materials: The following are available online at XXX: Figure S1: MCMC trace plots
for parameters estimated by interfacing the deterministic within-host model with the simulated data.
Figure S2: MCMC trace plots for parameters estimated by interfacing the deterministic within-host
model with the influenza H5N1 experimental challenge study data. Figure S3: Posterior distributions
of initial G788A frequencies from fitting the deterministic model. Figure S4: Parameter estimation for
variant G788A, assuming deterministic within-host dynamics and a larger amount of measurement
noise. Figure S5: Parameter estimation for variant G788A, assuming deterministic within-host
dynamics and a smaller amount of measurement noise. Figure S6: Parameter estimation for variant
G788A, assuming deterministic within-host dynamics and a viral generation time of 6 hours. Figure
S7: Parameter estimation for variant G788A, assuming deterministic within-host dynamics and a viral
generation time of 12 hours. Figure S8: MCMC trace plots for parameters estimated by interfacing the
stochastic within-host model with the simulated data. Figure S9: MCMC trace plots for parameters
estimated by interfacing the stochastic within-host model with the influenza H5N1 experimental
challenge study data. Figure S10: Joint density of MOI versus variant fitness for the stochastic model
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fit to the influenza H5N1 experimental challenge study data. Figure S11: Posterior distributions of
initial G788A frequencies from fitting the stochastic within-host model. Figure S12: Fitness estimation
for variant G788A, assuming stochastic within-host dynamics, parameterized with an effective viral
population size of N = 40.
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