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Abstract: Traditional influenza vaccines generate strain-specific antibodies which cannot provide
protection against divergent influenza virus strains. Further, due to frequent antigenic shifts and
drift of influenza viruses, annual reformulation and revaccination are required in order to match
circulating strains. Thus, the development of a universal influenza vaccine (UIV) is critical for
long-term protection against all seasonal influenza virus strains, as well as to provide protection
against a potential pandemic virus. One of the most important strategies in the development of
UlVs is the selection of optimal targeting antigens to generate broadly cross-reactive neutralizing
antibodies or cross-reactive T cell responses against divergent influenza virus strains. However,
each type of target antigen for UIVs has advantages and limitations for the generation of sufficient
immune responses against divergent influenza viruses. Herein, we review current strategies and
perspectives regarding the use of antigens, including hemagglutinin, neuraminidase, matrix proteins,
and internal proteins, for universal influenza vaccine development.

Keywords: influenza; universal vaccine; antigen; immune response

1. Introduction

Influenza viruses are enveloped RNA viruses belonging to the Orthomyxoviridae family.
There are four genera of influenza viruses, A, B, C, and D, divided based on antigenic
differences [1]. Among influenza types, human influenza A and B viruses both cause sea-
sonal flu, while influenza A viruses (IAVs) are the only viruses to have caused pandemics.
The IAVs are divided into two phylogenic groups, 1 and 2. Group 1 viruses comprise H1,
H2, H5, H6, H8, H9, H11, H12, H13, H16, H17, and H18, while group 2 viruses contain
H3, H4, H7, H10, H14, and H15. Influenza B viruses are categorized into two lineages,
B/Yamagata-like and B/ Victoria [2]. Influenza C viruses are less prevalent and reportedly
cause only mild disease in humans, whereas influenza D viruses are not known to infect
humans [3], but infect cattle, swine, ruminants, horses, and camels [1,4].

Vaccination is considered the most effective way to control influenza infections, al-
though existing influenza vaccines have some limitations. Currently, there are three main
types of seasonal influenza vaccines, live attenuated, inactivated, and recombinant. Live
attenuated influenza vaccines (LAIVs) have been considered as alternatives to traditional
inactivated influenza vaccines due to their ability to mimic a natural infection and induce
humoral, cellular and mucosal immune responses [5]. The LAIV was first used in Russia
over 40 years ago, was licenced in the United States in 2003 and in Europe in 2012 [5],
and has been demonstrated to induce protection against antigenic variants of influenza
A viruses [6-9]. The influenza virus strains targeted by seasonal vaccines are selected
based on global surveillance coordinated by the World Health Organization; thus, vaccine
effectiveness is greatly variable depending on the match between the vaccine strains and
circulating viruses. Due to the rapid antigenic shift and drift of the influenza hemagglutinin
(HA) and neuraminidase (NA) glycoproteins, reformulation and readministration of the
vaccine is required annually. Although seasonal influenza vaccines are updated yearly to
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match circulating strains, vaccine effectiveness was only 10 to 60% for flu seasons from
2004-2020 [10] (Figure 1), resulting in 250,000 to 500,000 deaths every year as estimated
by the World Health Organization [11]. Based on the preliminary end-of-season estimates,
the influenza vaccine effectiveness (VE) estimate for the 2019-2020 flu season was only
39% [10]. In addition to seasonal epidemics, influenza pandemics are unpredictable and
significant global threats. The four biggest pandemics of the 20th and 21st centuries, the
1918 Spanish (H1IN1 virus), 1957 Asian (H2N2 virus), 1968 Hong Kong (H3N2 virus),
and 2009 swine (pandemic H1N1 virus) flu, caused global health crises with significant
mortality and morbidity and enormous economic burdens. The recent influenza pandemic
in 2009, explicitly demonstrated how the influenza vaccine was insufficient for controlling
a potential pandemic as well as seasonal epidemics. Thus, there is a need to improve the
immunogenicity and efficacy of current influenza vaccines. In addition, COVID-19, caused
by the SARS-CoV-2 virus and first appearing in late December 2019, still threatens health
globally with increasing numbers of infected patients and deaths. Further, coinfection
with influenza more than doubles the risk of death in COVID-19 patients [12]. Thus,
an effective influenza vaccine is crucial to limiting severe outcomes of COVID-19 when
coinfection occurs.
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Figure 1. Estimated vaccine effectiveness (VE) for flu seasons from 2010-2020. Data is adapted
from the Centers for Disease Control and Prevention seasonal flu vaccine effectiveness studies [10].
Vaccine effectiveness which defines as the percent reduction in the frequency of influenza illness
among vaccinated people compared to non-vaccinated people, is estimated using data from the
United States vaccine effectiveness Network. Data are presented as adjusted overall VE (%) with 95%
confidence intervals.

Numerous efforts have been made to develop universal influenza vaccines (UIVs) that
are able to provide at least 75% effectiveness against symptomatic disease caused by group
1 and 2 influenza viruses with durable protection lasting at least 12 months in all popula-
tions [13]; however, currently, there is no commercial UIV available. Numerous approaches
have been explored, including the targeting of conserved antigens such as HA, NA, ma-
trix, and internal proteins, together with the application of multiple vaccine platforms,
including recombinant antigen/protein-based vaccines [14], reassortant/recombinant in-
fluenza virus-based vaccines [15], virus-vectored vaccines [16], virus-like particle (VLP)
vaccines [17], nanoparticle-based vaccines [18,19], DNA/RNA-based vaccines [20,21], and
multiple platform vaccines [22,23]. Careful selection of target antigens for UIV develop-
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ment is imperative due to the need to generate broad immune responses against divergent
seasonal and potential pandemic influenza virus strains. In this review, we summarize
advantages and limitations of current antigen targeting strategies for UIV development.

2. HA-Based UlIVs

Influenza HA molecules consist of two distinct domains, a globular head, composed of
part of HA1, and a stalk structure, composed of portions of HA1 and all of HA2. Traditional
IAV vaccines depend on the generation of neutralizing antibodies (Abs) specific for the
variable HA head domain, and thus the vaccines are strain-specific. Current strategies
target less variable HA regions, including the stalk domain or/and conserved epitopes
within the head domain. These approaches include the use of headless HA, chimeric
HA, mosaic HA, computationally-optimized broadly reactive antigens (COBRA), and
“breathing” HA.

2.1. Headless HA

The discovery of broadly neutralizing Abs against the conserved stalk domain has
spurred the development of stalk domain-based UIVs. The first attempt to produce
immunosubdominant headless HA was made by Graves et al. in 1983 by the chemical
removal of the immunodominant HA global head domain [24]. However, this treatment
results in conformation changes in the HA2 stalk domain and removal of conformational
epitopes in the HA1 stalk domain, which are needed for the binding of broadly reactive
anti-stalk Abs [24]. Other efforts, including genetic treatment and expression of headless
HA in E. coli or insect cells, have also been made; however, the conformation of the headless
HA is likely far from optimal despite the fact that it provided homologous, heterologous,
and heterosubtypic protection after virus challenges [25-27]. In 2015, Impagliazzo et al. [28]
and Yassine et al. [29] independently generated stable and correctly folded headless HA
by introducing a stabilizing element in the membrane-proximal end of the molecule. The
headless HA induced stalk-specific Abs and protected animals against heterosubtypic
challenge with H5N1 viruses via Fc-dependent mechanisms, such as antigen-dependent
cellular cytotoxicity (ADCC), without robust neutralizing Ab titers [28,29]. These findings
not only show the potential importance of headless HA in UIV development, but an
approach to overcome conformation changes in this molecule. However, constructs based
on the H1 HA stalk only provided protection against group 1 IAVs. In 2016, Poon’s group
first reported that a group 1 headless HA mini-stem conferred protection against both
group 1 (H1 and H5) and group 2 (H3) influenza viruses [30]. Moreover, a recent study by
Deng et al. showed the use of a headless HA formulated with a tetrameric M2e into protein
nanoparticles induced long-lasting immune responses and protected mice from challenges
with divergent IAVs of the same group or of both groups [19]. While continuous efforts
have been made to develop UIVs based on headless HA, there are some concerns about
the induction of antibody-dependent enhancement (ADE) by HA stem-specific Abs [31,32].
Although the above studies warrant further exploration of headless HA-based UlVs, it is a
prerequisite to carefully evaluate whether headless HA-induced Abs could enhance ADE,
thereby increasing disease severity.

2.2. Chimeric HA

Aside from headless HA, another strategy to refocus the immune response from the
HA head towards the HA stalk is to use a chimeric HA (cHA). This approach involves the
induction of anti-stalk Abs through sequential vaccination with cHAs sharing the same stalk
domain, but different head domains (Figure 2). The cHA consists of the HA stalk domain
from current seasonal IAVs, such as H1, H3, or influenza B, and an HA head domain from
an exotic avian virus [33]. The first vaccination with a cHA induces Abs specific to both the
head and stalk domains. Boosting with another cHA that contains the same stalk domain
as the first vaccination and a different head domain leads to the induction of a primary
response to the new head domain and a recall response to the fixed stalk domain. The anti-
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stalk response can be further boosted by additional immunization with yet another cHA
consisting of the fixed HA stalk domain and a different HA head domain [34]. Vaccination
with cHA in various vaccine formulations, such as recombinant protein, viral vector
or nucleotide-based vaccines, has been shown to induce highly stalk-reactive Abs and
to consequently protect mice against challenge with divergent IAVs [35-40]. Further,
sequential administration of the cHA vaccines (cH8/1 and cH5/1) was demonstrated to
be locally and systemically well-tolerated in rabbits [41]. Since this strategy induces both
anti-head and anti-stalk-reactive Abs, the protection conferred by cHA is mediated by
both neutralizing and non-neutralizing Abs (such as ADCC activity) [35-40]. Treatment
of ferrets with cHA-based vaccines conferred protection against pandemic H1N1 virus
infection [42]. Sequential administration of cHA-based vaccines with live-attenuated
vaccines also induced HA stalk-specific specific humoral responses, conferred protective
heterosubtypic immunity against different IAVs in the ferret model [43,44], and induced
long-lived immune responses against pandemic HIN1 virus infection [43]. Recently, phase
I clinical trials (NCT03300050) using cHA-based UIV revealed that the vaccine was safe for
human use (Table 1). Healthy adults immunized with the vaccine exhibited remarkably
high anti-stalk Ab titers and long-lasting immune responses [43,45].
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Figure 2. Chimeric HA vaccination approach. In this example, the cHA vaccine contains a stalk domain from H1 HA and
head domain from an exotic avian HA subtype. Priming with the cHA induces a low antibody (Ab) response to stalk
H1 HA. However, boosting with other cHAs containing the same stalk H1 HA domain with different HA head domains
of exotic avian subtypes increases Ab responses to the H1 HA stalk domain. The protection conferred by the cHA is
mediated by both neutralizing and non-neutralizing Abs (such as ADCC). The structure of HA was constructed using
Swiss-Model (https:/ /www.swissmodel.expasy.org/, accessed on 5 April 2021). The representative H1 HAs are from
influenza A virus (A /California/07/2009(H1N1)) with sequence obtained from GenBank (ACQ55359.1) or from influenza
A virus (A/goose/Guangdong/1/1996(H5N1)) with sequence obtained from GenBank (YP_529486.1).
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Table 1. Various universal Influenza vaccines in clinical trials.
Immunogen Va;:lfll:;g;me Identifier Manufacturer Phase Status Effect Adjuvant
Icahn School Inctl.u ctesllil lig
HA Chimeric HA-based NCT03300050 of Medicine 1 an'l—s a
LAIV combinations at Mount 1 Completed titers ar}d ASO3A
Sinai (US) long-lasting
immunity
Ghent Univ Alum
M2e-based VLPs NCT00819013 (Belgium) 1 Completed Induces anti-M2e d
Sanofi plete Ab an
Qs-21
Pasteur (US)
M2e
NCT03999554 1 Completed Reduces
RedeeFlu NCT02822105 Flugen, Inc. 1 Completed  symptom scores None
M2SR/M2e-deficient NCT03553940 (US) 1 Completed and virus
NCT04785794 1 Ongoing replication
NCT00942071 1 Completed
NCT00993083 2 Completed Reduces
NCT01465035 1 Completed influenza
. NCT01818362 . 1 Completed symptoms and
MVA_ljf;gfl/Vlral NCT02014168 Vaictl(;ech 1 Terminated length of virus None
NCT03277456 ’ 1 Completed shedding,
NP and M1 NCT03300362 2 Completed induces T cell
NCT03883113 2 Completed responses
NCT03880474 2 Terminated
Jenner
ChAdOx1 -
NP+M1/Adenoviral ~ NCTOl623518 Lnstitute, 1 Completed ~mereasesTeell e
vector University of response
Oxford
b OVXE36/Reco NCT04192500  OsivaxSAS 2 Completed None yet None
NP NCT03594890 (France) 1 Completed reported
NCT01010737 1/2 Completed Induces
NCT01146119 BiondV: 2 Completed omificant Montanid
. NCTO01419925 roncvax 2 Completed sigrtian ontamde
HA, NP, M-001/ Recombinant Pharmaceuti- cellular- ISA-51/
and M1 protein NCT02293317 cals Ltd. 2 Completed mediated Oil
NCT02691130 (Israel) 2 Completed immunity and —in-water
NCT03058692 2 Completed HI titors
NCT03450915 3 Completed
Immune
NCT01265914 . 1 Completed
NP, M1, P1, FP-01.1/ NCT01677676 STatrgemigt 4 1 Completed Gotocll Saflf.tl?’ ta“d N
and P2 Peptide based NCT01701752 ys[fn?ts 4 1 Completed © eraf.ll 1 one
NCT02071329 K( e 1/2  Completed profres
ingdom)
Stimulates
NCT01181336  PepTeell 1 Completed ~ collmediated oy, iide
NEML b bentide based  NCT01226758 (SEEK, 1 Completed “fe‘gl‘j?el;y ISA-
and M2 p NCT03180801 United 2 Completed | 51/0il
NCT02962908 Kingdom) 2 Completed symptom:ato o8 _in-water
and virus
shedding

Although cHA-based vaccines could induce Abs against anti-stalk HA and provide
protection against both homologous and heterologous viral challenges, the protective
efficacy of this vaccine might still be limited depending on the chimeric antigen subtypes.
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Further, multiple-dose vaccinations of different chimeric vaccines are required to induce
vaccine efficacy with a broad spectrum. Therefore, planned antigen selection and simplified
vaccine strategies are needed for further study.

2.3. Mosaic HA

Mosaic HAs (mHAs) were designed with the idea of eliciting antibodies not only
against the conserved stalk domain but also against epitopes in the head domain outside of
the major antigenic sites. Given that some monoclonal Abs showed cross-reactivity with the
HA head domain of different influenza strains [46—48], mHA was developed to maximize
cross-reactive responses and minimize genetic differences. The mHA can induce immune
responses toward both the head and stalk domain of HA (Figure 3). This differs from cHA
in which the entire HA head region was replaced. Specifically, mHA is constructed by
replacement of only major antigenic sites of the head HA with those from exotic avian HA
subtypes. Thus, the conserved head and stalk domains of mHA are derived from H1, H3, or
influenza B virus HA. Priming with mHA induces high amounts of Abs against antigenic
sites of the HA head domain and low amounts of Abs specific for conserved epitopes
in the HA stalk domain. However, boosting with another mHA (differing in antigenic
sites) induces Abs against both antigenic sites and conserved epitopes in the HA head and
stalk domains [34]. In the mouse model, sequential immunization with mosaic influenza
B HA was found to induce cross-protection against both homologous and heterologous
influenza B virus strains [49]. Vaccination with mosaic H5 HA enhanced antibody and T
cell responses, providing protection against HSN1 and HIN1 viruses in mice [50,51]. Mice
vaccinated with H1 mosaic HA or H3 mosaic HA also exhibited broadly protective immune
responses against divergent influenza virus strains [52,53]. Kingstad-Bakkle and colleagues
showed that a mosaic H5 vaccine antigen delivered via polyanhydride nanoparticles or
modified virus Ankara induced humoral and cellular immune responses in both specific-
pathogen-free (SPF) and commercial chicks [54]. A study by Florek et al. revealed that
immunization with mosaic H5 HA increased virus clearance and elicited cross-reactive
antibodies capable of mediating ADCC activity in rhesus macaques [55]. Recently, a mosaic
receptor-binding domain (RBD) nanoparticle displaying multiple copies of eight different
HA head domains from H1 HA antigens was developed at the Vaccine Research Center of
the National Institute of Allergy and Infectious Diseases (United States). Vaccination with
these mosaic RBD nanoparticles elicited cross-reactive B cell responses in mice [56].

Although mHA-based vaccines could provide broader cross-reactive protection against
both homologous and heterologous viral challenges, similar to cHA-based vaccines, the
protective efficacy of this vaccine might still be limited depending on multi-dose vaccina-
tion and selected antigen subtypes. Therefore, planned antigen selection and simplified
vaccine strategies are needed for further study.

2.4. COBRA HA

The COBRA strategy applies a computational method to generate a consensus se-
quence for all strains from a certain HA subtype [57]. The main purpose of this vaccine
strategy is to generate a broad anti-HA-head response with enhanced HI [hemaggluti-
nation inhibition] activity. The COBRA HA approach has been demonstrated to be an
effective strategy for the development of influenza vaccines against panels of HIN1, H5N1,
and H3N?2 viruses by eliciting broadly reactive Abs in mice, ferrets, and non-human pri-
mates [57-60]. Carter et al. reported that COBRA H1 HA antigens could generate anti-head
Abs against 17 human seasonal and pandemic HIN1 viruses isolated since 1918 [58]. A
recent study revealed that the use of COBRA HA antigens designed using both human
and swine H1 HA sequences protected mice against viruses of both swine and human
origin [61]. In addition, animal studies by Giles BM et al. have shown that COBRA H5 HA
antigens elicit broadly reactive Abs with HI activity against 25 highly pathogenic avian
influenza H5N1 virus strains [57,59]. COBRA H3 HA antigens have been demonstrated to
induce HI antibodies to protect mice against a panel of H3N2 influenza virus cocirculating
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variants [60]. More recently, Ross et al. developed a COBRA H3 HA vaccine by gener-
ating a consensus sequence from 22,144 human A(H3N2) viruses collected from 2002 to
2015 [62]. This vaccine candidate showed an increase in HI activity compared to wild-type
HA vaccine. COBRA H2 HA antigens were also developed using human and avian H2 HA
sequences, and the use of this vaccine generated broadly cross-reactive Abs against both
historical human H2N2, avian, and mammalian H2 viruses recently isolated in mice [63].

Priming Boosting Boosting

¢ e e Antigenic sites from exotic avian HA subtypes (Eg. H5, H6, H8)
%’fef Antibody specific to the antigenic sites from exotic avian HA subtypes
=z

0/ Antibody specific to conserved H1 HA region

Figure 3. Mosaic HA vaccination approach. The mHA vaccine contains a head domain in which
the variable immunodominant antigenic sites are replaced with antigenic sites from exotic avian
HA subtypes while conserved regions of both head and stalk domain are retained (H1 HA in this
example). Priming with mHA strongly induced an Ab response to the conserved antigenic sites,
but only a weak Ab response to the conserved retained regions. However, boosting with the mHA
head domain with antigenic sites from other exotic avian HA subtypes enhances Ab responses to
both the head and stalk domains. The structure of HA was constructed using Swiss-Model (https:
/ /www.swissmodel.expasy.org/, accessed on 5 April 2021). The representative virus is influenza A
virus (A/California/07/2009(H1N1)) and the sequence was obtained from GenBank (ACQ55359.1).

Overall, the COBRA HA approach is one of the promising strategies to develop UIVs
by generating broadly reactive anti-head HA Abs to protect against a broad range of
influenza viruses. However, sometimes the generated consensus sequences do not generate
fully functional HA proteins, and thus it needs to use alternative vaccine platforms, such
as VLP. Currently, COBRA HA vaccines are in the late preclinical stage of development,
and clinical trial studies are needed to investigate their vaccine effects in humans.

2.5. “Breathing” HA

More recent advances in HA-based vaccines utilize targeting of hidden, conserved
epitopes in the HA domain, called the “breathing” HA strategy [64]. Studies by Ban-
garu et al. [65] and Watanabe et al. [66] have shown that Abs directed against concealed,
conserved epitopes in the HA head domain interface could provide protection against
broad-spectrum IAV subtypes. For instance, a human monoclonal antibody, FluA-20,
recognizes epitopes positioned in the 220 loop and the adjacent 90 loop, which is usually
buried in the native HA trimer. This antibody protects mice from sublethal and lethal
challenges with human HIN1, H5N1, H3N2, and H7N9 viruses [65]. The collective breadth
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of Abs (S5V2-19, H2214, S1V2-58, S8V2-17, and S8V2-37) isolated from memory B cells of
inactivated seasonal influenza vaccine-immunized donors target novel sites at the interface
of the HA domain and provide protection against both group 1 (H1, H2, H5, and H9) and
2 (H3, H7, and H14) viruses in mice [66]. However, a method to expose the hidden epitopes
will require further exploration. Glycosylation of the HA domain is reportedly involved in
the antigenic drift of IAVs, allowing escape from the host immune response [67-69]. Inter-
estingly, the glycosylation site of the HA head domain can be modified to expose the hidden
conserved epitopes in order to direct immune responses to the conserved HA domain.
Previous studies have reported that mice vaccinated with the hyperglycosylated HA head
domain exhibit enhanced, conserved stalk domain-directed antibodies and have better
protection against lethal virus challenge than those vaccinated with wild-type HA [70].
Studies by Lin et al. have shown that vaccination of hyperglycosylated HA in various
formulations, such as VLPs, recombinant protein, or adenoviral vector, elicits broadly neu-
tralizing Abs against avian influenza H5N1 viruses [71,72]. Another study revealed that
vaccination of glycan-shielded HA antigens stably expressed by CHO cell clones increased
potential neutralizing Abs against heterologous H5N1 viruses [73]. Hyperglycosylation of
the HA domain does not dampen overall humoral responses, but rather changes patterns
of immunodominance and elicits broadly protective Abs, as reported by Bajic et al. [74].
Collectively, these studies indicate that hyperglycosylation could be a promising strategy
to find hidden epitopes in the HA head and stalk domains, facilitating the development of
novel UIVs in the future. Currently, glycosylation in influenza vaccine design is still under
debate. Studies showed that glycosylation was important for virus infectivity and host
immune responses. Wu et al. reported that glycosylation of HA at N-142 promoted HIN1
influenza virus infectivity and the glycosite 142 was important for the virus in evading
immune responses in humans [75]. The addition of N-link glycosylation modification to the
head HA region also decreased Ab titers in HI assay and plaque-reduction neutralization
test [76]. Thus, it is necessary to determine the exact glycosites needed for influenza vaccine
development. Various studies should also be performed to have a better understanding of
the influence of glycosylation on vaccine efficacy.

3. NA-Based UIVs

The second major glycoprotein, NA, plays an important role in facilitating influenza
virion release from infected cells through its sialidase and neuraminidase activities. The
enzymatic activity of NA is a crucial target for antiviral drugs, such as Oseltamivir and
Zanamivir [77]. Similar to HA, NA also undergoes antigenic drift; however, at a slower
rate [78]. Moreover, studies in mice and humans have shown that anti-NA Abs wane at
slower rates compared to anti-HA Abs [79,80].

Recently, the influenza virus NA is emerging as a target of broadly protective Abs
recognizing its active site [81,82]. Stadlbauer et al. described human mAbs targeting NA
that could neutralize the influenza A virus, inhibit neuraminidase activity, and provide
broad in vivo protection against challenge with group 1 (a human N1 and avian N1, N4, N5,
and N8), group 2 (a human N2, a swine N3, avian N2, N6, N7, and N9), and an influenza
B (B/Victoria/2/87 lineage) virus in mice [81]. More recently, Madsen et al. showed
human mAbs could also neutralize different influenza B viruses (IBVs), inhibit the NA
neuraminidase activity, induce ADCC activity, and protect mice against IBV challenge [82].
With these novel findings, NA might be an attractive target for UIVs.

In inactivated vaccines, NA is varied in quality and quantity [83]. Further, these
vaccines induce anti-NA responses with approximately 30% seroconversion [84-86]. A
previous study reported that NA-specific Abs could inhibit influenza virus replication
by interfering with viral egress [87]. In addition, mAbs targeting conserved NA epitopes
could also induce ADCC activity contributing to the protection against influenza B virus
in mice [88]. Doyle et al. reported that a mAb targeting a conserved NA sequence of
IAV provided heterosubtypic protection in mice challenged with lethal doses of HIN1
and H3N2 viruses [89]. Recently, guinea pigs vaccinated with recombinant influenza B
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NA showed reduced virus titers, a high level of anti-NA Abs, and a decrease in virus
transmission [90]. Further, it has been demonstrated that some H3N2 viruses use NA
instead of HA for cell attachment [91-93], suggesting that NA Abs might help to block
virus attachment. Further studies to address this hypothesis are needed.

In spite of NA's benefits, it is frequently ignored as a target in vaccine development
and has not been approved as an effective vaccine antigen due to standardization issues,
including an unsuitable method for quantification of NA content and the lack of an easy
assay to measure NA Abs [83,94,95]. Of note, NA content in vaccines is likely to be
associated with anti-NA Ab response [96], although the presence of immunodominant
HA head domains in the vaccines could lead NA to become immunosubdominant [97,98].
Increasing the amount of NA in vaccines accompanied by improving methods for NA
quantitation could help to improve anti-NA immunity. Furthermore, neuraminidase
activity in stored vaccine lots decreases over time depending on the strains used [99,100];
thus, specific storage conditions are needed to maintain its activity.

To our knowledge, there is no clinical trial of NA-based vaccines carried out so far;
thus, the development of the vaccine becomes more challenging and requires more effort
to make them available. Clinical trials and observational studies of NA-based vaccines
should be performed to evaluate their vaccine effects in humans.

4. M2e-Based UIVs

Matrix protein 2 (M2) is a transmembrane protein which can be divided into three
parts: the extracellular N-terminal domain (M2e), the transmembrane domain, and the
intracellular C-terminal domain [101]. The M2 protein is essential for influenza A virus
fitness and is crucial for the uncoating process occurring in endosomes after viral entry [102].
Since M2e is highly conserved, it is a potential target for UIVs. However, compared to HA
and NA, M2e is smaller and less immunogenic, resulting in low immune responses when
given alone. To resolve this issue, researchers have tried to increase the immunogenicity
of M2e by incorporating carrier proteins, using nanoparticle formulations, presenting on
VLP, including other influenza proteins, or adding adjuvants [103]. It is believed that
anti-M2e Abs cannot neutralize viruses; however, anti-M2e Abs can bind to M2e protein
expressed in infected cells and reduce virus replication by inhibiting viral budding. Other
mechanisms conferring protection include anti-M2e Ab-mediated cell killing to eliminate
influenza virus-infected cells through complement-dependent cytolysis, ADCC, and/or
antibody-dependent cellular phagocytosis [104]. M2e-specific T cells can also mediate
protection against influenza infection [104].

In animal models, multiple formulations of M2e-based vaccines showed cross- protection
against different influenza virus strains. In mice, vaccination with M2e displayed on
recombinant, Escherichia coli-derived outer membrane vesicles can induce anti-M2e immu-
nity to control influenza A virus replication as well as provide 100% protection against
lethal challenges with HIN1 and H3N2 [105]. A VLP vaccine containing a tandem repeat
of the M2e sequence from human, swine, and avian IAVs induced recruitment of cells
(macrophages, monocytes, neutrophils, and CD11b" dendritic cells) and production of
inflammatory cytokines and chemokines at the site of infection [106], conferring protection
against HIN1, H3N2, and H5N1 IAV subtypes [107]. Studies showed that a fusion protein
containing tandem repeats of the M2e sequence fused with the N-terminus of an adjuvant
fragment of Mycobacterial HSP70 enhanced both humoral and cellular immunity, reduced
virus shedding, provided protection against HIN1, H3N2, and HIN2 virus challenges
in mice and HIN2 challenge in chickens [108,109]. A live bacterial vaccine comprised of
M2e expressed on the surface of Lactococcus lactis decreased viral burden and prolonged
survival of vaccinated chickens after the H5N2 virus challenge [110]. Moreover, chickens
vaccinated with different M2e epitopes exhibited protection against H5N1 [111]. Although
few studies of M2e vaccine efficacy in ferrets have been reported, immunization with M2e
conjugated with carriers increased anti-M2e IgG Abs and reduced viral shedding in ferret
lungs after HIN1 viral challenge [112]. In addition, vaccination with M2e displayed on
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Escherichia coli-derived outer membrane vesicles was recently shown to reduce lung virus
titers after pandemic HIN1 virus challenge in ferrets [105].

In humans, a phase I clinical trial of a tandem repeat of M2e fused to the hepatitis B
core protein (NCT00819013) showed the induction of anti-M2e Abs, although the Ab titers
decreased over time [113]. A recombinant M2e—flagellin influenza vaccine (STF2.4xM2e
or VAX102) was demonstrated to be safe and induced high anti-M2e Ab levels in healthy
adults (18-49 years old) [114]; however, this vaccine candidate is no longer under develop-
ment. Another study showed that after 24 h of H3N2 virus challenge, healthy volunteers
intravenously administered mAb against M2e (TCN-032) (NCT01719874) had reduced
symptom scores and virus replication compared to those treated with placebo [115]. Be-
sides studies using M2e as a vaccine antigen, Flugen Inc. (United State) developed a live
attenuated, single replication virus vaccine deficient for the M2 gene (Table 1). The safety
and immunogenicity of this vaccine were investigated in healthy adults (NCT03999554,
NCT02822105, NCT03553940, clinicaltrials.gov) and are currently being investigated in
adults ages 50-85 years old (NCT04785794, clinicaltrials.gov). Although M2e-based vac-
cines showed some promising results, none have achieved commercialization. Therefore,
expanded clinical studies of the efficacy of M2e-based vaccines are still needed to provide
evidence that these vaccines can protect humans from different influenza viruses.

M2e-based vaccines have some limitations. Anti-M2e Abs can protect against in-
fluenza A viruses but not influenza B viruses because the M2 protein in IBV is structurally
different [101]. Further, due to low immunogenicity, M2e might not be a standalone, uni-
versal vaccine but may need to be given with carriers or other vaccines such as seasonal
vaccines. In addition, it has been shown that M2e fused to carrier proteins can induce
immune responses specific to the carrier protein, which may cause unexpected side effects
such as local and systemic adverse effects, when given in humans at high doses [114].
Furthermore, clinical trials in humans showed a decrease in Ab titer over time, suggesting
that M2e should be used in concert with other influenza A antigens or adjuvants to achieve
sustainable immune responses.

5. Internal Proteins-Based UIVs

Internal proteins of influenza viruses, such as matrix protein 1 (M1) and nucleoprotein
(NP), are highly conserved. In contrast to HA, NA, and M2e, which are expressed on
the surface of infected cells allowing accessibility of specific Abs, M1, and NP are pro-
duced inside infected cells, processed, and presented by major histocompatibility complex
molecules for T cell recognition [116]. Thus, targeting internal proteins is also a promising
strategy to improve current influenza vaccines by enhancing cross-reactive T cell responses.

In mice, intranasal immunization of E. coli-expressed M1 protein with chitosan ad-
juvant provided 70% and 30% protection against heterologous H1IN1 and H5N1 viruses,
respectively [117]. Liu et al. showed that mice primed with a DNA-based vaccine contain-
ing M1 and boosted with a recombinant M1 protein from avian HIN2 induced humoral
and cellular immune responses and provided complete protection against homologous
virus infection and partial protection against heterosubtypic HIN1 virus infection [118].
Furthermore, NP-based DNA vaccines were demonstrated to provide protection against
both homologous and heterologous influenza viruses in animal models decades ago [119].
Recently, NP-based mRNA vaccines have become an attractive approach. Vaccination
with an mRNA vaccine encoding NP induced cross-strain immunity against influenza
virus in mice [120]. Moreover, the recombinant protein TAT-NP which generated by incor-
poration of a protein transduction domain, TAT, from human immunodeficiency virus-1
(HIV-1) into NP, enhanced cellular immune responses and increased protective efficacy
against homologous PRS8, heterosubtypic HIN2, and H3N2 IAV in mice [121]. Campo et al.
demonstrated that mice immunized with a recombinant NP vaccine, OVX836, exhibited
T cell responses and protective efficacy against HIN1 and H3N2 IAVs [122]. Aged mice
vaccinated with NP adjuvanted with a second-generation lipid adjuvant in stable emulsion
(SLA-SE) showed enhanced viral clearance and survival rates after lethal challenge with
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PR8 virus [123]. Vaccination of a fusion of NP+M1+ heat shock protein 60 mixed with an
oil-in-water adjuvant induced robust humoral, mucosal, and cellular immune responses,
inhibited viral replication in lungs, and completely protected mice from challenge with
H7NO9 [124]. Another study showed that the modified vaccinia virus Ankara (MVA) vector
encoding NP and M1 (MVA—-NP+M1) acted as an adjuvant to enhance Ab and T cell
responses in mice, chicken, and pigs [125].

The MVA —NP+MI1 vaccine candidate has been tested in several clinical trials since
2011 [126], (Table 1). MVA —NP+M1-vaccinated volunteers exhibited reduced influenza
symptoms and length of virus shedding [127]. Another clinical trial showed that MVA —NP+M1
is safe in humans and induces antigen-specific T cell responses [128,129]. The safety and
immunogenicity of the vaccine were also confirmed in adults over 50 years of age, as shown
by its ability to boost memory T cells and induce multifunctional cytokines [130]. Further,
the combination of this vaccine with the seasonal influenza vaccine was demonstrated
to increase influenza virus-specific Ab responses and memory T cells in adults aged
50-85 years [131]. The MVA-NP+M1 vaccine is in a phase IIb clinical trial (NCT03880474)
to investigate its efficacy in adults aged 18 and older [132]. However, this trial is being
stopped for futility (updated on 26 April 2021, clinicaltrials.gov). Vaccination with a novel
recombinant simian adenovirus, ChAdOx1 NP+M1, was also found to induce increased T-
cell immunogenicity [133], (Table 1). The vaccine candidate OVX836 based on NP oligomer
was also tested in phase I clinical trials (NCT04192500 and NCT03594890, clinicaltrials.com,
accessed on 28 March 2021), though results have not yet been reported (Table 1).

Although internal protein-based influenza vaccines showed promising results con-
cerning the induction of T cell immune responses and cross-protection, however, internal
protein-based vaccines weakly induce Ab response, which is needed to block influenza
virus infection. In addition, a major challenge in developing T cell-based vaccines based on
internal protein is the diversity of HLA haplotypes responsible for antigen peptide binding
and T cell presentation. Thus, to produce effective internal protein-based vaccines that
provide sufficient coverage to all individuals with different HLA diversity, there is a need
to further evaluate the response in the context of ethnicity [134].

6. Multiple Proteins/Peptides-Based UIVs

Given the potential of different protein-based vaccines, a vaccine comprising multiple
proteins or epitope peptides is of interest for the potential to boost both broadly cross-
reactive antibody and T cell responses. This vaccine strategy has been studied with many
different vaccine platforms and protein combinations. Immunization with a combination
of a virus-vectored vaccine expressing NP and M1 (ChAdOx1 NP+M1) and a cHA vaccine
induced Ab responses specific for HA, NP, and M1 of divergent group 2 IAV, enhanced
T cell responses to NP and M1, and protected mice against H3N2 virus challenge [135].
Park et al. reported a recombinant, live-attenuated H3N2 virus expressing M2 and cHA that
protected mice against a broad range of IAVs, including HIN1, H3N2, H5N1, H7N9, and
HON2 [136]. In addition, chimeric subunit vaccines containing conserved HA, M2e, and NP
proteins were shown to protect mice from challenges with homologous and heterologous
IAVs [137,138]. Moreover, mice immunized with double-layered protein nanoparticles con-
taining M2e and HA were protected from challenge with HIN1, H3N2, H5N1, and H7N9
viruses [19]. Further, an M1-HA2 fusion protein expressed by recombinant Lactococcus lactis
provided mucosal protection against the HON2 virus in chickens [139].

Vaccine candidates developed using this strategy have also been tested in many clini-
cal trials. Multimeric-001 (M-001) developed by BiondVax Pharmaceuticals Ltd. (Israel)
is a peptide-based vaccine containing B and T cell epitopes from the HA, M1, and NP
proteins [140]. In fact, M-001 has already been assessed in seven clinical trials with promis-
ing results (Table 1). A phase II trial of M-001 (NCT03450915) showed that standalone
M-001 was a primer for an HA-based vaccine, and elevated HI titers in the elderly [141]. In
addition, M-001 can be used as a primer to enhance the HI response to a trivalent influenza
vaccine [142], as well as a primer or as a standalone vaccine for HSN1 IAV [143]. Of note,
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M-001 was also evaluated for safety and clinical efficacy in phase III clinical trial as a
standalone UIV in adults > 50 years of age [144].

FP-01.1, developed by Immune Targeting Systems Ltd. (United Kingdom), is a syn-
thetic peptide-based vaccine containing six peptides derived from the NP, M, and poly-
merase basic 1 and 2 proteins of influenza A (Table 1). This vaccine was tested in four phase
I clinical trials [145-147] and showed good safety and tolerability profiles [148]. However,
FP-01.1 is no longer in development.

FLU-v is a synthetic peptide vaccine composed of NP, M1, and M2 proteins developed
by PepTcell (SEEK, United Kingdom) (Table 1). FLU-v has been thoroughly investigated
in four phase I and II clinical trials. The findings from the phase I study showed that
FLU-v could stimulate cell-mediated immunity [149], and reduce symptomatology and
virus shedding [150]. Results from clinical phase II studies revealed that FLU-v reduced
viral shedding as well as clinical influenza symptoms and induced long-term cell-mediated
immunity [151,152]. However, the efficacy of this vaccine still needs to be further explored.

Overall, the multiple proteins/peptides-based vaccine approach is one of the promis-
ing strategies to develop UIVs by combinations of multiple proteins or peptides, but there
are still limitations, such as the sequence variations of target proteins among the sub-
types. Therefore, the sequences of target proteins in designed vaccine candidates should
be screened to provide broad protection against different virus strains. The immunodom-
inant regions should also be well selected to obtain the most appropriate epitopes for
vaccine construct.

7. Influenza Vaccine Adjuvants

One approach to improve influenza vaccine effectiveness is to include adjuvants. Three
main adjuvants, aluminum salts (alum), MF59, and AS03, are incorporated in licensed
influenza vaccines [153].

Since the 1920s, alum has been used in a wide range of vaccines in the United State
and Europe [154,155]. Previous studies demonstrated that alum stimulates Th2-biased
responses through mechanisms including the depot effect [156], NLRE3 inflammation acti-
vation [156], stimulation and differentiation of CD4* T cells [157], perturbation of dendritic
cell membrane [158], and complement activation [159]. Alum is well-known to trigger
robust humoral immune responses; however, it only minimally induces ADCC [160-162].
In addition, alum only weakly elicits cellular immune responses [154,163].

Licensed in Italy in 1997, MF59 was developed as an adjuvant for influenza vaccination
in the elderly [164]. Licensed influenza vaccines, including Focetria, Celtura, and FluAd
as well as seasonal influenza vaccines, all include MF59 [153]. Studies have demonstrated
that MF59 significantly enhances antigen-specific antibody production and boosts both Th1
and Th2-biased responses [165,166]. However, MF59 can cause pain at the injection site,
reactogenicity, and can induce inflammatory arthritis [167].

The AS03 adjuvant has been used in licensed vaccines Pandemrix, Arepanrix, Prepan-
drix, and Q-Pan H5NT1 [153,168]. Previous studies showed that AS03 induces the produc-
tion of inflammatory cytokines and chemokines in injected muscles and draining lymph
nodes and enhances migration of monocytes and dendritic cells into draining lymph
nodes. Additionally, inclusion of AS03 results in persistent production of neutralizing
antibodies and a high frequency of memory B cells [169]. However, studies reported that
AS03-adjuvanted vaccines could cause sleeping disorders and narcolepsy after vaccina-
tion [170,171]. Furthermore, several strategies, such as the use of toll-like receptor agonists
or different combinations of adjuvants, have been tested to overcome the limitations of the
common adjuvants [153,172].

In summary, each adjuvant has unique advantages and disadvantages. Thus, adju-
vant selection for influenza vaccines is crucial to boost the immunogenicity of vaccine
antigens and increase vaccine efficacy. However, safer and more effective adjuvants are
needed to effectively improve both humoral and cellular immune responses specific to
vaccine antigens.
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8. Conclusions

The continuous threat of an influenza pandemic underscores the necessity to develop
novel UIVs with broader and greater protective efficacy than prevailing influenza vac-
cines against seasonal and potential pandemic strains. Nonetheless, despite continuous
efforts, there are currently no commercial UIVs available. Although various influenza
antigens are being testing for UIV development, different vaccine antigens have unique
advantages and disadvantages. The use of HA-based vaccines mainly elicits Ab responses,
headless and chimeric HA vaccines focus on responses targeting the conserved HA stem
region, while mosaic vaccines target both head and conserved HA regions. In addition,
the computationally-optimized broadly reactive antigens (COBRA) strategy generates a
consensus sequence which allows elicitation of broadly reactive Abs against different virus
strains. Furthermore, the breathing HA approach targeting the concealed HA region also
shows promise. Current seasonal influenza vaccines use NA together with HA as antigens.
Although NA-based vaccines have shown induction in immune responses, NA is cur-
rently ignored as an antigen target in influenza vaccine development due to its limitations,
such as standardization issues. Further studies of NA-based influenza vaccines should
be performed to demonstrate the important roles of NA as an influenza vaccine antigen.
Additionally, advanced technologies should be developed to quantify the absolute amount
of NA and measure NA Ab responses accurately and maintain neuraminidase activity
of the NA-based vaccines during storage. Although M2e, a well-conserved protein of
influenza viruses, is a promising target for UIVs, the M2e protein has low immunogenicity.
Therefore, to induce robust immune responses, it should be used with other viral pro-
teins or adjuvants. In addition, the internal protein-based vaccines, that mainly induce T
cell responses, facilitating the killing of influenza-infected cells, is one of the promising
strategies to develop UIVs by combinations of multiple proteins or peptides; however,
these vaccines weakly induce Ab response, hereof the immunodominant regions should be
properly selected to obtain the most appropriate epitopes for vaccine construct.

Because of their capacity to enhance the immunogenicity of vaccines, adjuvants have
been widely used in studies of various influenza vaccines. The use of suitable adjuvants,
such as aluminum-based adjuvants, oil-in-water adjuvants such as MF59, adjuvant system
03, (AS03), or toll-like receptor (TLR)-based adjuvants such as those targeting TLR4, or the
combination of different adjuvants, could also help to increase antigen immunogenicity and
vaccine efficacy [153,172]. Finally, UIVs against antibody-based traditional vaccines will re-
quire large-scale preclinical and clinical comparative studies, as well as the standardization
of vaccine production and delivery protocols for commercial UIV production.
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