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Abstract: Coronavirus-like organisms have been previously identified in Arthropod ectoparasites
(such as ticks and unfed cat flea). Yet, the question regarding the possible role of these arthropods
as SARS-CoV-2 passive/biological transmission vectors is still poorly explored. In this study, we
performed in silico structural and binding energy calculations to assess the risks associated with
possible ectoparasite transmission. We found sufficient similarity between ectoparasite ACE and
human ACE2 protein sequences to build good quality 3D-models of the SARS-CoV-2 Spike:ACE
complex to assess the impacts of ectoparasite mutations on complex stability. For several species
(e.g., water flea, deer tick, body louse), our analyses showed no significant destabilisation of the
SARS-CoV-2 Spike:ACE complex, suggesting these species would bind the viral Spike protein. Our
structural analyses also provide structural rationale for interactions between the viral Spike and the
ectoparasite ACE proteins. Although we do not have experimental evidence of infection in these
ectoparasites, the predicted stability of the complex suggests this is possible, raising concerns of a
possible role in passive transmission of the virus to their human hosts.
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1. Introduction

Arthropods such as mosquitoes, flies, lice, fleas, ticks and mites infest humans, wildlife
and domestic animals and constitute a global health problem [1,2]. Ectoparasitic blood-
feeding arthropods directly affect host health and also act as vectors of pathogenic bacteria,
parasites and viruses [2]. Insect and arachnid ectoparasites represent a major burden
for human and animal health worldwide and novel interventions are required for the
control of ectoparasite infestations and transmission of pathogens [1,3,4]. Despite the
development and possibilities of multiple control strategies, vaccines constitute the most
effective and sustainable intervention for the control of ectoparasite infestations and vector-
borne diseases [3,5,6].

Host–vector–pathogen molecular interactions evolved as conflict and cooperation [7].
In this way, arthropods may benefit from host factors and pathogen-induced gene expres-
sion that favour tick feeding and fitness, midgut microbiota composition and changes in
epigenetic regulatory mechanisms that facilitate tick survival under extreme environmental
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conditions, which results in evolutionarily conserved mechanisms that support pathogen
infection with increased ectoparasite fitness and survival [7–12].

Arthropod ectoparasites may act as active biological transmission and/or passive
transmission vectors of pathogenic microorganisms including viruses [13–18]. Viremia or
infectious virus load detectable in vertebrate host circulating blood is required for biological
transmission [13,18]. However, non-viremic arbovirus transmission is observed in viremia-
free vertebrate hosts that play a role in disease epidemiology [13,18]. Biological vectors
such as mosquitoes, mites, fleas, lice and ticks may carry pathogens that can multiply
within their bodies for transmission to new hosts, usually by biting [14,19]. Mechanical
vectors such as domestic flies, mosquitoes and ticks can collect infectious agents from
contaminated objects, fluids and tissues and carry them on the outside (body exoskeleton,
feet or mouth parts) or inside of their bodies and transmit them through physical contact
with host body, food or drink [14]. In some vector–host–pathogen interactions, pathogens
are transmitted both biologically after completing a life cycle in the vector and passively by
intrastadial transmission (e.g., Amblyomma hebraeum–wild ungulates, domestic ruminants–
lumpy skin disease virus, LSDV [20]) or from contaminated mouthparts to susceptible
infested hosts (e.g., cat flea Ctenocephalides felis–cats, dogs, opossums, raccoons, rodents,
humans–Rickettsia felis [21] and fly, Stomoxys calcitrans–cattle–Anaplasma marginale [22–24]).
In other cases, only passive transmission through blood–meal regurgitation may occur
(e.g., Ornithodoros moubata–human–HIV-1 [25]).

The hosts susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
have a role in the coronavirus disease 19 pandemic (COVID-19) and are also infested by
multiple blood-feeding arthropod ectoparasites [26–28]. Natural infections with SARS-
CoV-2 have been reported in several animal species with evidence of zoonotic (animal-to-
human) and reverse zoonotic (human-to-animal) virus transmission [28]. Coronavirus-like
organisms have been previously identified in tick Ixodes uriae [29] and in unfed cat flea
Ctenocephalides felis [30], thus raising the question of the possible role of ectoparasite
arthropod vectors on SARS-CoV-2 passive and/or biological transmission [30].

Recently, models for SARS-CoV-2 Spike (S)-angiotensin I converting enzyme 2 (ACE2)
host receptor interactions support that animal species with close-to-human S-ACE2 in-
teractions (e.g., great apes or ruminants) may constitute effective hosts for maintenance
and zoonotic transmission of the virus while other animal species with low S-ACE2 in-
teraction capacity (e.g., cats or pigs) may be susceptible to reverse zoonotic transmission
with low risk for human infection [31]. Additionally, the role of integrins also found in
ectoparasite vectors [32] as co-receptors for SARS-CoV-2 and flavivirus cell attachment
may also affect animal host susceptibility to infection [33,34]. Host- and virus-derived
factors continue to be key drivers of the pandemic [35]. Based on the role of arthropod
ectoparasites in pathogen passive and/or biological transmission and available preliminary
evidence [29,30], the possible role of arthropod vectors in SARS-CoV-2 transmission needs
to be considered.

We performed a number of protein structural and binding energy calculations to assess
one of the steps in arthropod–pathogen interactions that may be associated with the risks of
possible ectoparasite vector transmission. Since the complex formed between SARS-CoV-2
Spike protein and the human ACE2 receptor has been structurally determined (PDB code
6M0J [36]), we assessed whether the similarity of ectoparasite ACE proteins to human ACE2
was sufficient to model the SARS-CoV-2 Spike:ACE complex and assess the impacts of any
residue mutations in ectoparasite ACE on the stability of this complex. We also performed
detailed structural analyses to explore and characterise the possible structural mechanisms
affecting complex stability. Our data suggest that there is sufficient similarity between
ectoparasite ACE and human ACE2 protein sequences to build good quality 3D-models of
the SARS-CoV-2 Spike:ACE complex to assess the impacts of ectoparasite mutations on
complex stability. For several species where there were genomic data available (e.g., water
flea, deer tick, body louse), our analyses showed no significant destabilisation of the SARS-
CoV-2 Spike:ACE complex, suggesting these species would bind the viral Spike protein.
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In support of the stability calculations, we provide structural rationale for interactions
between the viral Spike and the ectoparasite ACE proteins.

Our analyses of complex stability employed a platform previously established to
analyse possible SARS-CoV-2 infection in a wide range of animal species. This earlier
work allowed us to establish thresholds on whether changes in stability of the SARS-CoV-2
Spike:ACE2 complex, caused by residue mutations in the animal, were likely to affect
infection. We have applied the same computational platform and thresholds to assess
changes in stability of the SARS-CoV-2 Spike:ACE complex in ectoparasites, some of
which are blood-feeding arthropod ectoparasites. Although we do not have experimental
evidence of infection in these ectoparasites, the predicted stability of the complex suggests
this is possible, raising concern of a possible role in passive transmission of the virus to
their human hosts.

2. Materials and Methods
2.1. Sequence Data

We obtained ACE protein sequences in fruit fly (Drosophila melanogaster; Uniprot ID:
Q10714), water flea (Daphnia pulex; E9GU43), water flea order (D. pulex; A0A162PAD4),
body louse (Pediculus humanus corporis; E0VAB8), deer tick (Ixodes scapularis; A0A4D5RPS5),
and common tick (Ixodes ricinus; A0A0K8R3C7). We used NCBI BLAST v.2.6 [37,38] to align
protein sequences to the human ACE2 sequence (Q9BYF1).

2.2. Structural Data

We used the structure of the SARS-CoV-2 spike protein (at 2.45 Å resolution (PDB ID
6M0J [36])) reference strain, bound to human ACE2 as a template to model the structures of
the ectoparasite ACE bound to the SARS-CoV-2 reference (Wuhan-Hu-1) and the ectopara-
site ACE protein bound to different strains of the SARS-CoV-2 with mutations at various
sites in the RBD.

Models were built by generating query–template alignments using HH-suite
version 3 [39], which were then used as input to the MODELLER v.9.24 program [40,41].
To optimise the geometry of the complex and interface we used the ‘very_slow’ schedule
for model refinement. Ten models were generated for each S-protein:ACE complex and
we then selected the model with the lowest normalised DOPE score (nDOPE) [42], which
reflects the quality of the model. Positive scores are likely to be poor models, while scores
lower than −1 are likely to be native-like.

2.3. Identification of Residues Involved in Binding of Viral SARS-CoV-2 to Host ACE

In order to determine the impact of mutations occurring between the ectoparasite
ACE sequences and human sequences, on the stability of the SARS-CoV-2 S:ACE complex,
we identified key residues in the interface of these proteins. In addition to residues in ACE2
that contact the S-protein directly, we also included residues that are in the second shell,
or are buried, and could influence binding, as previous studies showed that mutations in
these positions correlated well with experimental data on changes in complex stability [43].
Therefore, we used the following sets of residues for our study:

Direct contact (DC) residues: These are in direct contact with the S-protein [36]
identified by PDBe [44] and PDBSum [45]. We identified 20 residues.

Direct contact extended (DCEX) residues: We identified residues within 8Å of DC
residues which are likely to be important for binding. We used detailed manual inspection
of the complex, and also selected residues according to (i) evidence from deep mutagenesis
studies [41], (ii) in silico alanine scanning analyses (using mCSM-PPI2 [46]), (iii) high
evolutionary conservation of the residues identified by the FunFam-based protocol de-
scribed above, i.e., residues identified with DOPS [47] ≥ 70 and ScoreCons [47] score ≥ 0.7,
(iv) allosteric site prediction [48–50], and (v) sites under positive selection [51–53]. We
also included residues identified by other related structural analyses, reported in the
literature [36,43,54–57].
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2.4. Measuring Change in Residue Chemistry for Mutations

For each ectoparasite, we computed the Grantham score [58] comparing the ectopar-
asite ACE to the human ACE2 in order to understand the chemical shift associated with
mutations involving the interface binding residues. Grantham score calculates volume,
polarity, and atomic composition differences between amino acids. A Grantham score
ranges from 0 to 215; higher Grantham scores are considered more disruptive to interface
stability. The sums of Grantham scores were obtained for both DC and DCEX residues.

2.5. Measuring Changes in the Stability of the S-Protein:ACE Complex. Following Mutation

We calculated the change in stability of the S-protein:ACE complex using mCSM-
PPI2 [46]. This method was used in a previous analysis to analyse the impacts of mutations
on the stability of the S-protein:ACE2 complex and was verified using data from in vitro
and in vivo studies [31]. mCSM-PPI2 exploits machine learning models that analyse graph-
based signature vectors for each mutation to predict the binding energy. The signature
vector encodes multiple features including atom-distance patterns in the wild-type protein,
pharmacophore information, available experimental information, evolutionary information
and energetic terms. The mCSM-PPI2 server (http://biosig.unimelb.edu.au/mcsm_ppi2/,
accessed on 1 January 2021) was used for the simulations.

We produced ectoparasite ACE: SARS-CoV-2 Wuhan-Hu-1 complexes, ectoparasite
ACE: SARS-CoV-2 N501Y complexes, and ectoparasite ACE: SARS-CoV-2 K417N, E484K,
N501Y complexes. Using the model of ectoparasite ACE: SARS-CoV-2 complex, we mutated
the ectoparasite ACE interface residues back to the appropriate residues found in the human
ACE2 structure using mCSM-PPI2 to obtain the ∆∆G value. Positive ∆∆G values reflect
destabilisation of the complex by the mutation and negative values reflect stabilisation of
the complex.

2.6. Structural Analysis

We also evaluated structural changes for all combinations of RBD mutations and recep-
tor complexes. We performed manual inspection of these key regions and others identified
from studies by other groups [36,43,54–57,59]. We used UCSF Chimera v1.15 [60,61] to
render structural images and predict H-bonds and salt bridges. Since all the 3D models
were built using the very slow refinement option in MODELLER v9.24 [40,41], side-chain
rotamers had been optimised. However, we also relaxed the allowable H-bond angle
constraint to identify possible H-bonds at key hotspot residues.

2.7. Phylogenetic Analyses of Cytochrome Oxidase Subunit 1

We performed a phylogenetic analysis using nine cytochrome oxidase subunit 1 (COI)
nucleotide sequences downloaded from GenBank to generate a robust phylogenetic tree
(GenBank Accession Numbers: JX150976; KY322738; MG432684; KX360345; MK140087;
LC029557; MK905394; KX054334; outgroup: JF871600). The nucleotide sequences were
aligned with MAFFT [62] using Geneious Prime v2.2 software [63] (https://www.geneious.
com, accessed on 1 January 2021). Further, jModelTest2 was computed using the AIC
(Akaike Information Criteria) to select the best nucleotide substitution model [64]. Genetic
distance was computed using General Time Reversible model and gamma distributed rate
variation among sites (GTR + G) [65]. The phylogenetic tree was inferred according to the
Maximum Likelihood method with 100 bootstrap replicates using Maximum Likelihood in
MEGAX software [66,67]. Phylogenetic tree annotation and visualization was performed
using FigTree v1.4.4 (http://tree.bio.ed.ac.uk/, accessed on 1 January 2021).

2.8. Methods for Pan-Taxonomic Metazoan Comparison Analysis

To analyse sequence relationships across the tree of life, we include 24 pantaxonomic
compara species found in the Ensembl Metazoa database [68]. However, we found ACE
sequences for only 17 species. We compared these ACE sequences with human ACE2
sequences using NCBI BLAST v.2.6 [37,38]. We also used EMBOSS Needle [69] to calculate

http://biosig.unimelb.edu.au/mcsm_ppi2/
https://www.geneious.com
https://www.geneious.com
http://tree.bio.ed.ac.uk/
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their sequence similarity with human ACE2 DCEX residue. A phylogenetic tree of inverte-
brate metazoan ACE DCEX residues was inferred using the Neighbour Joining method
and BLOSUM62 substitution matrix.

3. Results
3.1. Comparison of Ectoparasite ACE with Human ACE2 Sequences

We compared the ectoparasite ACE with human ACE2 sequences using BLAST and
found relatively high levels of sequence similarity (>35% in all cases), sufficient enough to
model the structures for these proteins on the human ACE2 structure (Table 1).

Table 1. BLAST sequence identities of ectoparasite ACEs and human ACE2.

Organism Sequence Identity E-Value

A0A162PAD4, water flea order 40.1% 1.99 × 10−155

A0A4D5RPS5, deer tick 38.9% 1.30 × 10−149

A0A0K8R3C7, common tick 37.7% 5.29 × 10−136

E0VAB8, body louse 39.6% 3.63 × 10−145

E9GU43, water flea 39.6% 6.60 × 10−159

Q10714, fruit fly 36.3% 1.31 × 10−139

3.2. How Many Mutated DCEX Residues Are There in the Interface and How Strong Are the
Chemical Shifts?

We calculated the number of mutated DCEX residues (direct contact residues and
residues within 8 Å of direct contact residues likely to influence binding, see Materials
and Methods) and the Sum Grantham score (chemical shift) for mutation of these residues
between ectoparasite and human sequences (Table 2).

Table 2. Mutated direct contact (DC), DCEX residues and the Sum Grantham score of ectopara-
site ACEs.

Organism Number of Mutated
DC Residues

Number of Mutated
DCEX Residues

Sum Grantham
Score

Water flea order 16 34 2795
Deer tick 16 34 2581

Common tick 17 34 2790
Body louse 14 33 2561
Water flea 15 34 2895
Fruit fly 15 35 2580

The number of mutations and differences in the chemical properties of the mutated
residues, compared to the human residue, are quite large. However, our previous analyses
contrasting a wide range of animal ACE2 proteins with human ACE2 demonstrated that
changes of this order did not necessarily disrupt binding of CoV2: Spike with host ACE2
protein [31].

3.3. Modelling the Structure of the SARS-CoV-2 Spike:ACE Complex. for the Ectoparasites (Based
on the Wuhan-Hu-1 Strain) and Calculating the Change in Stability of the Complex. Compared
to Human

In order to explore whether the changes between the ectoparasite ACEs and the
human ACE2 would be likely to destabilise the Spike: ACE2 complex, we modelled the
3D structure of the Wuhan-Hu-1 S-protein: ectoparasite ACE complex using our FunMod
modelling platform [70,71]. We used PDB 6M0J as the template. The quality of the models
is given by the normalised DOPE scores shown in Table 3 below. It can be seen that the
models all have nDOPE scores less than −1, indicating good quality models [40].
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Table 3. Normalised DOPE scores of SARS-CoV-2 Wuhan-Hu-1 S-protein: ectoparasite ACE complexes.

Organism nDOPE Score

Water flea order −1.12
Deer tick −1.26

Common tick −1.09
Body louse −1.03
Water flea −1.11
Fruit fly −1.10

For each complex, the change in stability of the complex, ∆∆G, was predicted by
mutating the ectoparasite ACE interface residue to the appropriate residue in the human
ACE2. In our previous analysis, any animals with predicted ∆∆G <= 3.72 were considered
to be at risk as these values correlated well with experimental evidence for infection [31].
Table 4 shows the ∆∆G values when considering direct contact (DC) residues and also for
direct contact plus extended residues (DCEX, i.e., residues within 8A of the DC residues).
Red values highlight those indicating low destabilisation and therefore risk of infection.

Table 4. Predicted ∆∆G values of SARS-CoV-2 Wuhan-Hu-1 S-protein: ectoparasite ACE complexes
for direct contact (DC) residues and also for direct contact plus extended (DCEX) residues. Ectopara-
sites are categorised according to risk of infection by SARS-CoV-2, with ∆∆G ≤ 3.72 being at risk
(red), and ∆∆G > 3.72 not at risk (blue).

Organism Predicted ∆∆G (DC) Predicted ∆∆G (DCEX)

Water flea order 5.99 7.43
Deer tick 1.60 2.77

Common tick 1.97 2.79
Body louse −2.31 −1.17
Water flea −1.33 −0.53
Fruit fly 5.88 4.16

3.4. Structural Analyses of the Changes in the Interface of the SARS-CoV2 Spike: ACE Complex.
(Wuhan-Hu-1 Strain) Relative to the Human Complex

We used the LIGPLOT program of PDBsum [72] to examine possible residue interac-
tions between the Spike S protein and the ACE proteins, contrasting interactions in human
proteins with those for the ectoparasite proteins. Several studies have highlighted the
importance of key interaction sites between RBD of Spike S protein and ACE2, in particular,
three sites on the interface: hydrophobic pocket, hotspot-353 and hotspot-31 [73]. These
sites have previously been identified [74] as key to understanding why the SARS-CoV-2
S-protein binds to human ACE2 with high affinity and how the viral S-protein has evolved
to bind with much higher affinity to human ACE2 than SARS-CoV [36,63,75].

It can be seen from Figure 1 below that a number of hydrogen bonds have been lost
in the ectoparasites, including some for these key interaction sites. However, for some of
the ectoparasites (i.e., water flea, body louse and deer tick) there has been an increase in
non-bonded contacts, and these are distributed across the whole interface.

UCSF Chimera was also used to visually inspect these changes on the 3D structures of
the complexes. Whilst human S-protein:ACE2 interface has close contacts across the whole
interface including nine predicted H-bonds, the ectoparasites have very few hydrogen
bonds (Figure 2). There are other structural changes that could also contribute to differences
in the overall stability. However, as mentioned above these may be compensated for by the
increase in non-bonded contacts. Deer tick and water flea have ~60 non-bonded contacts
compared to ~80 in human, whilst body louse has ~130 across the whole interface, which
may explain the small increase in stability of the S-protein:ACE complex relative to human.
These ranges of ∆∆G value are probably within the error range for this method. Neverthe-
less, there is some structural rationale to support the suggestion that the complexes formed
for these ectoparasites could be stable enough to support binding.
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3.5. N501Y Mutant

In order to explore the likely impacts of the recent N501Y variant strain of SARS-CoV-2,
we also modelled the N501Y S-protein: ectoparasite ACE using our modelling platform.
We used 6M0J as the template. Again, good quality models were obtained for all the
ectoparasite S-protein:ACE complexes (Table 5).

Table 5. Normalised DOPE scores of SARS-CoV-2 N501Y S-protein: ectoparasite ACE complexes.

Organism nDOPE Score

Water flea order −1.15
Deer tick −1.23

Common tick −1.15
Body louse −0.93
Water flea −1.18
Fruit fly −1.09

For each complex, ∆∆G values were predicted by mutating the ectoparasite ACE
interface residue to the appropriate residue in the human ACE2 (Table 6). As in our
previous analysis, any animals with predicted ∆∆G <= 3.72 are considered to be at risk.
Interestingly, we observe that this mutation in the spike RBD domain results in a slightly
increased stability of the complex for body louse, calculated over the DCEX residues
(∆∆G-1.92 N501Y versus-1.17 Wuhan-Hu-1).

Table 6. Predicted ∆∆G values of SARS-CoV-2 N501Y S-protein: ectoparasite ACE complexes for
direct contact (DC) residues and also for direct contact plus extended (DCEX) residues. Ectoparasites
are categorised according to risk of infection by SARS-CoV-2, with ∆∆G ≤ 3.72 being at risk (red),
and ∆∆G > 3.72 not at risk (blue).

Organism Predicted ∆∆G (DC) Predicted ∆∆G (DCEX)

Water flea order 5.49 7.18
Deer tick 1.72 1.67

Common tick 1.25 0.24
Body louse −2.17 −1.92
Water flea −2.37 −1.81
Fruit fly 7.13 5.99

Again, LIGPLOT analysis and visual inspection of the structures was performed to
explore the rationale for the stability results (Figure 3).

Figure 4 shows that the N501Y mutation is predicted to more readily form H-bonds in
part of the Spike:ACE interface in body louse (yellow circle) due to favourable geometry
and the proximity of Tyrosine hydroxyl group to ACE interface residues. This H-bond
(Tyr501-Thr47) enabled by the N501Y mutation stabilises part of the interface in body louse
by binding to the ACE2 residue Thr47. It is within 5A of the ‘Lys-353 hotspot’ identified as
an important component of the Spike:human-ACE2 interface [73]. In body louse, Lys353
is replaced by Asn355; it is therefore possible that Tyr501-Thr47 provides an alternative
H-bond component to the interface stability near this ‘hotspot353’ region.

Whilst there is a slight reduction in the number of non-bonded contacts relative to the
Wuhan-Hu-1 strain, the N501Y Body Louse still has >100 non-bonded contacts across the
interface combined with H-bond stabilisation at two distinct patches.
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3.6. K417N, E484K, N501Y Mutants

We also explored the impact of the combined variants observed in recent strains
from South Africa and Brazil by modelling K417N, E484K, N501Y S-protein: ectoparasite
ACE using our modelling platform (Figures S1 and S2, Tables S1 and S2). As with the
N501Y mutant, we found that the combined variants had the effect of further stabilising the
complex for body louse, water flea and the common tick. Structural analyses indicate that
H-bonding in this strain could be behind the relatively high interface stability predicted for
water flea and body louse according to the ∆∆G values. Limited H-bonds were predicted
for deer tick, in agreement with the overall weaker predicted ∆∆G for this interface.

3.7. Phylogenetic Analysis

As mentioned above, coronavirus-like organisms have been previously identified
in sea bird tick Ixodes uriae [29] and in unfed cat flea Ctenocephalides felis [30]. We were
unable to obtain both sea bird tick and cat flea ACE sequences. Therefore, to understand the
relationship between these ectoparasites we produced a phylogenetic tree using cytochrome
oxidase subunit 1 (COI) sequences. Figure 5 below demonstrates that cat flea COI belongs
to the same clade as body louse COI. Sea bird tick COI belongs to the same clade as deer
tick and common tick COIs. Other ectoparasite species in the tree could not be analysed
using our protocol since their ACE sequences were also unavailable.
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3.8. Pan-Taxonomic Metazoan Comparison

We examined whether the significant similarity of ectoparasite ACE to human ACE2
(~40% sequence identity or higher) and the stable complex formed with SARS-CoV-2 Spike
protein suggested selection pressure on the virus to evolve binding affinity to both animal
hosts and their insect hosts. To do this, we performed a pantaxonomic analysis to determine
the ∆∆G values for a range of invertebrate species (Figures S3–S7, Tables S3–S6). It can be
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seen from Figure S6 that other invertebrates also have low ∆∆G values, including several
species (octopus, African spider, honeybee) that are not ectoparasites, suggesting that the
stability of the SARS-Cov-2 S-protein:ACE complex is not a result of selection pressure on
the virus to evolve binding affinity to both animal hosts and their insect hosts.

4. Discussion

We have been able to obtain the protein sequences of ACE proteins and model the
structural complexes of CoV2 Spike S-protein:ACE proteins in five ectoparasite species.
The levels of sequence similarity between the ectoparasite sequences and the human ACE2
sequence suggested the possibility of similarity in the protein interface. Our energetic
analyses, which examined the likely impacts of mutations between the human/ectoparasite
sequences, showed a slight destabilisation in the complex for deer tick and common tick,
whilst for the water flea and the body flea slight increases in stability of the complex were
observed (∆∆G < 0). All the ∆∆G values measured were small and within the range of
values observed in a previous study of animal hosts [31] as being likely to be associated
with susceptibility to infection. As mentioned above, we are not suggesting infection of the
parasites as there are currently no experimental data to support that but our data suggest
that the virus would be able to attach to membrane-associated proteins (e.g., ACE) on the
ectoparasite cell surface and that this may provide a mechanism for passive transmission
of the virus.

Based on the results of this study and previous evidence on the role of arthropod
vectors in biological and passive virus transmission [76] and the presence of coronaviruses
in ticks and cat flea [29,30], our hypothesis is that insects and arachnids could have a
potential role in SARS-CoV-2 transmission. Current evidence does not support SARS-
CoV-2 vector biological transmission. However, the prolonged environmental stability
of the virus [77,78] and putative interactions with vector ACE2 and integrin proteins
suggest a possibility for SARS-CoV-2 passive transmission. Virus passive transmission
may occur via contact with SARS-CoV-2-contaminated substrates and surfaces and/or
through contaminated mouthparts, blood-meal regurgitation or mechanisms similar to
RNA interference (RNAi) [79].

Infestations with blood-sucking arthropod ectoparasite vectors have been documented
in animal species reported or predicted to host SARS-CoV-2 as in humans (Figure 6) [80–83].
Furthermore, ACE and integrin alpha and beta proteins have been identified in cat flea
exoproteome [30,84] and tick salivary glands and cement [85], thus supporting membrane
exposure and secretion of these molecules. As documented in ticks and in other arthro-
pods [79,86], RNAi is based on the entry of exogenous or viral double-stranded RNA
(dsRNA) into the cytoplasm through injection, feeding or virus production of dsRNA
resulting in transstadial and inherited (transovarial) RNAi. Accordingly, it is possible that
SARS-CoV-2 may be acquired by feeding ectoparasites and through interactions with ACE
and integrins it may persist not only in contaminated mouthparts, but also inside the vector
for transmission to susceptible hosts by blood-meal regurgitation during secondary feeding
or after transstadial transmission or inherited virus RNA. In support of the possibility of
inherited virus, coronavirus-derived proteins and RNA were identified in adult unfed cat
flea [30].

Using the flea as a model arthropod vector [87], SARS-CoV-2 passive transmission
may occur via different routes (Figure 7). If proven true in experimental animal trials, these
results add a new player to the SARS-CoV-2 persistence and transmission and possible
selection of new virus variants.
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Figure 7. Proposed role of arthropod vectors in SARS-CoV-2 passive transmission. Using flea as a model, coronavirus
passive transmission could occur via contact with SARS-CoV-2-contaminated substrates and surfaces. Fleas can feed on
SARS-CoV-2-infected animal hosts and virus transmission to humans occurs via contaminated mouthparts, blood-meal
regurgitation or inherited virus RNA. Similar to RNAi mechanisms, virus RNA may be also transmitted transovarially and
transstadially. Reverse zoonotic SARS-CoV-2 transmission may also occur with arthropod passive vectors.
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As with our previous studies of complex stability in mammalian hosts [31], it is
important to bear in mind the caveats associated with these types of studies. Although the
computational protocol we used (exploiting 3D modelling and mutation studies by mCSM-
PPI2) has been validated by experimental results obtained for a number of animal hosts,
some of these studies captured in vitro rather than real life data. However, recent reports
do support more of our predictions (experimental studies, [6,26,88–92], real-life data, [93–96])
further validating this approach. In addition, despite concerns raised on possible SARS-
CoV-2 passive transmission by insects [97–99], recent studies have shown a failure of
SARS-CoV-2 to infect or transmit in mosquitos, supporting our calculations on complex
stability for this ectoparasite [100,101]. The stabilisation values reported in this manuscript
are small, within the range of error for the methods used, suggesting that it is likely
that the SARS-CoV-2 S-protein:ACE complex could form in ectoparasites. Although our
structural analyses revealed that some key interactions in the interface are lost in the
ectoparasite hosts this seems to be compensated by increased numbers of non-covalent
interactions between residues in the binding partners. Furthermore, horseshoe bats which
have been considered as a putative reservoir host, are reported infected from in vitro
experiments, despite considerable disruption in the interface and destabilization of the
complex (∆∆G 3.7). However, whilst supporting the likelihood of complex formation
we reiterate that our results do not provide any evidence supporting infection in the
ectoparasites. They do prompt some concern though, and suggest that further exploratory
experimental studies would be valuable.

Experimental approaches to validate SARS-CoV-2 S-protein:ACE complex formation
in ectoparasites and their possible in virus transmission could include (a) evaluation of
coronavirus survival in alimentary tract and midgut tissues after contact with SARS-CoV-2
after feeding on infected hosts or exposure to virus-spiked medium [102], (b) artificial in-
jection of SARS-CoV-2 (i.e., intrathoracic inoculation) and sampling at different time points
for in vitro titration of virus levels [101], and (c) ability of SARS-CoV-2-exposed ectopara-
sites to transmit the coronavirus to exposed environments and susceptible experimentally
infested animal hosts [102].
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