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Abstract: The oral cavity is often the first site where viruses interact with the human body. The oral
epithelium is a major site of viral entry, replication and spread to other cell types, where chronic
infection can be established. In addition, saliva has been shown as a primary route of person-to-
person transmission for many viruses. From a clinical perspective, viral infection can lead to several
oral manifestations, ranging from common intraoral lesions to tumors. Despite the clinical and
biological relevance of initial oral infection, little is known about the mechanism of regulation of the
viral life cycle in the oral cavity. Several viruses utilize host epigenetic machinery to promote their
own life cycle. Importantly, viral hijacking of host chromatin-modifying enzymes can also lead to
the dysregulation of host factors and in the case of oncogenic viruses may ultimately play a role in
promoting tumorigenesis. Given the known roles of epigenetic regulation of viral infection, epigenetic-
targeted antiviral therapy has been recently explored as a therapeutic option for chronic viral infection.
In this review, we highlight three herpesviruses with known roles in oral infection, including herpes
simplex virus type 1, Epstein–Barr virus and Kaposi’s sarcoma-associated herpesvirus. We focus
on the respective oral clinical manifestations of these viruses and their epigenetic regulation, with a
specific emphasis on the viral life cycle in the oral epithelium.

Keywords: herpesviruses; oral infection; HSV-1; KSHV; EBV; epigenetic viral gene regulation; viral
chromatin; polycomb group proteins

1. Introduction

The oral cavity is the initial site of contact for many viruses, permitting viral replication
in the oral epithelium and subsequent spread to other cell types in the adjacent soft tissue
(Figure 1). While the oral stratified squamous epithelium and deeper connective tissue
layers serve as potent mechanical barriers against infection, breaches in this barrier can
allow access to cellular receptors for viral fusion and entry [1]. The pathologic inflammation
initiated by periodontal pathogens in the oral cavity also facilitates the breakdown of tight
epithelial barriers, which may promote viral entry [2]. In addition to their roles as me-
chanical barriers, cells of the oral mucosa release cytokines, chemokines and antimicrobial
peptides, which protect against viral challenge [3,4]. Along with the cells of the oral mucosa,
saliva forms an essential component of the innate immune system, and antibacterial and
antiviral factors are readily detected in saliva [5].

Advances in viral detection through highly sensitive PCR technologies have led to the
identification of many different viruses in the saliva, gingival crevicular fluid and throat
wash samples, indicating that infectious viruses may be present in the oral cavity at a
greater rate than previously recognized [6]. The presence of infectious viruses in the oral
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cavity is of epidemiologic significance, as resulting viral shed via saliva is often the major
route of virus transmission between individuals, such as in the case of herpesviruses [7–9].
Clinically, increasing evidence supports a key role for viral pathogens in the development
of oral pathologies, including intraoral lesions, periodontal disease and oral tumor de-
velopment [10,11]. These oral diseases are usually the outcome of virus-induced direct
cytotoxic effect or damage from the host’s antiviral immune response [12]. Additionally,
systemic immunosuppression, as in the case of HIV infection, can elicit the development of
secondary oral manifestations, including reactivation of secondary oral viral infections [13].
The oral effects of HIV infection are numerous and will only be discussed in this review
in the context of co-infection with other oral viruses, as the oral clinical manifestations of
HIV have been reviewed extensively [14,15]. Despite the biological and clinical relevance
of oral viral infection, mechanistic studies on viral infections of the oral cavity are lacking.
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pesvirus family, can establish chronic infections. Inset: Herpes simplex virus-1 (HSV-1) establishes 
lifelong latent infection in neurons of the trigeminal ganglion; gammaherpesviruses Epstein–Barr 
virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV) establish latent infection in B 
cells. The figure was created with BioRender. 
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Figure 1. The oral epithelium and virus challenge: the oral epithelium is often an initial site for viral
entry and provides a site for viral replication (1) and subsequent shedding via saliva (2) or spread to
other cell types in the underlying connective tissue (3), wherein some viruses, such as the herpesvirus
family, can establish chronic infections. Inset: Herpes simplex virus-1 (HSV-1) establishes lifelong
latent infection in neurons of the trigeminal ganglion; gammaherpesviruses Epstein–Barr virus (EBV)
and Kaposi’s sarcoma-associated herpesvirus (KSHV) establish latent infection in B cells. The figure
was created with BioRender.

An emerging field of research has focused on the importance of epigenetic regulation of
the viral life cycle and on the influence of epigenetics on the outcomes of viral infections [16].
Importantly, virus-mediated dysregulation of host epigenetic control may impact a wide
variety of cell functions, including the cell cycle, DNA damage response pathway and
immune response. As a result, epigenetic-targeted drug therapies are promising options
for the treatment of chronic viral infections [17]. While the field of viral epigenetics has
grown in recent years, there is still limited understanding of the role of epigenetics in viral
infections of the oral cavity. This review will examine relevant oral viral pathogens, with an
emphasis on the human herpesvirus family, and the subsequent implications in epigenetics
and drug development.

2. Oral Manifestations of Herpesvirus Infections

Some of the most well-characterized viral pathogens with respect to oral manifesta-
tions are the members of the herpesvirus family, which includes eight viruses with known
human pathogenicity: herpes simplex virus type 1 and herpes simplex virus type 2 (HSV-1,
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HSV-2), varicella-zoster virus (VZV), human cytomegalovirus (HCMV), Epstein–Barr virus
(EBV), human herpesvirus-6 and human herpesvirus-7 (HHV-6, HHV-7) and Kaposi’s
sarcoma-associated herpesvirus (KSHV). Herpesviruses are large double-stranded DNA
viruses that are highly prevalent pathogens, causing lifelong persistent infection. After
initial lytic infection, herpesviruses establish latency in specific cell types of the infected
host. The importance of latency is that it allows herpesvirus evasion of the host immune
defenses and permits lifelong infection [18]. Importantly, herpesviruses can intermittently
undergo lytic reactivation in latently infected cells upon immunosuppression or various
external stimuli and stress factors resulting in virus replication and transmission [19]. Some
studies have also implicated dental procedures as potential sources of increased shedding
of HSV-1 into saliva and sometimes in extensive recurrence of herpes labialis [20,21]. How-
ever, it is still unclear what specific dental or anesthetic procedures trigger the increase in
HSV-1 replication in the oral cavity.

Herpesviruses can be detected in oropharyngeal swabs, saliva samples, and have been
isolated from gingival crevicular fluid samples from patients with periodontitis, indicating
both a reservoir for herpesviruses in the oral cavity and a route for viral transmission
between individuals [22–24]. Recently, herpesviruses have been implicated in the progres-
sion of periodontal disease in concert with bacterial pathogens, prompting a potential
paradigm shift in periodontitis pathogenesis, which has been reviewed extensively else-
where [25–27]. All human herpesviruses have been implicated in oral disease to an extent,
but the prevalence of these oral clinical manifestations varies among virus families. Here,
we focus on the three herpesviruses which are most commonly connected to the oral cavity
in terms of cellular tropism, route of viral transmission and ability to produce significant
oral pathologies. Information about the specific roles for other viruses in oral disease has
been outlined in other reviews [11,28].

2.1. Herpes Simplex Virus Type 1 (HSV-1)

Primary infection with HSV-1 generally occurs during childhood, in which inocula-
tion occurs through salivary spread or contact with an active lesion [29]. Initial exposure
to HSV-1 may be asymptomatic or present clinically as herpetic gingivostomatitis, with
possible concurrent fever, lymphadenopathy and other constitutional signs and symp-
toms [30]. Primary infection with HSV-1 is commonly coupled with the appearance of oral
lesions, which can affect both keratinized and non-keratinized tissues in the oral cavity
and are often localized on the gingiva, buccal mucosa and hard and soft palate [31]. After
primary infection, which typically resolves within a week, the virus maintains latency in
sensory neurons of the trigeminal ganglion, in the case of orofacial HSV-1 infection [32].
HSV-1 can be subsequently reactivated from latency in response to a variety of stimuli,
including stress, trauma, immunosuppression and UV light [20,33]. Clinically, reactivation
can result in the symptomatic recurrence of lesions in the region supplied by the portion
of the trigeminal nerve implicated in reactivation [34]. Secondary lesions often occur on
the vermillion border of the lip, termed herpes labialis. Unlike primary intraoral herpetic
lesions, secondary herpetic lesions generally occur on the keratinized mucosa, such as the
hard palate and attached gingiva [34]. While most cases of HSV-1 primary and recurrent
infections are mild, serious complications can include erythema multiforme [35], encephali-
tis [36] and blindness [37]. Treatment of oral herpes infections is generally palliative, but
viral nucleoside analogs such as acyclovir and its prodrug derivative, valacyclovir, can be
used to prevent recurrent lesions if taken before active blister formation [38]. However,
acyclovir resistance is a rising issue in immunocompromised individuals, who often suffer
from more frequent and severe episodes of HSV-1 reactivation [38].

2.2. Epstein–Barr Virus (EBV)

Epstein–Barr virus primarily infects B cells and epithelial cells, and infection of the
oral epithelium leads to several clinical manifestations in the oral cavity [39–41]. Infection
with EBV is ubiquitous, with over 90% of the adult population affected [42]. Once a person
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is infected by EBV, asymptomatic shedding via saliva occurs throughout the lifetime, and
viral replication in epithelial cells provides a continuous source of viral shed [7,43]. EBV
infection of B-lymphocytes results in chronic latent infection, and the close association
of lymphoid tissue with the oral epithelium may provide a source of EBV transfer and
sustained replication in oral epithelial cells [7,44]. While primary infection with EBV during
childhood is generally asymptomatic, EBV infection in young adults can lead to the devel-
opment of infectious mononucleosis [41]. Throat wash samples from infected individuals
have led to the identification of EBV in oropharyngeal cells [45]. Treatment for infectious
mononucleosis is symptomatic, and specific antiviral therapy is not recommended [11].
EBV has also been associated with a number of epithelial and non-epithelial lesions in
the oral cavity as well as oral inflammatory disease, including oral lichen planus and
Sjogren’s syndrome, though a direct link is still unclear [41,46]. In addition to illness in
immunocompetent hosts, EBV infection can result in further complications in immuno-
compromised hosts. Oral hairy leukoplakia (OHL) is a white, hyperkeratotic patch on the
lateral border of the tongue common in HIV-positive individuals, and EBV lytic replication
has been detected in samples from OHL lesions [47]. Importantly, EBV is also a known
human oncovirus, and is linked to malignancies including nasopharyngeal carcinoma and
Burkitt’s lymphoma, a non-Hodgkin’s lymphoma that is prevalent in the African conti-
nent, particularly among children [48,49]. Oral involvement is highly common in endemic
Burkitt’s lymphoma, accompanied by bony expansion of the maxilla [50]. Recently, EBV
co-infection with human papilloma virus (HPV) has been described in oropharyngeal
carcinoma samples. This finding, along with the observation that HPV can mediate lytic
reactivation of EBV in oral epithelial cells, suggests an additional role for EBV involvement
in tumorigenesis in the oral cavity [51,52].

2.3. Kaposi’s Sarcoma-Associated Herpesvirus (KSHV)

KSHV is the most recently identified member of the human herpesvirus family, and is
the etiologic agent of Kaposi’s sarcoma (KS) [53], primary effusion lymphoma [54], and
multicentric Castleman’s disease [55]. KS is a neoplasm of endothelial origin and is one
of the most prevalent AIDS-associated malignancies. KS lesions can be present on both
cutaneous and mucosal surfaces [56]. Oral KS mainly develops on the palate, the attached
gingiva, and on the dorsum of the tongue, and can be observed in up to 60% of AIDS
patients [57–59]. Testing the survival of 138 patients with HIV-1-associated KS revealed that
patients with oral KS had a 3.4-fold higher death rate than those with cutaneous KS [60].
For AIDS-associated KS lesions, combined antiretroviral therapy is currently the standard
treatment [56]. KSHV is primarily transmitted orally, and viral shed in the saliva is both
frequent and recurrent in infected individuals [8,24,61,62]. KSHV can infect oral epithelial
cells to produce progeny virus in vitro, providing additional evidence for productive oral
KSHV infection [40,63]. Additionally, studies in oral epithelial organotypic raft cultures
demonstrated that epithelial differentiation induces KSHV productive infection, indicating
a mechanism for viral shed from the superficial layers of the oral epithelium [64]. The
abundant lymphoid tissue in the oral cavity provides a population of B cells, such as
tonsillar B cells, where KSHV can establish a latent infection [65,66]. KSHV can also latently
infect oral fibroblasts, which enhances the secretion of KS-promoting cytokines from
infected oral fibroblasts and increases their invasiveness, highlighting the potential role
for KSHV-infected oral fibroblasts in facilitating oral KS [67,68]. Moreover, the oral cavity
provides a unique site of interaction between KSHV and common periodontal pathogens,
such as Porphyromonas gingivalis and Staphylococcus aureus, which have been shown to be
able to reactivate the virus from latency in infected oral cells [69–71], indicating a complex
interplay between KSHV infection and the oral microbiome.

3. Impact of Host Epigenetic Machinery on the Viral Life Cycle

The fundamental building block of chromatin is the nucleosome, which consists of
147 base pairs of DNA wrapped around a histone octamer, containing two copies of each
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of the four histone proteins, H2A, H2B, H3 and H4. The expression of genes in eukaryotes
is regulated by the state of their chromatin structures, which can be either transcriptionally
active (euchromatin) or repressed (heterochromatin). The regulation of the chromatin struc-
ture associated with gene regulatory DNA sequences, such as promoters and enhancers,
determines the expression level of genes. Chromatin dynamics are controlled by a large
variety of epigenetic factors including ATP-dependent chromatin-remodeling complexes,
enzymes regulating DNA methylation and histone modifying enzymes that regulate post-
translational modifications (PTMs) of histones [72,73]. Presently, more than 130 different
posttranslational modifications have been identified on histones (histone marks), of which
only a few have been studied so far for their role in the regulation of cellular genes and
even less in the regulation of viral infections [74].

Viruses can hijack host chromatin-modifying enzymes to modulate their own gene
expression and promote viral infection [16]. Additionally, viral-mediated dysregulation
of cellular epigenetic enzymes can specifically target host genes, including those related
to the DNA damage and innate immune response pathways [16]. As a result, epigenetic
regulation is an important driver of tumorigenesis during oncoviral infections. While
the specific mechanisms vary between oncogenic viruses, epigenetic regulation is crucial
to the expression of viral oncogenes and viral deregulation of host gene expression [75].
Additionally, viruses may encode specific factors which can enhance, inhibit or redirect host
chromatin modifying enzymes [16]. Since epigenetic gene regulation has been shown to be
crucial for controlling many viral infections, epigenetic-targeted antiviral therapies have
been increasingly explored, indicating an increased need for research into the epigenetic
mechanisms that regulate viral infections [17,76].

Herpesviruses have two distinct life cycles: latency and lytic. While only a few viral
genes are expressed during latency, the lytic cycle is characterized by the temporally
ordered induction of immediate early (IE), early (E) and late (L) lytic genes as well as
viral DNA replication and virus production. Upon entry into the host cell nucleus, the
herpesvirus DNA genome undergoes circularization and chromatinization within the
first hours of infection [77]. One of the hallmarks of the herpesviruses is the ability to
establish chronic infections, which is accomplished by the establishment of latency. In
this dormant state, the viral DNA has a stable chromatin structure, similar to that of the
cellular genome, and persists in the nucleus of infected cells as a non-integrated, circular
mini-chromosome (episome), while the lytic gene expression is repressed through various
chromatin and DNA modifications [78,79]. Diverse external and internal stimuli can evoke
herpesvirus reactivation from latency, leading to chromatin changes on the viral episome,
which promote the de-repression and full expression of lytic viral genes [78]. Here, we
specifically focus on the epigenetic regulation of HSV-1, EBV, and KSHV during infection
of oral epithelial cells, which results in detectable virus load in the oral cavity of infected
individuals (Figure 2).

3.1. Transcriptional and Epigenetic Control of HSV-1 Infection

Following the initial lytic replication in epithelial cells, HSV-1 establishes latent infec-
tion in sensory neurons. During lytic infection the viral DNA is associated with histones
enriched with activating histone marks such as H3K4me3 and histone acetylation that
support lytic viral gene expression [80,81]. Lytic viral factors are also crucial to circumvent
host epigenetic repression of lytic viral genes to promote viral replication. The VP16 viral
protein is part of the HSV-1 virion and is therefore delivered into cells during infection. Im-
portantly, VP16 interacts with Oct-1 and host cell factor 1 (HCF-1), forming a transcriptional
regulatory complex, which is essential for inducing lytic viral genes following primary
infection of epithelial cells [82,83]. Nuclear localization of the VP16 and HCF-1 complex in
epithelial cells is a critical step in initiating the lytic gene cascade, whereas the cytoplasmic
localization of these factors in neuronal cells can promote viral latency [79,84,85]. In the
nucleus, VP16/HCF-1 associates with octamer binding transcription factor (Oct-1) to form
enhancer core complexes at viral immediate early (IE) genes. HCF-1 in turn recruits several
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histone-modifying complexes, including H3K9 demethylases (e.g., LSD1, JMJD2), H3K4
methyltransferases (e.g., Set1/MLL) as well as histone acetyltransferases (e.g., CBP/p300)
(Figure 2) [79,86]. This step in the HSV-1 productive infection is a potential target for
epigenetic-directed therapy, as it has been shown that inhibition of H3K9 demethylase
LSD1 or JMJD2 can inhibit lytic viral gene expression and reactivation from latency [87,88].

Viruses 2021, 13, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 2. Epigenetic regulation of herpesvirus infections. During latency, lytic viral gene expression is suppressed by the 
polycomb repressive complex 2 (PRC2). The enzymatic subunit of PRC2 is EZH2, which deposits the repressive histone 
mark H3K27me3 on the viral chromatin. PRC2-mediated inhibition of lytic gene expression during latency was reported 
for HSV-1, EBV, and KSHV as well. During the lytic cycle, herpesvirus lytic factors (e.g., HSV-1 VP16; EBV Zta and Rta; 
KSHV RTA) recruit epigenetic enzymes and chromatin remodeling complexes to the viral promoters, leading to the 
deposition of activating histone marks (e.g., H3K27ac, H3K4me3) and chromatin changes that activate transcription of 
lytic viral genes. Note: the illustration of epigenetic factors does not reflect their true biological interactions in every case. 

3.1. Transcriptional and Epigenetic Control of HSV-1 Infection 
Following the initial lytic replication in epithelial cells, HSV-1 establishes latent in-

fection in sensory neurons. During lytic infection the viral DNA is associated with his-
tones enriched with activating histone marks such as H3K4me3 and histone acetylation 
that support lytic viral gene expression [80,81]. Lytic viral factors are also crucial to cir-
cumvent host epigenetic repression of lytic viral genes to promote viral replication. The 
VP16 viral protein is part of the HSV-1 virion and is therefore delivered into cells during 
infection. Importantly, VP16 interacts with Oct-1 and host cell factor 1 (HCF-1), forming a 
transcriptional regulatory complex, which is essential for inducing lytic viral genes fol-
lowing primary infection of epithelial cells [82,83]. Nuclear localization of the VP16 and 
HCF-1 complex in epithelial cells is a critical step in initiating the lytic gene cascade, 
whereas the cytoplasmic localization of these factors in neuronal cells can promote viral 
latency [79,84,85]. In the nucleus, VP16/HCF-1 associates with octamer binding tran-
scription factor (Oct-1) to form enhancer core complexes at viral immediate early (IE) 
genes. HCF-1 in turn recruits several histone-modifying complexes, including H3K9 
demethylases (e.g., LSD1, JMJD2), H3K4 methyltransferases (e.g., Set1/MLL) as well as 
histone acetyltransferases (e.g., CBP/p300) (Figure 2) [79,86]. This step in the HSV-1 
productive infection is a potential target for epigenetic-directed therapy, as it has been 
shown that inhibition of H3K9 demethylase LSD1 or JMJD2 can inhibit lytic viral gene 
expression and reactivation from latency [87,88]. 

The accumulation of activating histone marks on the viral genome during initial 
HSV-1 infection leads to the expression of HSV-1 immediate early (IE) genes, including 
ICP0 and ICP4, which further enhance the expression of other lytic genes. ICP0 disrupts 
the transcriptionally repressive CoREST histone deacetylase and ND10 complexes, 
leading to a euchromatin state at early and late gene promoters and allowing expression 
of the entire cascade of lytic viral genes [89–91]. ICP4 also contributes to the activation of 
viral transcription by preventing the formation of silencing nucleosomes on HSV-1 ge-
nomes [92]. The host innate immune response to viral infection includes many factors 

Figure 2. Epigenetic regulation of herpesvirus infections. During latency, lytic viral gene expression is suppressed by the
polycomb repressive complex 2 (PRC2). The enzymatic subunit of PRC2 is EZH2, which deposits the repressive histone
mark H3K27me3 on the viral chromatin. PRC2-mediated inhibition of lytic gene expression during latency was reported for
HSV-1, EBV, and KSHV as well. During the lytic cycle, herpesvirus lytic factors (e.g., HSV-1 VP16; EBV Zta and Rta; KSHV
RTA) recruit epigenetic enzymes and chromatin remodeling complexes to the viral promoters, leading to the deposition of
activating histone marks (e.g., H3K27ac, H3K4me3) and chromatin changes that activate transcription of lytic viral genes.
Note: the illustration of epigenetic factors does not reflect their true biological interactions in every case.

The accumulation of activating histone marks on the viral genome during initial
HSV-1 infection leads to the expression of HSV-1 immediate early (IE) genes, including
ICP0 and ICP4, which further enhance the expression of other lytic genes. ICP0 disrupts
the transcriptionally repressive CoREST histone deacetylase and ND10 complexes, leading
to a euchromatin state at early and late gene promoters and allowing expression of the
entire cascade of lytic viral genes [89–91]. ICP4 also contributes to the activation of viral
transcription by preventing the formation of silencing nucleosomes on HSV-1 genomes [92].
The host innate immune response to viral infection includes many factors that sense foreign
virus elements to initiate a downstream antiviral response. One such host factor that has
been characterized in HSV-1 infection is interferon-inducible factor IFI16, which recognizes
viral DNA and facilitates the recruitment of repressive chromatin modifications to the
HSV-1 genome [93,94]. During de novo HSV-1 infection of oral keratinocytes, IFI16 is
degraded in an ICP0-dependent manner, demonstrating a viral mechanism to maintain an
active chromatin state in the oral cavity [95,96].

After lytic replication in the oral mucosa, HSV-1 virions infect cells of the sensory
ganglia in the trigeminal nerve, where a chronic latent infection is established. It is now
understood that chromatin state determines HSV-1 latent versus lytic states, wherein
heterochromatin formation in sensory neurons limits lytic viral gene expression [84]. In
neuronal cells, all regions of the HSV-1 genome with the exception of the latency-associated
transcript (LAT) are associated with repressive chromatin marks. For example, the poly-
comb repressive complex 2 (PRC2) histone methyltransferase EZH2 deposits H3K27me3
histone mark in lytic gene regions to limit gene expression in latently infected neurons [97].
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Bmi1, a member of the polycomb repressive complex 1 (PRC1) has also been demonstrated
to bind to specific sites in the HSV-1 genome, which can contribute to viral gene silencing
during latency. Interestingly, treatment of human foreskin fibroblasts with small molecule
inhibitors of EZH1/2 induced a cellular antiviral immune response, thereby suppressing
HSV-1 lytic infection, indicating another possible epigenetic drug target for herpesvirus
infections [98]. Further details about the regulation of viral latency and reactivation in
neurons both in vitro and in mouse and rabbit models can be found in recent publica-
tions [99–102].

3.2. Epigenetic and Transcriptional Principles Governing EBV Infection

EBV infection of oral epithelial cells provides a primary source of viral shed, and as
a member of the gammaherpesvirus family, EBV then establishes a chronic infection of B
cells [7]. While we know little about how EBV DNA acquires chromatin and its different
epigenetic modifications following de novo infection, we know much more about the
chromatin state of EBV DNA in infected B cells. During latent infection, several copies of
the EBV episome are maintained in the host nucleus with lytic gene expression repressed by
multiple different mechanisms [103–105]. EBV demonstrates four distinct levels of latency,
classified as latency 0-III, in which promoter switching dictates latent gene expression,
including subsets of the six Epstein–Barr nuclear antigens (EBNA) and three latency mem-
brane proteins (LMP) [106]. Diversity in repressive versus active chromatin mark deposition
on individual classes of latency genes contributes to differential gene expression during
respective latency stages, with genome-wide correlation between repressive H3K9me3
marks and DNA methylation [107].

During latency, actively transcribed latent gene promoters are enriched in the activat-
ing H3K4me3 histone mark, while repressive H3K9me3 and H3K27me3 marks limit the
expression of lytic viral genes [103,108–110]. Host factor CCCTC-binding factor (CTCF)
insulates segments from the EBV genome to separate repressive and activating histone
modifications to regulate the various stages of EBV latency [108,111]. De novo CpG methy-
lation by host DNA methyltransferases is a slower process, with gradual increases in DNA
methylation marks in the weeks following initial infection, suggesting that DNA methyla-
tion plays a role in stabilizing the latent genome [112]. Latent viral proteins can also modify
host chromatin, such as in the case of latent factors EBNA3A- and EBNA3C-dependent
recruitment of PRC2 to deposit repressive H3K27me3 marks on host tumor suppressor
genes [107,113]. In nasopharyngeal carcinoma cells, EBV infection has also been shown
to be associated with loss of H3K4me3/H3K27me3 bivalency in the promoter regions of
crucial DNA damage response genes, demonstrating a viral mechanism of host chromatin
regulation that may drive tumorigenesis in the epithelium [114].

B cell activation triggers EBV reactivation from latency, whereby the viral switch
protein Zta is expressed along with immediate-early protein Rta, which together drive the
ordered expression of the EBV lytic gene cascade [115]. Zta acts as a pioneer factor, binding
preferentially to methylated viral promoters co-localizing with repressive H3K9me3 marks
to recruit chromatin remodelers [110,116,117]. Interestingly, DNA methylation is required
for Zta-driven lytic gene expression, and EBV must first establish a latent infection before
it is able to complete its lytic cycle [118]. During reactivation, PRC2 is released from the
viral genome, leading to a decrease in H3K27me3 marks [117]. Zta also recruits CBP
acetyltransferase to deposit activating histone marks, and this Zta-dependent release from
epigenetic repression allows for the progression of the viral lytic cycle (Figure 2) [119].

While EBV latency programs have been widely characterized in the context of B-cell
infection, EBV is generally thought to establish a lytic infection in the oral epithelium,
with lytic gene expression detected in tonsillar epithelium and oral hairy leukoplakia
epithelial lesions [120–124]. However, latent EBV gene expression has also been detected
in oral epithelial dysplasia and oral squamous cell carcinoma samples, with an enhanced
expression of latent genes in more dysplastic tissue [123,125]. To study latent epithelial
infection that may drive carcinogenesis, a human telomerase-immortalized normal oral
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keratinocyte (NOK) cell line has been developed as a model of latent EBV infection [126].
Transient infection of NOKs results in a shift in host CpG methylation patterns and a
resultant modulation in host cell gene expression, with impaired differentiation ability of
the oral keratinocytes upon external differentiation stimuli [127]. In NOK cells, many lytic
gene promoters exist in an unmethylated state, and therefore EBV Rta, rather than EBV
Zta, is necessary to reactivate these cells from latency, indicating a divergent mechanism of
latent gene regulation in an oral cell line [128]. Moreover, specific differentiation-dependent
cellular transcription factors in the oral keratinocytes are key to expression of Zta and Rta
factors and induction of the lytic cycle [129–131]. Enhanced cell motility and invasiveness
upon transient EBV infection of NOKs is maintained after loss of the virus, indicating the
ability of viral infection to confer lasting epigenetic changes in oral cells [132].

3.3. Epigenetic Regulation of the Biphasic Life Cycle of KSHV

There is no well-established animal model to study KSHV infection in vivo, although
oral infection of common marmoset was shown to be able to recapitulate some aspects of
KS development in a non-human primate model [133]. Thus, the vast majority of studies
on the regulation of KSHV infection and viral transmission rely on studying infection of
various cell culture models. In contrast to HSV-1, the default pathway for KSHV infection
is the establishment of latency in most cell types, while oral epithelial cells and dermal
lymphatic microvascular endothelial cells have been demonstrated to support lytic primary
KSHV infection to some degree [63,134–137]. Importantly, the expression of IE gene ORF50
encoding the replication and transcription activator protein RTA is necessary and sufficient
to induce the lytic cycle of KSHV both in latently infected cells and following de novo
infection [138,139]. RTA can induce lytic genes by binding to their promoters and recruiting
epigenetic factors such as CBP/p300, SWI/SNF, mediator, and histone demethylases that
can alter the viral chromatin to favor viral gene expression (Figure 2) [140–143]. Since RTA
has an E3 ubiquitin ligase activity, it can also promote lytic gene expression by inducing
the degradation of host proteins repressing KSHV gene transcription [144–146].

Most of the information on the epigenetic regulation of the KSHV genome comes
from studies using latently infected primary effusion B cell lymphoma (PEL) cell lines that
were originally isolated from KSHV+ patients. In latently infected PEL cells, the latency-
associated locus of the KSHV genome is enriched only in activating histone marks (AcH3
and H3K4me3), whereas there is a mutually exclusive distribution of both activating (AcH3
and H3K4me3) and repressive (H3K9me3 and H3K27me3) histone marks throughout the
rest of KSHV genome [147,148]. EZH2, the histone methyltransferase subunit of PRC2, is
responsible for the global deposition of repressive H3K27me3 marks on the viral genome,
and shRNA depletion or chemical inhibition of EZH2 can lead to the upregulation of lytic
genes [148]. Importantly, the histone mark patterns and many of the other epigenetic regula-
tions of the latent KSHV genome in PEL cells have been confirmed in a number of different
KSHV-infected adherent cell types and in Kaposi’s sarcoma tissues as well [139,147,149].

Strikingly, prior to the establishment of KSHV latency, a number of lytic viral genes
that possess immunomodulatory and antiapoptotic functions were shown to be transiently
expressed following de novo infection [150]. This burst of lytic gene expression can be
explained by the viral genome’s association with euchromatin in the first 24 h of primary
infection and lacking of the PRC2-regulated heterochromatin [139]. However, by 72 h
post-infection, the enrichment of activating histone marks such as H3K27ac and H3K4me3
declines and they are restricted to specific genomic regions, while the binding of PRC1
and PRC2 factors and their corresponding histone marks H2AK119ub and H3K27me3
increase genome-wide on the KSHV genome [139,151,152]. These chromatin changes are
accompanied by the suppression of lytic gene transcription while latent genes are continu-
ously expressed. The observed temporal and spatial distribution of histone marks along
the viral genome during establishment and maintenance of latency have been linked to the
controlled recruitment of histone modifying enzymes to the viral episomes [139,152,153].
The mechanism of the specific spatial and temporal targeting of epigenetic factors to the
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KSHV genome is still largely unknown. However, in some cases, specific KSHV proteins,
the viral long non-coding PAN RNA, and the unmethylated CpG motifs in the viral DNA
have been implicated in the regulation of the recruitment of host epigenetic factors to
the viral episome [152,154,155]. A recent siRNA screen of host epigenetic factors during
de novo KSHV infection identified several new players in the formation of the KSHV
epigenome and establishment of latency beyond PRC1 and PRC2, which includes the
histone demethlyase KDM2B, NuRD and Tip60 repressive complexes among many oth-
ers [156]. It is likely that the binding of all of these host epigenetic factors contribute to the
different epigenetic layers of the KSHV episome, which can support the establishment and
maintenance of the chromatin structure of latent viral episomes.

KSHV lytic gene expression and replication in oral epithelial cells after primary
infection raises the question of how these cells are different from other cell types that
do not support de novo lytic infection. Investigation of KSHV-infected immortalized
gingival epithelial cells revealed that while there was an increased amount of H3K4me3 and
H3K27ac on both latent and lytic viral promoters, deposition of the repressive H3K27me3
and H2AK119ub histone marks was very low [139]. Interestingly, lower expression of
polycomb group proteins was detected in oral epithelial cells supporting KSHV lytic
infection than in cells that did not support lytic viral infection, indicating a potential
rationale for the ability of the virus to establish productive infection in the oral cavity [139].

Moreover, a recent siRNA epigenetic screen identified histone demethylase KDM2B as
a key restriction factor of lytic gene transcription not only in latent infection but also in the
lytic infection of primary gingival epithelial cells [156]. KDM2B is a histone demethylase
associated with the removal of activating H3K4me3, H3K36me2 and H3K79me2 marks,
and has also been shown to play a role in PRC1 recruitment to specific regions in the host
genome [157–160]. The viral gene expression inhibitory function of KDM2B was linked
to its histone demethylase and DNA-binding activity [156]. KDM2B protein levels can be
dysregulated by different environmental stimuli such as hypoxia, which increases KDM2B
expression, and this can affect the outcome of KSHV infection [161,162]. Interestingly,
Naik et al. recently showed that while KDM2B normally acts as a suppressor of KSHV
lytic gene expression, overexpressed KDM2B promotes lytic gene expression during de
novo KSHV infection through interaction with the E3 ubiquitin ligase SCF complex [162].
It was demonstrated that the SCFKDM2B complex increases the half-life of c-Jun protein
during KSHV infection leading to elevated AP-1 activity, which supports lytic viral gene
expression [162]. Collectively, these studies indicate that the same host epigenetic factor
can both inhibit and promote lytic KSHV infection in a context dependent manner by either
directly altering the viral chromatin or modulating host signaling pathways that affect
viral gene expression. In fact, several histone-modifying enzymes have been described to
regulate biological processes other than chromatin-based gene regulation [163–167]. Thus,
the effects of host epigenetic enzymes on KSHV infection have to be interpreted cautiously
and in the context of the circumstances of viral infection.

Both the expression and activity of histone modifying enzymes can be influenced
by various environmental stimuli, which can affect viral pathogenesis. Recent studies
have shown that the oral microbiome can leave its imprint on oral cells through secreting
metabolic byproducts which dysregulates host epigenetic factors. It was demonstrated that
short-chain fatty acids produced by periodontal pathogens (e.g., P. gingivalis, F. nucleatum)
can either inhibit the enzymatic activity or downregulate the expression of host epigenetic
factors (e.g., EZH2) that repress KSHV gene expression thereby promoting KSHV replica-
tion in the oral cavity [71,168]. Moreover, exosomes from saliva of HIV+ individuals have
been shown to enhance lytic KSHV infection of human oral epithelial cells. This effect
was linked to HIV TAR RNA enriched in the exosomes, but the mechanism of how the
viral TAR RNA induces KSHV gene expression remains unresolved [169]. Nevertheless,
these studies indicate that KSHV replication can benefit from both bacterial and other
viral infections in the oral cavity, which can increase shedding of KSHV into saliva and
KSHV transmission.
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4. Outlook for Epigenetic-Directed Therapeutic Interventions for Viral Infections

Oral transmission and infection of oral epithelial cells is conserved among many
viruses, and a range of oral pathologies associated with viral infections include but are not
limited to the herpesvirus family [6,11,13,29,170]. Epigenetic drugs have gained increasing
interest in the field of cancer research, and many of these drugs have been approved for
the treatment of select cancers [171]. Given the significance of epigenetic regulation of oral
viral infection, many of the cancer epigenetic drugs can also provide a promising avenue
for therapeutic intervention of viral infections [17]. HIV has served as the hallmark for the
study of epigenetic manipulation in antiviral therapeutics. Two paradigms, deemed the
“shock and kill” and “block and lock” strategies, have been developed. In the “shock and
kill” paradigm, HIV-infected cells are treated with histone deacetylase, DNA methyltrans-
ferase and/or histone methyltransferase inhibitors to induce reactivation of the virus from
latency, which makes the infected cells and the virus visible for the immune system to
eliminate the latent viral pools [17,172,173]. Alternatively, the “block and lock” paradigm
aims to push latent HIV reservoirs into tight latency through inhibition of Tat-dependent
transcription [17,174]. Epigenetic drugs have also been tested in the context of other
chronic viral infections, such as in the use of bromodomain and extra-terminal domain
(BET) inhibitors to target HPV and herpesvirus infections [175,176]. Similarly, inhibitors of
lysine-specific histone demethylase 1 (LSD1) and PRC2 enzymatic subunit EZH2 have been
shown to blunt HSV-1 reactivation [98,177,178]. However, the specific in vivo applications
of epigenetic drugs in the context of oral viral infection have yet to be explored.

5. Conclusions

The impact of epigenetic regulation on viral infection has been a field of increasing
interest, leading to an enhanced understanding of the interplay between key virus and host
factors in the progression of the viral life cycle. The reversibility of epigenetic modifications
creates an opportunity to use epigenetic-targeted therapies to both treat and prevent viral
infections. The oral cavity plays a crucial role as a viral entry site and as a site that is
permissive to productive herpesvirus infection. As a unique site of host–virus interaction,
the epidemiologic relevance of oral transmission as a major source of viral spread warrants
further study into the regulation of the viral life cycle in the oral cavity.
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