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Abstract: Viruses are dependent on host factors at all parts of the infection cycle, such as translation,
genome replication, encapsidation, and cell-to-cell and systemic movement. RNA viruses repli-
cate their genome in compartments associated with the endoplasmic reticulum, chloroplasts, and
mitochondria or peroxisome membranes. In contrast, DNA viruses replicate in the nucleus. Viral
infection causes changes in plant gene expression and in the subcellular localization of some host
proteins. These changes may support or inhibit virus accumulation and spread. Here, we review
host proteins that change their subcellular localization in the presence of a plant virus. The most
frequent change is the movement of host cytoplasmic proteins into the sites of virus replication
through interactions with viral proteins, and the protein contributes to essential viral processes. In
contrast, only a small number of studies document changes in the subcellular localization of proteins
with antiviral activity. Understanding the changes in the subcellular localization of host proteins
during plant virus infection provides novel insights into the mechanisms of plant–virus interactions
and may help the identification of targets for designing genetic resistance to plant viruses.

Keywords: antiviral; colocalization; host factors; protein relocalization; proviral; replication proteins;
TuMV

1. Introduction

The most abundant plant viruses have a genome that is a positive single-strand RNA
(Group IV) or a negative single-strand RNA (Group V). Single-strand RNA viruses replicate
in compartments or vesicles bound to membranes in the cytoplasm or in subcellular
organelles [1]. Plant-infecting DNA viruses, on the other hand, are less numerous. Single-
strand DNA (Group II) and reverse-transcribing DNA (Group VII) viruses replicate by
forming a minichromosome in the nucleus [2].

Viral RNA is translated into proteins using the cellular machinery. Viral nucleic acids
and proteins execute their functions in cooperation with host proteins, RNAs, or other
factors such as membranes or lipids [3,4]. These components condition susceptibility, and
their absence reduces virus accumulation or movement, and may turn a host into a nonhost.
These factors encode loss-of-susceptibility genes, also named susceptibility genes [3,5].
Because the presence and activity of these host components are essential for the virus,
the terms cellular factors with proviral activity or proviral host factors are often used in
publications [3,6].

The establishment of a viral infection is genetically determined at two sequential
phases. Initially, the absence of susceptibility genes results in the lack of infection or
reduced virus replication and/or movement [3]. When a plant has the susceptibility genes
needed for the initiation of infection, in a second phase, virus accumulation, spread, and
disease severity are determined by the balance between plant defense and viral suppression
of defense responses [7].
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Viral infection induces changes in host gene expression [8,9] resulting in the upregula-
tion of susceptibility genes [10] and activation or downregulation of antiviral defense re-
sponses [11,12], and may also lead to up- or downregulation of genes that have no effect on
the virus [8,9]. Upregulation of antiviral genes indicates the activation of defense responses
by multiple mechanisms including autophagy, RNA decay, or gene silencing [7,13,14].
Antiviral defense is mediated by host factors that target viral proteins or nucleic acids and
antagonize key parts of virus replication and/or movement, reducing virus accumulation
or limiting the spread of infection within the plant [7,15]. However, to protect themselves,
viruses may downregulate expression, suppress activity, or induce degradation of antiviral
defense components [16]. The molecular mechanisms and significance of changes in host
gene expression during viral infection are still poorly understood.

Viruses divert host proteins from their natural roles to execute essential viral processes
such as translation, virus replication, or movement [5,17,18]. Changes in activity are often
associated with a change in the subcellular localization of the host protein. A protein is
considered to relocalize when, in the presence of a virus, a fraction of the total protein
accumulates in a new place in the cell. These changes have been detected and character-
ized by a combination of approaches such as yeast two hybrid, subcellular fractionation,
bimolecular fluorescence complementation, immunofluorescence confocal microscopy, or
co-precipitation [19–21].

In this review, we present an analysis of publications documenting changes in the
subcellular localization of host proteins following viral infection. Results present a profile
of the host proteins that change, the experimental approaches used to identify them,
their natural and new locations, and their role in favor or against viruses. The profiles
advance our understanding of the mechanisms that govern plant–virus interactions and
establish the basis for the identification of novel host factors with antiviral activity or that
condition virus susceptibility and that can be targeted to generate virus-resistant plants by
genetic engineering.

2. Profile of Host Proteins

Plant viruses for which at least one host protein has been reported to change subcel-
lular localization were grouped based on their genome organization. The site of genome
replication, name of the replication protein, and movement form were compiled and used
as a guide to interpret interaction with and recruitment of host proteins (Table 1). We
classified the host proteins based on their natural subcellular localization in the absence of
viral infection. Changes in subcellular localization were documented for 55 combinations of
host protein and plant virus. After profiling features of these proteins and viruses, several
general patterns emerged: (1) 45 of the 55 combinations were identified using model hosts
(Arabidopsis thaliana, Nicotiana benthamiana, or Saccharomyces cerevisiae, Figure 1A); (2) the
majority (48) were identified using model positive-strand RNA viruses (Figure 1C), partic-
ularly brome mosaic virus (BMV), tomato bushy stunt virus (TBSV), and turnip mosaic
virus (TuMV) (Figure 1D); (3) in 46 of the 55 combinations, the host protein is beneficial
to the virus; (4) host proteins with antiviral roles were less abundant (nine) (Figure 1B);
and (5) the most frequent group (30 out of 55) was host proteins that moved from the
cytoplasm to the sites of virus replication (Figure 2A and Table 2) through interactions
with viral proteins (Table 2). These patterns are heavily influenced by the combination of
experimental hosts and viruses used as model systems.
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Table 1. Site of replication and movement form of plant viruses for which at least one host protein has been reported to
change subcellular localization.

Virus RdRp Site of Replication Intracellular Movement of the
Replication Compartments

Cell-To-Cell
Movement Form Reference

Group II: Single-strand DNA

TYLCV Rep protein Nucleus From nucleus to plasmodesmata Minichromosome [22]

Group IV: Single positive-strand RNA

BaMV 155 kDa Chloroplast From chloroplast to
plasmodesmata

Virions or
ribonucleoprotein

particles
[23]

BMV 2a Endoplasmic reticulum Non-motile
Virions or

ribonucleoprotein
particles

[24]

CIRV p36 Mitochondria Non-motile Ribonucleoprotein
particles [25]

CNV p33 Peroxisome Non-motile Ribonucleoprotein
particles [26]

GRV RdRp Cytoplasm NA Ribonucleoprotein
particles [27]

LMV NIb Endoplasmic reticulum From ER to plasmodesmata Replication vesicles [28]

PepMV 164 kDa
Cytoplasm

(membrane association
with ER is unclear)

From cytoplasm to plasmodesmata Ribonucleoprotein
particles [29]

PVX RdRp Endoplasmic reticulum NA
Virions or

ribonucleoprotein
particles

[30]

RCNMV p27 and p88 Endoplasmic reticulum From ER to plasmodesmata Virions [31–33]

TVCV RdRp Endoplasmic reticulum From ER to plasmodesmata
Virions or

ribonucleoprotein
particles

[34]

TBSV p92pol Peroxisomes Non-motile Ribonucleoprotein
particles [35,36]

TMV RdRp Endoplasmic reticulum From ER to plasmodesmata
Replication complexes or

ribonucleoprotein
particles

[37]

ToMV 130K and 180K Endoplasmic reticulum From ER to plasmodesmata
Virions or

ribonucleoprotein
particles

[38]

TuMV NIb ER and chloroplasts
From ER to chloroplast and/or to

Golgi apparatus and to
plasmodesmata

Replication vesicles [28]

TVBMV NIb Chloroplasts
From ER to chloroplast and/or to

Golgi apparatus and to
plasmodesmata

Replication vesicles [39,40]

Group V: Single negative-strand RNA

RSV 337 kDa
Cytoplasm

(membrane association
is unknown)

From ER to Golgi to
plasmodesmata Virion–protein complexes [41–43]

Group VII: Double-strand DNA-RT

CaMV Rep protein Nucleus From nucleus to ER and/or
directly to plasmodesmata Virions [44]

Viruses: bamboo mosaic virus (BaMV), brome mosaic virus (BMV), cauliflower mosaic virus (CaMV), carnation Italian ringspot virus
(CIRV), cucumber necrosis virus (CNV), groundnut rosette virus (GRV), lettuce mosaic virus (LMV), pepino mosaic virus (PepMV), potato
virus X (PVX), red clover necrotic mosaic virus (RCNMV), rice stripe virus (RSV), turnip vein-clearing virus (TVCV), tobacco mosaic virus
(TMV), tomato bushy stunt virus (TBSV), tomato mosaic virus (ToMV), turnip mosaic virus (TuMV), tobacco vein banding mosaic virus
(TVBMV), tomato yellow leaf curl virus (TYLCV). Viral proteins. NIb: nuclear inclusion protein b, the RNA-dependent RNA polymerase
in potyviruses; RdRp: RNA-dependent RNA polymerase; NA: information not available; ER: endoplasmic reticulum.
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Figure 1. Profile of host proteins that change their subcellular localization during plant virus infection as reported in the
literature. Fifty-five combinations of host protein-plant virus were documented in publications. (A) Number and proportion
of proteins by host species. (B) Number and proportion of host proteins with antiviral role or beneficial to the virus.
(C) Number and proportion of host proteins by virus group. (D) Number of host proteins by virus species. Viruses are
grouped based on their genome organization.

3. Cytoplasmic Host Proteins

Of the 55 host proteins that changed their localization during viral infection, 30 were
cytoplasmic and moved to the sites of virus replication in the mitochondria, chloroplasts,
endoplasmic reticulum (ER), peroxisomes, or nucleus and participated in essential pro-
cesses such as the formation of the sites of virus replication, stimulation of RNA synthesis,
or stability of the RNA-dependent RNA polymerase (Figure 2 and Table 2). Host proteins
represented include heat shock proteins, translation factors, and proteins that mediate
membrane topology (Table 2). Other proteins include GSTU4 (glutathione transferases),
oxysterol-binding protein–related proteins (ORPs), catalase 1, endosomal sorting complexes
required for transport (ESCRTs), and like Sm protein 1 (LSm1). Two antiviral proteins
(NPR1 and 20S α5) moved from the cytoplasm to the nucleus or virus-induced aggregates.
Their new localization was mediated by viral proteins and resulted in the loss of antiviral
activity (Table 3). Cytoplasmic proteins with a new distribution in virus-infected cells are
discussed below.
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Figure 2. Schematic representation of changes in subcellular localization after viral infection. Representative host proteins
and plant viruses that induce relocation in more than two proteins are illustrated. Host proteins are color-coded with
spheres. Viruses are indicated by numbers. (A) Changes in host cytoplasmic proteins and (B) changes in host proteins
naturally localized to organelles, and their movement in the presence of a virus.
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Table 2. Host proteins that participate in essential viral processes and that change subcellular localization during viral infection. Host proteins are organized based on their natural
distribution in the absence of virus.

Virus Viral Protein
or RNA Host Protein Host

Movement of
Host

Protein into
Role Initial Detection Mechanism of

Interaction

Experimental
System for

Detecting of New
Localization Sites *

Method of
Observation: Time Reference

Cytoplasmic proteins

CaMV TAV RISP Arabidopsis thaliana
Inclusion bodies

(cytoplasmic
and nuclear)

Stimulates translation
re-initiation Yeast two hybrid Protein–protein Brassica rapa leaves

Immunofluorescence
and confocal

microscopy: 15 dpi
[45]

BaMV

155 kDa and
3′ UTR HSP90 Nicotiana benthamiana Chloroplast

Formation of
replication

compartments

Partially purified
replicase

Protein–protein
and

RNA–protein

Saccharomyces
cerevisiae and

Escherichia coli

Yeast two hybrid,
GST-pull down [46]

3′ UTR NbGSTU4 N. benthamiana Chloroplast
Binds to the 3′ UTR

and stimulates
negative-strand RNA

synthesis

Partially purified
replicase RNA–protein E. coli UV crosslink [47]

BMV

1a ESCRT- III S. cerevisiae Perinuclear ER
Formation of

replication
compartments

Yeast genetic analysis Protein–protein S. cerevisiae
Immunofluorescence

and confocal
microscopy: 48 h

[48]

1a and 2b LSM1 S. cerevisiae ER Promotes viral RNA
translation Yeast mutagenesis Protein–protein S. cerevisiae

Immunofluorescence
and confocal

microscopy: 48 h
[49,50]

CIRV

p36 ESCRT-I N. benthamiana Mitochondria
Formation of

replication
compartments

Split ubiquitin assay Protein–protein S. cerevisiae
Immunofluorescence

and confocal
microscopy:
15-45 min

[51]

p36 ORP N. benthamiana and
S. cerevisiae

Mitochondria
and ER

Formation of
replication

compartments
Yeast two hybrid Protein–protein N. benthamiana

leaves BiFC: 48 h [52]

PepMV p26 Catalase 1 Solanum lycopersicum Cytoplasm
and nucleus

Antagonist to
antiviral response Yeast two hybrid Protein–protein N. benthamiana

leaves

BiFC,
immunolabeling, and
electron microscopy:

3–4 dpi

[53]

PVX TGB12K TIP Nicotiana tabacum Peripheral bodies
Regulates

plasmodesmata
opening

Yeast two hybrid Protein–protein N. benthamiana
leaves

Confocal microscopy:
3 dpi [54]

RCNMV
p27 HSP70 N. benthamiana ER

Formation of
replication

compartments
Affinity purification Protein–protein N. benthamiana

leaves
Confocal microscopy:

3 dpi [21]

p27 NbRACK1 N. benthamiana ER-derived
aggregates

Increases ROS to
benefit the virus

Co-
immunoprecipitation Protein–protein N. benthamiana

leaves BiFC: 4 dpi [55]

RSV 337 kDa HSP20 N. benthamiana and
Oryza sativa Nucleus Antagonist to

antiviral response Yeast two hybrid Protein–protein N. benthamiana
leaves BiFC: 48 h [56]
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Table 2. Cont.

Virus Viral Protein
or RNA Host Protein Host

Movement of
Host

Protein into
Role Initial Detection Mechanism of

Interaction

Experimental
System for

Detecting of New
Localization Sites *

Method of
Observation: Time Reference

TBSV

p33 eEF1A S. cerevisiae Peroxisomal
membrane Stabilization of p33 Purified replicase

proteomics Protein–protein S. cerevisiae Co-purification [35,57]

p33 ESCRT-I N. benthamiana Peroxisomal
membrane

Formation of
replication

compartments
Split ubiquitin assay Protein–protein S. cerevisiae Confocal microscopy:

15–45 min [58]

p33 GAPDH N. benthamiana and
S. cerevisiae

Peroxisomal
membrane

Viral genomic
RNA synthesis

Purified replicase
proteomics

Indirect:
mediated by

p92pol
S. cerevisiae Confocal microscopy:

16 h [59]

p33 and
p92pol HSP70 S. cerevisiae Peroxisomal

membrane
Formation of

replication
compartments

Reconstitution assay Protein–protein S. cerevisiae Confocal microscopy:
16 and 24 h [60,61]

p33 ORP S. cerevisiae Peroxisome
and ER

Formation of
replication

compartments
Affinity purification Protein–protein S. cerevisiae and N.

benthamiana leaves BiFC: 2 dpi [52]

TMV RdRp and3′
UTR eEF1A N. tabacum Replication

compartment

Formation of
replication

compartments and
cell-to-cell movement

Pull-down assay Protein–protein N. tabacum Immunoprecipitation:
4 dpi [62]

TuMV

VPg AtRH8 Prunus persica and
A. thaliana

Chloroplast
membrane

Formation of
replication

compartments
Yeast two hybrid Protein–protein N. benthamiana

leaves BiFC: 2 and 10 dpi [63]

6K2 AtRH9 A. thaliana Chloroplast
membrane

Formation of
replication

compartments
Confocal microcopy Protein–protein N. benthamiana

leaves
Confocal microscopy:

72 h [64]

VPg and NIb eEF1A A. thaliana
ER-derived
replication

compartments

Viral RNA
translation, formation

of replication
compartments

Tandem affinity
purification Protein–protein N. benthamiana

leaves
Immunofluorescence

and confocal
microscopy: 4–5 dpi

[65]

VPg eIF(iso)4e A. thaliana ER and
chloroplasts

Viral RNA
translation, formation

of replication
compartments

Pull-down assay Protein–protein N. benthamiana
leaves

Immunofluorescence
and confocal

microscopy: 2–4 dpi
[65]

TuMV

NIb HSP70 A. thaliana

Nucleus and
replication

compartments in
the ER

Formation of
replication

compartments,
regulation of
NIb activity

Tandem affinity
purification

Indirect:
mediated by

RdRp

N. benthamiana
leaves

Confocal microscopy:
2–4 dpi [20]

VPg PABP2 Brassica perviridis Nucleus and ER
Formation of

replication
compartments

Subcellular
fractionation Protein–protein N. benthamiana

leaves
Confocal microscopy:

4–5 dpi [66]
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Table 2. Cont.

Virus Viral Protein
or RNA Host Protein Host

Movement of
Host

Protein into
Role Initial Detection Mechanism of

Interaction

Experimental
System for

Detecting of New
Localization Sites *

Method of
Observation: Time Reference

ToMV

130K and
180K eEF1A N. tabacum ER membranes

Viral RNA
translation, formation

of replication
compartments

Subcellular
fractionation Protein–protein

Transgenic N.
tabacum BY-2

protoplast
Affinity purification [67]

130K and
180K HSP70 N. tabacum ER membranes

Formation of
replication

compartments
Subcellular

fractionation Protein–protein
Transgenic N.
tabacum BY-2

protoplast
Affinity purification [67]

TYLCV CP HSP70 S. lycopersicum
Cytoplasm and

nucleus
aggregates

Movement of virions Subcellular
fractionation Protein–protein S. lycopersicum

leaves

Immunodetection
and confocal

microscopy: 28 or
49 dpi

[68]

Endosomal proteins

CIRV p36 RAB5-GTPase A. thaliana Mitochondria
Formation of

replication
compartments

Yeast two hybrid Protein–protein N. benthamiana
leaves BiFC: 2 dpi [69]

CNV p33 RAB5-GTPase A. thaliana Peroxisome
Formation of

replication
compartments

Yeast two hybrid Protein–protein N. benthamiana
leaves BiFC: 2 dpi [69]

TBSV p33 RAB5-GTPase A. thaliana Peroxisome
Formation of

replication
compartments

Yeast two hybrid Protein–protein N. benthamiana
leaves BiFC: 2 dpi [69]

Endoplasmic reticulum proteins

BMV 1a RHP S. cerevisiae Perinuclear ER
membrane

Formation of
replication

compartments
Immunoprecipitation Protein–protein S. cerevisiae Co-Ip and confocal

microscopy: 12 dpi [70]

TuMV

6K2 SNARE -SYP71 A. thaliana Chloroplast
Fusion replication
compartments in

chloroplast
Confocal microscopy

Indirect:
mediated by

Vap27-1
N. benthamiana

leaves
Confocal microscopy:

48 h [71]

6K2 RHD3 A. thaliana Replication
compartments

Maturation of
replication

compartments
Yeast two hybrid Protein–protein N. tabacum leaves Confocal microscopy:

7 dpi [28]

Golgi apparatus proteins

BaMV NA RABG3f N. benthamiana Replication
compartments

Formation and
movement of

replication
compartments

Immunofluorescence Unknown N. benthamiana
leaves

Confocal microscopy:
5 dpi [72]
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Table 2. Cont.

Virus Viral Protein
or RNA Host Protein Host

Movement of
Host

Protein into
Role Initial Detection Mechanism of

Interaction

Experimental
System for

Detecting of New
Localization Sites *

Method of
Observation: Time Reference

CaMV MP µA-adaptin A. thaliana Plasma
membrane MP trafficking GST pull-down Protein–protein Escherichia coli and

A. thaliana GST-pull down [73]

RCNMV p27 ARF1 N. benthamiana and
N. tabacum ER

Formation of
replication

compartments
Affinity purification Protein–protein N. tabacum

protoplast
Confocal microscopy:

16 h [74]

Plasma membrane proteins

CaMV p6 AtSRC2.2 A. thaliana
Inclusion bodies
(cytoplasmic and

nuclear)

Cell-to-cell
movement Yeast two hybrid Protein–protein N. benthamiana

leaves

Co-
immunoprecipitation

and confocal
microscopy: 3 dpi

[75]

RCNMV p27 RBOHB N. benthamiana
Perinuclear
ER-derived
aggregates

ROS synthesis Immunoprecipitation Protein–protein N. benthamiana
leaves

Confocal microscopy
andBiFC

: 4 dpi
[76]

TVBMV P3N-PIPO
and CI DREPP N. benthamiana Plasmodesmata Cell-to-cell

movement Yeast two hybrid Protein–protein N. benthamiana
leaves BiFC: 2 and 5 dpi [40]

Plasma membrane proteins

TVCV MP SYTA A. thaliana Plasmodesmata
Alters

plasmodesmata
permeability

Confocal microscopy Protein–protein N. benthamiana
leaves

Confocal microscopy
and BiFC [34]

TuMV P3N-PIPO PCaP1 N. benthamiana Plasmodesmata Cell-to-cell
movement Yeast two hybrid Protein–protein N. benthamiana

leaves BiFC: 38 h [77]

Nuclear proteins

GRV ORF3 Fibrillarin N. benthamiana and
A. thaliana Cytoplasm Systemic movement Affinity purification

and chromatography Protein–protein N. benthamiana
leaves and E. coli Far Western blotting [27]

RCNMV p27 HSP90 N. benthamiana ER
Formation of

replication
compartments

Partially purified
replicase Protein–protein N. benthamiana

leaves BiFC: 3 and 4 dpi [21]

TMV MP NTH201 N. tabacum Cytoplasm and
plasmodesmata

Enhances replication
compartment

formation
Confocal microscopy Indirect N. benthamiana

leaves
Confocal microscopy:

24 h [78]

TBSV p19 ALY N. benthamiana and
A. thaliana Cytoplasm Co-factor Yeast two hybrid Protein–protein N. benthamiana

leaves
Confocal microscopy:

3 dpi [79]

Vacuolar proteins

ToMV 130K and
180K

TOM1
TOM3

A. thaliana and
N. tabacum ER

Formation and
anchoring of
replication

compartments

Membrane flotation Protein–protein S. cerevisiae and
N. tabacum leaves

Yeast two hybrid and
subcellular

fractionation at 2 dpi
[80,81]

* Experimental plants are wild type unless noted. BiFC: bimolecular fluorescence complementation; Co-Ip: co-immunoprecipitation; dpi: days post inoculation, agroinfiltration, or induction; NA: information not available.
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Table 3. Host proteins with antiviral activity and that change subcellular localization in the presence of a plant virus. Host proteins are organized in blocks based on their natural
distribution in the absence of virus.

Virus Viral Protein
or RNA Host Protein Host Movement of

Host Protein into Role
Initial

Detection
Experiment

Mechanism of
Interaction

Experimental
System for

Detecting New
Localization Sites *

Method of
Observation: Time Reference

Cytoplasmic proteins

CaMV P6 NBR1 A. thaliana Nucleus
Inhibits salicylic
acid-dependent

defense responses

Confocal
microscopy

Enhanced
jasmonic acid

signaling

Transgenic
A. thaliana
expressing

35S:NPR1-GFP
leaves

Confocal microscopy:
5 to 40 min [82]

LMV HC-Pro 20S α5 A. thaliana HC-Pro
aggregates

Reduces RNase
activity on viral RNA

Subcellular
fractionation Protein–protein Lactuca sativa leaves BiFC: 4 dpi [83,84]

PVX CP, TGBp1,
or TGBp2 MPB2Cb N. benthamiana ER

Blocks formation of
replication

compartments
Yeast two

hybrid Protein–protein N. benthamiana
leaves

Confocal microscopy:
2 dpi [85]

Nuclear proteins

CIRV p36 and p95pol RH30 N. benthamiana
and A. thaliana Mitochondria Blocks assembly of the

sites of replication
Confocal

microscopy Protein–protein N. benthamiana
leaves

Confocal microscopy:
84 h [86]

CNV p33 and p92pol RH30 N. benthamiana
and A. thaliana Peroxisome Blocks assembly of the

sites of replication
Confocal

microscopy Protein–protein N. benthamiana
leaves

Confocal microscopy:
84 h [86]

TBSV p33 and p92pol RH30 N. benthamiana
and A. thaliana Peroxisome Blocks assembly of the

sites of replication
Confocal

microscopy Protein–protein N. benthamiana
leaves

Confocal microscopy:
84 h [86]

TBSV p19 ALY1 ALY3 A. thaliana Cytoplasm Unknown Yeast two
hybrid Protein–protein N. benthamiana

leaves
Confocal microscopy:

3 dpi [79]

Vacuolar proteins

CaMV p4 NBR1 A. thaliana Inclusion bodies NBR1-dependent
degradation of p4

Yeast two
hybrid Protein–protein N. benthamiana

leaves
Confocal microscopy:

2 dpi [82]

TuMV HC-Pro NBR1 A. thaliana
Granule-like
cytoplasmic
structures

NBR1-dependent
degradation of HC-Pro

Confocal
microscopy Protein–protein

Transgenic
A. thaliana
expressing

NBR1-RFP leaves

Confocal microscopy
on systemically

infected leaves: 14 dpi
[87]

* Experimental plants are wild type unless noted.
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3.1. Heat Shock Proteins (HSPs)

HSPs are highly conserved in plants and animals. They are chaperones that protect
other proteins from degradation and facilitate protein trafficking across membranes. HSPs
have several physiological functions in plants, including protection from stress caused by
heat, cold, light, heavy metals, salts, and ozone. HSPs are mainly located in the cytosolic
part of the cell, and in some cases, in the nucleus, chloroplasts, or ER [88,89]. Several HSPs
are chaperones of viral proteins, have essential roles in virus replication [20,21,56], and are
recruited to the sites of virus replication (Table 2). Notable examples are discussed below.

HSP70 moves from the cytoplasm to the nucleus during tomato yellow leaf curl virus
(TYLCV, single-strand DNA genome) infection [68], and to the ER compartments during
TuMV (single positive-strand RNA genome) infection [20]. Downregulation of HSP70
results in the reduced accumulation of TYLCV genomic DNA in infected plants [68]. Both
HSP70 and HSP90 localize mainly in the cytoplasm, and upon red clover necrotic mo-
saic virus (RCNMV, single positive-strand RNA genome) infection, HSP70 and HSP90
were detected in the ER (Table 2). Movement occurred through interactions with p27,
a component of the virus replication compartments [31,74]. Without detectable physio-
logical or developmental defects in the plants, the downregulation of HSP70 and HSP90
by virus-induced gene silencing prevented infection by RCNMV, confirming there are
susceptibility genes [21,31]. Moreover, during infection with bamboo mosaic virus (BaMV,
single positive-strand RNA genome), HSP90 enhances the formation of ribonucleoprotein
complexes and facilitates their entry into the chloroplast, thus moving to the chloroplasts
and playing an important role in BaMV replication [90]. HSP20 antagonizes the antiviral
response by moving into the nucleus through interaction with the RNA-dependent RNA
polymerase (RdRp) of rice stripe virus (RSV, single negative-strand RNA genome), blocking
the recruitment of viral RNA to stress granules and, thus, blocking the degradation of viral
RNA and enhancing viral RNA translation [56].

3.2. Endosomal Sorting Complexes Required for Transport (ESCRTs)

ESCRTs are peripheral membrane proteins in plant, mammalian, and yeast cells and
play important roles in autophagy, sorting of ubiquitinated receptors, and in cytokinesis.
They are also involved in the detachment of membrane vesicles, viral budding, and in the
formation of the sites of virus replication [48,58,91]. ESCRT-I and ESCRT-III move from the
cytoplasm to the sites of replication formed by TBSV (single positive-strand RNA genome)
in the peroxisome and by BMV (single positive-strand RNA genome) in the perinuclear
ER (Table 2) [18,48,58]. Their recruitment to the sites of virus replication is mediated by
their interaction with TBSV replication protein p33 or BMV replication protein 1a (Table 2).
ESCRT proteins are proposed participate in bending membranes to achieve the spherical
shape of the compartments that function as sites of replication for both viruses [18,48,58].
Thus, the absence of ESCRT proteins in yeast cells, and their downregulation in plants,
resulted in a reduction in the accumulation of BMV and TBSV, respectively [18,48,58].

3.3. Translation Factors

Viruses are dependent on the host machinery to translate their RNAs into proteins.
Several viruses require eukaryote initiation factors Poly A binding protein2 (PABP2),
eukaryote initiation factor eIF (iso)4e, eIF4e, and elongation factor eEF(1A). During viral
infection, these proteins move from the cytoplasm to the sites of TuMV replication [5,45,92]
(Table 2). Re-initiation supporting proteins (RISPs) move from the cytoplasm to trans-
activator viroplasmin (TAV) aggregates [45,93] and are necessary for cauliflower mosaic
virus (CaMV) infection [65,66]. Additionally, some translation factors contribute to the
cell-to-cell movement and systemic spread of the virus [92]. The role of the initiation,
elongation, and re-initiation factors in the sites of virus replication and in virus movement
is unclear.
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3.4. Asp-Glu-Ala-Asp (DEAD)-Box RNA Helicases (RHAs)

DEAD-box RNA helicases (RHAs) are a large family of RNA helicases involved in
all steps of RNA metabolism. They are required for transcription, mRNA splicing and
translation, RNA modification and transport, ribosome biogenesis, ribonucleoprotein
complex assembly, and mRNA degradation [94]. RHAs are also involved in the response
to biotic stress and in abiotic stress tolerance [95].

Several RHAs contribute to the translation and replication of viral RNA and change
their localization upon viral infection [96,97]. The RNA helicases, AtRH8 and AtRH9,
move from the cytoplasm to the sites of TuMV replication in the chloroplast in A. thaliana
(Table 2). Migration into the chloroplast is mediated by viral proteins. AtRH8 interacts with
virus-linked protein VPg [63], while AtRH9 interacts with potyvirus membrane protein
6K2 [64]. In mutant plants lacking either AtRH8 or AtRH9, accumulation of TuMV is
reduced [63,64].

3.5. Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH)

GAPDH is a catalytic enzyme involved in glycolysis and mRNA binding. After
infection with TBSV, GAPDH moves from the cytoplasm to the peroxisomal membrane
and into the sites of TBSV replication. GAPDH is responsible for maintaining the ratio
between positive- and negative-strand RNA genomes. Downregulation of GAPDH in
N. benthamiana plants caused a fourfold reduction in the accumulation of TBSV and tobacco
mosaic virus (TMV, single positive-strand RNA genome), pointing to a required role of
this protein in both viruses [59]. In contrast, GAPDH has an antiviral role against BaMV
and its satellite (satBaMV) as its downregulation in N. benthamiana plants resulted in an
increase in BaMV and satBaMV RNA accumulation, while its overexpression reduced the
accumulation of BaMV and satBaMV. The subcellular localization of GAPDH does not
change during infection with BaMV or satBaMV [98].

3.6. Glutathione Transferase U4 (GSTU4)

GSTU4 belongs to the family of plant glutathione transferases (GSTs), which catalyze
the reduction of hydroperoxides formed during oxidative stress, participate in ultraviolet-
inducible cell signaling pathways, and in the regulation of apoptosis [99]. During infection
with BaMV, GSTU4 is upregulated, interacts with the 3′ untranslated region (UTR) in BaMV
genomic RNA, moves from the cytoplasm to the sites of virus replication in the chloroplasts,
and enhances the synthesis of negative-strand RNA. Downregulation of GSTU4 caused a
reduction in the accumulation of BaMV and potato virus X (PVX, single positive-strand
RNA genome) but not in the accumulation of cucumber mosaic virus (CMV, single positive-
strand RNA genome) or TMV [47]. In soybean, GSTU10-10 is induced in response to the
systemic infection of the plants by soybean mosaic virus (SMV, single positive-strand RNA
genome), but no subcellular localization data were reported [100]. Thus, GSTs may have
a role in virus susceptibility, mediated by their ability to reduce oxidative stress, which
supports viral replication.

3.7. Other Cytoplasmic Proteins

Other cytoplasmic proteins with altered localization during viral infection include
oxysterol-binding protein–related proteins (ORPs), a yeast RNA-binding protein (LSm1),
receptor for activated C kinase 1 (RACK1), and a proteasome protein (20S α5). ORPs are
lipid transfer proteins that participate in vesicular trafficking, lipid metabolism and sig-
naling, non-vesicular sterol transfer, directional sterol transport, and other processes [101].
ORPs facilitate the redistribution of sterols and enhance membrane folding during the
formation of the replication sites in the peroxisomes by TBSV, and in the mitochondrial
membrane by carnation Italian ringspot virus (CIRV, single positive-strand RNA genome)
(Table 2). Deletion of ORPs lowers the efficiency of the viral replicase assembly and activity
and resulted in a major reduction in virus accumulation [52].
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LSm1 is a yeast protein related to the core small nuclear ribonucleoprotein particle
(snRNP). LSm1 is involved in BMV RNA de-capping and translation. LSm1 protein is re-
cruited from the cytoplasm to the ER by replication protein 1a and conditions susceptibility
to BMV [50].

RACK1 is a cytoplasmic protein involved in the regulation of several plant processes
including development, hormone response, and environmental stress response [102]. It is also
involved in the innate immune response against fungal and bacterial pathogens [103–105].
During RCNMV infection of N. benthamiana, RACK1 interacts with viral replication protein
p27 and moves from the cytoplasm to the sites of replication in the ER (Table 2). RACK1 is
essential for the p27-mediated induction of reactive oxygen species (ROS) bursts that enhances
virus replication. Downregulation of RACK1 resulted in the reduced accumulation of RCNMV
RNA [55].

The 20S α5 is a subunit of the ubiquitin–proteasome system with RNAse activity
and is involved in the degradation of viral RNA [83,84]. After infection with lettuce
mosaic virus (LMV, single positive-strand RNA genome), the 20S α5 colocalizes with
HC-Pro in cytoplasmic aggregates (Table 3). Interaction with HC-Pro and movement into
cytoplasmic aggregates blocks the RNAse activity of 20S α5, protecting the virus from
degradation. Consistent with its antiviral role, downregulation of 20S α5 enhances LMV
accumulation [84].

4. Endosomal Proteins

Rab GTPases are central regulators of vesicle budding, movement, and fusion [106].
Endosomal protein Rab5-small guanosine triphosphatase (RAB5-GTPase) regulates endo-
some biogenesis and homotypic and heterotypic fusions [107]. During infection with TBSV
and CNV (Table 2), RAB5-GTPase moves to the sites of virus replication in the peroxisomes,
or in the mitochondria during CIRV infection [69]. RAB5-GTPase increases the amount
of endosomal phospholipid phosphatidylethanolamine needed to form the sites of virus
replication and to establish robust virus replication [69].

5. Endoplasmic Reticulum Proteins

Several RNA viruses form their sites of replication in endoplasmic reticulum (ER)-
bound membranes [108], and several ER proteins move into the sites of virus replication
formed in other subcellular organelles (Figure 2B). Representative groups are discussed
below (Table 2).

5.1. Soluble N-Ethyl Maleimide Sensitive Factor Adaptor Protein Receptors (SNAREs)

SNAREs belong to the syntaxin family of proteins that mediate membrane fusion be-
tween transport replication compartments and their target membranes [109]. The potyviral
6K2 protein induces the formation of ER-derived complexes that subsequently translocate
to the chloroplasts, where potyviral replication occurs [71]. A. thaliana SYP71 is a SNARE
protein located both in the ER and in the plasma membrane [110], is essential for TuMV
replication, and contributes to the movement of replication compartments from the ER to
the chloroplast (Table 2). Downregulation of SYP71 inhibits TuMV infection [71].

5.2. Reticulon Homology Domain Proteins (RHPs)

RHPs are a family of membrane-shaping proteins that induce and stabilize positively
curved peripheral ER membranes and are involved in apoptosis, cell division, and intracellular
trafficking [111]. RHPs normally localize to the peripheral ER. During BMV infection, they
interact with replication protein 1a, move to the perinuclear ER, and are incorporated into BMV
sites of replication. RHPs are essential for the formation of BMV replication compartments.
Mutant plants lacking RHPs have a reduced number of replication compartments and an 80%
of reduction in viral replication compared to the wild-type plants [70].
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5.3. Root Hair Defective 3 (RHD3)

RHD3 is a member of the dynamin-like atlastin GTPase family of proteins. It plays
a vital role in generating of the interconnected tubular ER network, is required for Golgi
distribution and motility in plant cells, and is essential for plant development [112]. RHD3
is essential for the formation, maturation, and intracellular movement of TuMV replication
compartments. Interaction with TuMV 6K2 protein moves RHD3 from the ER to the
TuMV replication compartments (Table 2). In mutant plants lacking RHD3, replication and
systemic movement of TuMV are reduced [28].

6. Golgi Apparatus Proteins

Rab guanosine triphosphatase 3f (RABG3f) belongs to the family of Rab GTPases that
regulate the intracellular trafficking between organelles [113]. RABG3f is located in the
Golgi apparatus and moves to the chloroplast during BaMV infection (Table 2), participates
in the formation of the sites of replication, and is required for the efficient infection of
in N. benthamiana by BaMV. Downregulation of NbRABG3f reduces the accumulation of
BaMV [72].

ADP-ribosylation factor (ARF1) 1 is a Golgi body GTPase [114]. During infection
with RCNMV, ARF1 interacts with viral protein p27 and is moved into the sites of virus
replication on the ER membrane (Table 2). Inhibition of ARF1 activity causes a reduction in
RCNMV RNA accumulation [74].

7. Plasma Membrane Proteins

Viruses move from cell to cell through plasmodesmata using specialized viral move-
ment proteins and host proteins [115]. Potyviral replication compartments are transported
to the plasmodesmata throughout the ER–Golgi secretory pathway and the actomyosin
motility system [40]. The phosphatidylinositol phosphates Ca-binding protein (PCaP1) and
the developmentally regulated protein (DREPP) are plasma membrane proteins that medi-
ate the cell-to-cell movement of TuMV and tobacco vein banding mosaic virus (TVBMV,
single positive-strand RNA genome) respectively, by interacting with P3N-PIPO and CI
(cylindric inclusion) proteins (Table 2). The interaction between PCaP1 or DREPP and
P3N-PIPO or CI and their relocalization to the plasmodesmata are required for efficient
virus replication and local and systemic movement [40,77]. CaMV (single-strand DNA
genome) moves through the plasmodesmata as a virion. Cytoplasmic and nuclear inclu-
sion bodies necessary for virion assembly are formed by viral protein P6. AtSRC2.2, a C2
calcium-dependent membrane-targeting protein, is part of the inclusion bodies and has
been implicated in CaMV movement [75].

The respiratory burst oxidase homolog (RBOHB) is a plasma membrane protein
in the family of plant NADPH oxidases and plays an essential role in ROS production
and signaling [116]. During infection of N. benthamiana by RCNMV, RBOHB moves to
the perinuclear ER-bound sites of virus replication (Table 2) through interactions with
replication protein p27 and is required for robust viral RNA replication [19]. In contrast,
during infection with TMV, RBOHB-induced ROS burst has an antiviral effect, with no
protein relocalization reported [117,118].

8. Nuclear Proteins

DNA viruses replicate in the nucleus [2]. RNA viruses do not enter the nucleus.
However, some RNA viruses need nuclear host factors to replicate or move. Fibrillarin
is a major nucleolar protein that forms part of Cajal bodies, is a core component of small
nucleolar ribonucleoprotein particles, and is required for rRNA processing. Similar to all
other umbraviruses, groundnut rosette virus (GRV, single positive-strand RNA genome)
does not encode for a coat protein and does not form virions. The lack of a coat protein
is compensated by open reading frame 3 (ORF3), and GRV moves as ribonucleoprotein
particles. In infected plants, ORF3 cycles from the cytoplasm to the nucleus passing through
Cajal bodies and back into the cytoplasm. This movement is dependent on interactions
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between ORF3 and fibrillarin and is required for the formation of ribonucleoprotein parti-
cles. Downregulation of fibrillarin through virus-induced gene silencing in N. benthamiana
did not affect virus replication or cell-to-cell movement. However, in the absence of fibril-
larin ORF3 remained in the Cajal bodies, failed to fuse with the nucleolus, and prevented
systemic movement of GRV [27].

Allies of LEF-1 and AML-1 (ALY proteins) belong to a family of nuclear polypeptides
involved in mRNA export from the nucleus to the cytosol, in the regulation of plant
immunity, in controlling the aperture of stomata, and plant growth and development [119].

During infection by TBSV, two A. thaliana ALYs (AtALY2 and AtALY4) and an
N. benthamiana ALY protein (NbALY617) move from the nucleus to the cytoplasm (Table 2)
by interacting with P19, a strong silencing suppressor of cytoplasmic distribution that in-
terferes with antiviral gene silencing [79]. The biological significance of this relocation and
interaction remains to be determined. In contrast, A. thaliana proteins AtALY1 and AtALY3
and N. benthamiana proteins NbALY615 and NbALY1693 inhibit the silencing suppression
activity of P19 (Table 3). This effect is mediated by the sequestration of P19 in the nucleus
by nuclear ALY proteins via an RNA-binding motif [120].

Nuclear DEAD-box RNA helicase RH30 interacts with TBSV replication proteins p33
and p92pol and moves from the nucleus to TBSV sites of replication in the peroxisome
(Table 3). RH30 inhibits the formation of replication compartments, the recruitment of
genomic positive-strand RNA into replication, and RNA synthesis. The antiviral effect has
been shown against TBSV, CNV, CIRV, RCNMV, and TMV [86].

9. Vacuolar Proteins

Tobamovirus multiplication 1 (TOM1) and TOM3 (Table 2) are vacuolar membrane
proteins required for the replication of tobamoviruses. Both interact with the helicase-
like domain of replication proteins 130K and 180K in tomato mosaic virus (ToMV, single
positive-strand RNA genome) and participate in the formation and anchoring of replication
compartments to the ER [80,81].

Autophagy is a conserved mechanism of protein degradation involved in cell home-
ostasis. Autophagy may benefit the virus or have antiviral roles [121,122]. Selective
autophagy substrate, NBR1, is a cargo receptor protein that suppresses TuMV and CaMV
infection by targeting the silencing suppressor HC-Pro and the structural capsid pro-
tein P4, respectively. To create an environment favorable to replication and movement,
TuMV antagonizes NBR1-dependent autophagy by a mechanism that is dependent on
the viral proteins VPg and 6K2 (Table 3). NBR1 is normally found in the autophagosome,
cytoplasm, and vacuoles. During TuMV infection, NBR1 moves to virus replication com-
partments [123]. NBR1 mediates the degradation of TuMV HC-Pro. In turn, TuMV VPg
and 6K2 proteins counteract NBR1 antiviral effects [87]. However, the role of NBR1 in
plant–TuMV interactions is more complex. During TuMV infection of Brassica napus, large
amounts of secondary siRNAs are formed from the NBR1 mRNA, which in turn direct
cleavage and downregulation of NBR1 mRNA, actin depolymerization factor (ADF), and
other transcripts [124].

10. Conclusions

Host proteins needed by the virus may be redirected to subcellular compartments
where they contribute to essential viral processes, such forming sites of viral replication,
RNA synthesis, or virus movement (Table 2 and Figure 2). In the opposite direction, host
proteins with antiviral roles may be forced to move away from their natural subcellular
localization. Changes in subcellular localization of host proteins are mediated by direct or
indirect interactions with viral proteins or RNA (Table 2). However, it is not clear whether
accumulation in a new location results from the movement of existing host proteins or
from newly synthesized ones.

Changes in the subcellular localization of host proteins have been identified and
characterized mainly using experimental hosts N. benthamiana, A. thaliana, and S. cerevisiae
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(Figure 1A). The most frequent change is cytoplasmic proteins redirected to virus replication
compartments formed in the ER, peroxisome, chloroplast, mitochondria, and nucleus
(Figures 1 and 2). In contrast, the number of studies documenting changes in subcellular
localization of antiviral proteins is significantly (fivefold) lower (Figure 1B and Table 3).
These antiviral proteins block the formation of replication compartments or degrade viral
proteins. Subcellular relocalization was needed to perform antiviral activities. Interestingly,
in some cases, antiviral activity is inhibited by virus-induced changes in localization
(Table 3).

Mutational inactivation or downregulation of proteins that participate in essential
viral processes results in lack of infection or reduction of viral RNA accumulation [5,46].
However, genetic changes in the host may cause developmental abnormalities, reduced
fitness, or altered physiology, masking the real effect or indirectly affecting virus replication
or movement. HSP70, RABG3f, GSTU4, RACK1, GAPDH, AtRH8, and AtRH9 were down-
regulated by silencing or mutationally inactivated. The source paper explicitly indicated
that plants did not show detectable physiological or severe developmental defects com-
pared to the wild-type plants. RACK1-knockdown plants had narrow leaves, categorized
as a minor physiological defect [55]. Other publications did not provide information on the
phenotype of mutant plants.

The dependence of viruses on host resources at all steps of the infection process puts
evolutionary pressure both on the virus and on the host. Virus–host co-evolution might
favor interactions that increase both host and virus fitness rather than decreasing fitness
of either the host or the virus. Accordingly, it might be to the benefit of viruses to interact
with existing processes at their natural location in a non-interfering manner rather than
through mechanisms that recruit host proteins away from their natural sites and normal
functions, which may potentially lead to disease. All documented cases of changes in
subcellular localization (Tables 2 and 3) come from viruses that are pathogenic. Currently,
no information is available on the changes, or lack thereof, of host proteins for virus–plant
combinations in which the interaction does not lead to disease.

Recruitment of cytoplasmic proteins to the sites of virus replication in membrane-
bound compartments through mechanisms that include direct protein–protein interactions
between viral and host proteins and indirectly through membranes, other proteins, or
RNA (Table 2, Figure 2) imposes selection pressure on viral proteins to maintain the ability
to interact with host proteins. Viral proteins are usually multifunctional. In addition to
interacting with other viral proteins or RNA, efficient interaction with host proteins must
be maintained. The host might be genetically uniform or diverse. These constraints exert
selection pressure on viral proteins to maintain functionality and be able to interact with
the cognate host proteins. These observations suggest that interactions between viral and
host proteins that are essential at any part of the infection process are also important
determinants of virus evolution and host adaptation. Viral proteins might respond to
selection pressure by developing a perfect sequence and structure that is functional and
able to interact with host proteins that are genetically diverse. Alternatively, viral proteins
might respond to selection pressure by incorporating mutationally robust areas coding for
structurally flexible domains capable of interacting with host proteins that are genetically
diverse. Viruses might be generalists with a wide host range or specialists with a narrow
host range. Through co-evolution, in response to selection pressure from the virus, plants
might generate diversity in their alleles and/or by incorporating redundant alleles.

This model is illustrated by translation initiation factors and potyviruses. The transla-
tion initiation factors, eEF1A and eIF(iso)4e, participate in TuMV viral RNA translation and
formation of replication compartments through interactions with VPg [5,125]. Although
eIF(iso)4e is necessary for potyvirus infection, it is dispensable for normal plant growth and
development [5]. In addition to interacting with eIF(iso)4e, VPg must recognize and interact
with TuMV genomic RNA, the RNA-dependent RNA polymerase, and protein 6K1 [5,125].
In connection with its multifunctionality and ability to interact with multiple partners, po-
tyviral VPg is structurally disordered and mutationally robust [126]. Translation initiation
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factors eIF4E are a multigene family. Ten allelic variants of eIF4 were detected in natural
pepper populations with varying levels of susceptibility to potyviruses [127]. Accessions
resistant to potyvirus infection encoded mutations in eIF4 that disrupted interaction with
VPg [127], consistent with the essential role of both VPg and eIF4 in potyvirus–plant in-
teractions and with the model that plants respond to selection pressure by accumulating
diversity to buffer the effect of viral infection.

Changes in subcellular localization of host proteins documented to date and sum-
marized here represent bonafide events associated with basic mechanisms of plant–virus
interactions. However, these patterns are heavily influenced by the combinations of model
hosts and viruses used to develop model experimental systems to identify host factors
that affect virus replication (Figure 1A). A large fraction of the host proteins documented
were identified using only three viruses BMV, TBSV, and TuMV (single positive-strand
RNA, Figure 1D). Reasons for this bias mainly include the availability of infectious clones;
well-characterized experimental systems to study virus replication, gene expression, and
function; and genetically tractable heterologous hosts in combination with well-developed
biochemical approaches for protein expression, purification, and localization [28,128,129].
Overexpression of viral proteins in non-natural hosts is a powerful tool to identify potential
host proteins that play important roles during infection. It is possible that some of the
resulting relocalization may be an artifact of overexpression of individual viral proteins in
a heterologous system. However, genetic analyses, virus-induced gene silencing, chemical
treatments, or a combination of approaches have been used to validate the requirement
of particular host proteins, ruling out the possibility of an experimental artifact [21,28,68].
Furthermore, basic information about factors required for viral infection identified in het-
erologous hosts has been used to engineer resistance in crops. Based on the observation
that eukaryote translation initiation factors are susceptibility genes to potyviruses [5],
through interaction with potyviral VPg [28], CRISPR-Cas9 was used in tomato to engineer
resistance to pepper mottle virus by editing eIF4E1 [130].

New approaches are needed for the genome-wide identification of factors required
for the virus or with antiviral activities in natural hosts. Although these approaches are
likely to be developed using model experimental systems, it would be of immense benefit
to implement them in staple crops. Alternatively, or in addition, these approaches could be
directed to particular diseases to which natural resistance is not readily available, such as
maize lethal necrosis [131].
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