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Abstract: The emergence or re-emergence of viruses with epidemic and/or pandemic potential, such
as Ebola, Zika, Middle East Respiratory Syndrome (MERS-CoV), Severe Acute Respiratory Syndrome
Coronavirus 1 and 2 (SARS and SARS-CoV-2) viruses, or new strains of influenza represents sig-
nificant human health threats due to the absence of available treatments. Vaccines represent a key
answer to control these viruses. However, in the case of a public health emergency, vaccine develop-
ment, safety, and partial efficacy concerns may hinder their prompt deployment. Thus, developing
broad-spectrum antiviral molecules for a fast response is essential to face an outbreak crisis as well
as for bioweapon countermeasures. So far, broad-spectrum antivirals include two main categories:
the family of drugs targeting the host-cell machinery essential for virus infection and replication,
and the family of drugs directly targeting viruses. Among the molecules directly targeting viruses,
nucleoside analogues form an essential class of broad-spectrum antiviral drugs. In this review,
we will discuss the interest for broad-spectrum antiviral strategies and their limitations, with an
emphasis on virus-targeted, broad-spectrum, antiviral nucleoside analogues and their mechanisms
of action.
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1. The Interest of Broad-Spectrum Antiviral Strategies

Antiviral drug development has long focused on virus-specific approaches: the strat-
egy to study a virus and identify a specific viral protein as a drug target in order to limit
potential toxicity and to increase drug efficacy (Figure 1). Virus-specific drug development
has also been favored as a way to simplify the drug discovery process compared to the
more complex design of broad-spectrum antivirals, which often require targeting critical
proteins belonging to different viruses or critical cellular processes used by different viruses.
Virus-specific antiviral research remains a successful and essential strategy to combat viral
infections [1]. However, a major obstacle to virus-specific drug development is the length
of the process, which, on average, takes more than a decade between research and drug
approval [2]. Indeed, virus-specific drug development needs first to address fundamental
biology of the virus to find an appropriate target before moving to medicinal chemistry
research, compounds screening, lead optimization, animal studies and eventual clinical
trials. The time constraint for antiviral drug discovery has gradually become more impor-
tant due to the increasing number of viral outbreaks that have recently and consecutively
afflicted our societies including Ebola virus [3], Middle East Respiratory Syndrome coron-
avirus MERS-CoV [4], Severe Acute Respiratory Syndrome Coronavirus 1 and 2 (SARS and
SARS-CoV-2) [5,6], new strains of influenza A virus [7] as well as dengue virus [8], Zika
virus [9,10], West Nile virus [11] and Chikungunya virus [12]. Reasons for the increased
appearances of these outbreaks include increased population densities, forest fragmenta-
tion, intercontinental traveling, and climate change [13,14]. Regardless of their origins, the
recent and consecutive nature of these outbreaks highlight the challenges of virus-specific
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drug research for fast discovery of a therapeutic. Similarly, vaccine development, although
particularly relevant to face outbreaks and pandemics, also requires a significant devel-
opment time to ensure the efficacy and safety of the vaccine [15]. Re-purposing antiviral
drugs, the strategy to evaluate approved drugs for known viruses against new viruses is
highly advantageous in terms of reducing cost and saving time, and has therefore been an
essential component of emergency responses during public health crisis [16].
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Drug re-purposing is advantageous in that the initial part of the drug discovery
process can be bypassed including medicinal chemistry research and lead optimization as
well as the safety evaluation in phase 1 clinical trials, therefore reducing considerably the
research and development time. Yet, re-purposing antiviral drugs successfully is inherently
dependent on the ability of an antiviral drug to be active against multiple viruses, hence,
the need of a broad-spectrum antiviral effect. Historically, broad-spectrum antivirals have
first been discovered by serendipity through simple screening assays against different
viruses rather than through a deliberate strategy to design drugs to display a broad-
spectrum antiviral effect [17,18] for ribavirin or more recently with antibiotic derivatives
with antiviral properties [19,20]. From these initial antiviral drug evaluations emerged
patterns of drugs with similar biological effects. Broad-spectrum antiviral drugs can be
classified into two main categories; first, drugs that affect the host-cell machinery essential
for the infection and replication of different viruses, and second; drugs targeting viruses
directly. Both families of broad-spectrum antiviral drugs (e.g., host-targeted or virus-
targeted broad-spectrum antivirals) present advantages, and disadvantages (Table 1).

Table 1. Pros and cons of different antiviral strategies, virus-specific antiviral strategies, host-targeted and virus-targeted
broad-spectrum antiviral strategies.

Virus-Specific Antiviral Strategies
Broad-Spectrum Antiviral Strategies

Host-Targeted Virus-Targeted

Pros:
- Proven efficacy
- Easier design, one viral target
- Relative safety compared to other strategies

Pros:
- Host proteins broadly required by viruses
- Demonstrated antiviral effect
- Higher barrier to drug resistance development

Pros:
- Less potential for toxicity compared to

host-targeted strategies.
- Potential for repurposing

Cons:
- Narrow application
- Low barrier to drug resistance development
- Long development time

Cons:
- Not selective
- Potential for toxicity

Cons:
- More complex design
- Limited examples of broad-spectrum

antiviral drugs
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2. Host-Targeted Antiviral Strategies

Host-targeted antiviral strategies, reviewed here [21,22], feature a wide range of host
targets including host protease inhibition to restrict viral entry, depletion of intracellular
nucleotide pools, kinase inhibition, glycosidase inhibition, immune system activation and
more. While the main disadvantage of host-targeted antivirals is the higher risk for host
toxicity, an advantage is that the host-targets/proteins involved in virus replication are
often known and can be studied before a new virus emerges.

A host-targeted approach often offers a higher barrier to the appearance of viral drug
resistance. In practice, developing both host-targeted and virus-targeted broad-spectrum
antivirals is crucial and complementary to answer the viral outbreaks to come. Virus-
targeted- broad-spectrum antiviral strategies present their own challenges; the diversity
of viral protein structures and sequences make the design of broadly acting compounds
particularly difficult, and often result in a limited spectrum of antiviral applications. Up
until now, only one class of compounds, nucleoside analogues, has shown promise for
broad-spectrum antiviral applications in the clinic. Viruses adopt different replication
strategies, yet all replicate their genetic material via a DNA or RNA polymerase conferring
potential susceptibility to molecules resembling the natural nucleoside building blocks of
their genomes; the antiviral nucleoside analogues. Many viruses also share the ability to
adapt rapidly to new stress conditions which makes them vulnerable to antiviral strategies
targeting their mutation frequency.

3. Broad-Spectrum Antiviral Nucleoside Analogues

Antiviral nucleoside research began in the 1960–1970s [18,23] but demonstrated its
enormous potential in the 1980–1990s with the discovery of several anti-HIV drugs such as
Abacavir, AZT and other drugs reviewed here [24,25] and since then has expanded its appli-
cations to other viral pathogens (Figure 2) [26–28]. Many direct-acting antiviral nucleoside
analogues target the viral polymerase responsible for the viral genome replication [29].
Unlike non-nucleoside polymerase inhibitors that often bind to allosteric non-conserved
and -mutation-tolerant sites, nucleoside analogues directly bind to the more conserved
active site of the viral polymerase after conversion to their triphosphate active form [30].
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Although antiviral nucleoside analogues form a major class of antiviral drugs (Figure 2),
the development of nucleoside antiviral inhibitors faces several challenges. Nucleoside
analogue half-life and pharmacokinetics differ significantly from natural nucleoside prop-
erties [30]. Many of these challenges originate from the very nature of nucleoside in-
hibitors that intrinsically require activation by host kinases to their triphosphate active
form before becoming substrate of the viral polymerase [31]. The efficiency of antiviral
nucleoside triphosphate formation varies significantly from one cell type to another due
to the different levels of kinases required for the phosphorylation process, the antiviral
nucleoside triphosphate level in cells being recognized as a good indicator for the antiviral
activity [1,32]. While the second phosphorylation can be a critical step [33,34], the first
phosphorylation is often the rate-limiting step for triphosphate formation for most nu-
cleoside analogues [30,35]. Therefore, nucleoside monophosphate prodrugs have been
developed successfully to bypass the first phosphorylation issue and result in improved
antiviral efficacies [36–38]. This is exemplified by the successful development of the anti-
HCV drug Sofosbuvir, a nucleoside phosphoramidate prodrug [1,32] following initially
underwhelming studies of poorly active nucleoside analogues [32,39]. The nucleoside
phosphoramidate prodrug is able to enter infected cells where it is directly converted to
the monophosphate therefore bypassing the first phosphorylation issue.

The definition of “broad-spectrum antiviral” can be considered a matter of scale,
with some defining the term to encompass all viruses, or perhaps all RNA viruses, or
some defining more narrowly to include all viruses of a particular family. The number of
direct-acting and virus-targeted nucleoside analogues displaying an antiviral effect across
different virus families is limited. Three nucleoside analogues stand out as broad-spectrum
RNA virus inhibitors: Remdesivir, Ribavirin and T-705/Favipiravir. We will further discuss
these three nucleoside analogues, their antiviral activities, and mechanisms of action.

3.1. Remdesivir

Remdesivir is a C-nucleoside analogue and a phosphoramidate prodrug that resembles
adenosine monophosphate. The C-nucleoside nature of Remdesivir, with the replacement
of the natural carbon–nitrogen bond between the base and the sugar, by a carbon–carbon
bond, is advantageous in terms of chemical and enzymatic stability (Figure 3). The C-
nucleoside structure also allows the unusual 1′ modification of the sugar. Nucleosides
with a 1′ modifications are often poorly stable with the regular carbon–nitrogen bond
between base and sugar and/or difficult to synthesize. The Ebola virus outbreak in West
Africa in 2013 increased antiviral drug research and screening resulting in a selection
of promising leads. Research centers started intensive studies, including in non-human
primates, that lead to the identification of Remdesivir, a broad-spectrum antiviral active
against Ebola and, Marburg viruses as well as against MERS-CoV and SARS-CoV-2 [40,41].
Remdesivir is an FDA-approved drug for the treatment of COVID-19 patients [42,43].
Remdesivir displays a remarkably broad antiviral effect [44,45] rare for molecules with
similar mode of action through viral RNA chain termination. Before acting as a delayed
chain terminator [46,47], the Remdesivir phosphate prodrug must enter infected cells
where it is converted metabolically by different enzymes to its triphosphate active form
(Figure 3).

Remdesivir, under its triphosphate active form then becomes substrate of the viral
polymerase, a highly conserved and critical protein of the viral replication cycle [48,49].
Remdesivir triphosphate mimics the natural substrate nucleotide adenosine triphosphate.
Delayed chain termination occurs 3-to-5 nucleotides after Remdesivir triphosphate is
incorporated into a growing new strand of viral RNA genome [46,47] leading to a stalling
mechanism [46,48,50]. It is worth noting that the delayed chain termination might protect
Remdesivir from excision by viral proofreading proteins thanks to the 3–5 additional
natural nucleotides [51]. The delayed chain termination triggered by Remdesivir forces
the premature ending of the viral RNA synthesis. A downside of Remdesivir is the need
to administer it intravenously [43,52], likely due to its poor oral bioavailability and short
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half-life [53]. Alternatives to Remdesivir or orally available formulations of Remdesivir are
therefore needed to make treatment more practical.
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3.2. Ribavirin

Ribavirin discovered in the 1970s is one of the most remarkable nucleoside antivirals
due to its antiviral activities, both in tissue culture and animal models against a uniquely
broad range of viruses including DNA and RNA viruses [17] (Figure 4). Ribavirin [18] is
an approved drug against hepatitis C infection in combination with interferons alpha or in
combination with other medications such as sofosbuvir [54,55]. Ribavirin has also been
used for the treatment of other viral infections [56,57]. Structurally, ribavirin possesses a reg-
ular ribose moiety linked to a triazole aromatic ring as a base with a rotatable amido group
attached to it. The rotatable amido group makes ribavirin resemble adenosine or guanosine
upon its rotation. In cells, ribavirin nucleoside is phosphorylated by adenosine kinase to
its monophosphate form and further processed by other kinases to its triphosphate form
(Figure 4) [58]. The antiviral mechanism of action of Ribavirin is still under investigation
and likely comprises multiple mechanisms [59]. These mechanisms include host-targeted
effects such as the inhibition of inosine monophosphate dehydrogenase (IMPDH) under its
5′-monophosphate form and host immune response modulation, as well as virus-targeted
effects such as viral polymerase inhibition, viral lethal mutagenesis, and viral RNA capping
inhibition. The wide variety of viruses susceptible to ribavirin is likely due to the combined
antiviral effects triggered by ribavirin [17]. For host-targeted antiviral effects, ribavirin
monophosphate inhibits IMPDH [60] which is responsible for the conversion of inosine
monophosphate (IMP) to xanthosine monophosphate (XMP). IMPDH role is crucial for
DNA and RNA synthesis since IMPDH controls the intracellular guanine nucleotide (GTP
and dGTP) pool concentrations which may explain the activity of ribavirin against both
DNA and RNA viruses [17]. Ribavirin also possesses an immunomodulatory effect by
modifying the host T-cell response through a switch in T-cell phenotypes [61]. Regarding
virus targeted antiviral effects, ribavirin, as a guanosine analogue [62], can interact with the
RNA capping enzymes [63]. Capped RNAs contains a 7-methylguanosine cap structure
essential for RNA stability and translation. Inhibition of viral RNA capping is interesting
in that the lack of viral RNA capping triggers the antiviral host immune response by
recognition of a foreign viral RNA. Ribavirin also displays virus-targeted effects, with the
inhibition of the viral RNA-dependent RNA polymerase (RdRp) and viral lethal mutagene-
sis. Ribavirin structure is quite different from typical RdRp chain terminators that usually
display modifications on the sugar that prevent further elongation of the growing viral
RNA. Ribavirin does not have modifications on its sugar moiety but only on its base, so it
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remains unclear how ribavirin inhibits RdRp. Yet ribavirin incorporation can significantly
reduce RdRp catalytic efficiency of viral RNA synthesis. It has been demonstrated that rib-
avirin triphosphate inhibits the influenza A virus RNA polymerase in vitro [64] as well as
hepatitis C virus RNA polymerase [65], vesicular stomatitis virus [66,67]. Finally, ribavirin
also induces an antiviral effect via viral lethal mutagenesis against several viruses [68,69]
including in vivo against hepatitis C [70]. Most RNA viruses possess a high mutation
rate that allows them to adapt, escape host immune defenses and drug treatments [71,72].
The high error-prone nature of viral RdRps is widely recognized as the main source for
the virus high mutation rate [73,74]. However, RNA viruses possess an error threshold
above which genetic information cannot be maintained. Alteration of the viral mutation
rate with ambiguous base-pairing nucleoside analogues has been proposed as a poten-
tial therapeutic approach, called lethal mutagenesis, targeting high-mutation-rate RNA
viruses [75]. Ribavirin increases the viral RNA mutation frequency to non-viable levels
thanks to its ambiguous base-pairing capacity. When incorporated into the viral RNA,
ribavirin base-pairs equally with uridine or cytosine nucleotides consequently inducing
viral mutations [68,69]. With the accumulation of deleterious mutations within its genome,
the virus no longer maintains the genetic information required for survival, a process called
lethal mutagenesis or error-catastrophe. The understudied family of compounds able to
induce viral lethal mutagenesis offer a unique chance for broad-spectrum antiviral activity,
theoretically able to affect most high-mutation-rate RNA viruses. Overall, ribavirin’s ability
to mimic both adenosine and guanosine is advantageous in that it allows ribavirin to
interact with a variety of enzymes and biological mechanisms critical for the replication
cycle of many viruses. The downside of ribavirin resembling adenosine and guanosine
is that it enhances the interaction of ribavirin with the host cell machinery resulting in
poor selectivity and toxicity [76] yielding undesirable side effects such as severe anemia.
Discovery of molecules with similar ambiguous base-pairing capacity but more selective
for viral proteins is therefore desirable [77].
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3.3. T-705 Favipiravir

As mentioned in Section 3.2., compounds able to induce viral lethal mutagenesis offer
a unique opportunity for broad-spectrum antiviral activities. Viral lethal mutagenesis is
interesting because even a small increase in the viral mutation rate can have a devastating
negative impact on virus replication. The lethal mutagenesis inducer ribavirin is broadly
active yet poorly selective and toxic, thus alternatives are needed. An approved drug in
Japan against influenza T-705 (Favipiravir/Avigan) (Figure 5) possesses a broad-spectrum
antiviral effect [78,79], and can induce lethal mutagenesis of multiple viruses as well as
chain termination. T-705 is a nucleobase analogue (the base of a nucleoside without ribose),
a pyrazinamide derivative that resemble adenine or guanine upon rotation of its amido
group [80,81]. In cells, T-705 nucleobase is converted enzymatically to its corresponding
mononucleotide by the hypoxanthine-guanine phosphoribosyl-transferase (HGPRT) of
the purine nucleotide salvage pathway [82]. Then T-705 mononucleotide is further phos-
phorylated to its triphosphate active form by different kinases (Figure 5) [83,84]. T-705 is
interesting in that, as a nucleobase, it bypasses the first phosphorylation step that is often
rate limiting for antiviral nucleosides. Instead, it is directly converted from nucleobase
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to mononucleotide by HGPRT [82]. Once converted to its nucleoside triphosphate form,
T-705, like ribavirin, is incorporated by the viral RdRp as an ATP or GTP mimic to induce
its antiviral effect via lethal mutagenesis [85] and/or chain termination [86,87]. Unlike
ribavirin, T-705 appears to lack overt toxicity issues [77,78]. T-705 does not appear to inhibit
host DNA or RNA polymerases [84,87]. Previous studies have also demonstrated that
high concentrations of T-705 do not influence the synthesis of cellular RNA or DNA [83]
and that T-705 does not cause mitochondrial toxicity [88]. In clinical trials, T-705 has
been administered in gram amounts to patients [89,90] without significant side effects.
T-705 mononucleotide is a weak inhibitor of IMPDH [83] and therefore does not affect
endogenous nucleotide pools significantly.
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As mentioned earlier, T-705 induces viral lethal mutagenesis but T-705 can also display
antiviral activity through viral RNA chain termination. These two antiviral effects, lethal
mutagenesis and chain termination, appear antinomic since these mechanisms should
exclude each other. However, a recent publication by Canard and colleagues seems to
reconcile both mechanisms [81] by taking into consideration the ambiguous base-pairing
nature of T-705. This work points to the likely different mechanism of action depending
on whether T-705 triphosphate (and its analogue T-1105) are incorporated in place of ATP
or GTP. Unfortunately, while the broad-spectrum antiviral activity of T-705 is remarkable
in vitro and in vivo, T-705′s strong antiviral effect did not translate into humans during the
JIKI Trial against Ebola infections [91] and SARS-CoV-2 clinical trials where T-705 provided
only moderate benefits upon early treatment at high doses [90]. One of the major limitations
to the use of T-705 in humans is the lower than expected plasma concentration [92,93],
including an unanticipated drop in drug concentration observed in patients enrolled in the
JIKI Ebola trial [93]. This drop may occur because T-705 possesses a short half-life (2.5–5 h)
resulting from rapid renal elimination in the hydroxylated form mediated by aldehyde
oxidase [94]. In other words, a major portion of T-705 is eliminated before it gets a chance
to be bioactivated to its antiviral form. The fact that T-705 demonstrates a strong antiviral
activity against different viruses in a variety of animal models including mice, Guinea
pigs, and non-human primates points to the likely human-specific limitations of T-705.
Alternatives to T-705 [77,95] and/or strategies to increase its potency are therefore needed.

4. Conclusions and Perspectives

The recent and increasing number of viral outbreaks without available treatments
underline the critical need to develop broad-spectrum antiviral drugs essential to treat
patients rapidly and efficiently. Host-targeted and virus-targeted broad-spectrum antivi-
ral strategies are both needed and likely complementary to offer best possible antiviral
coverage and a variety of treatments. Overall, broad-spectrum antiviral drugs are more
difficult to design compared to classical virus-specific drugs, due to the differences among
viruses, not only in their structures, but also in their behaviors once infecting the host.
Indeed, some viruses might require an organ-specific treatment due to the virus tissue
tropism while other viruses might require a systemic treatment to reduce viremia. There
is a discrepancy between the need of broad-spectrum drug treatments and the antiviral
drug research pattern that favors virus-specific research. Antiviral drug research most
often uses the logical approach, one virus, one target, one drug (broadly active or not) to
clearly understand how a drug is working against a specific virus. Innovation at multiple
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levels are required to increase discovery of broad-spectrum antiviral drugs, such as the
discovery of novel biological mechanisms shared by multiple viruses and the design of
medicinal chemistry approaches to target these mechanisms. Additionally, even the most
active broad-spectrum antiviral drugs display a range of antiviral activities depending on
the virus. Therefore, studying drug combinations to limit drug resistance development
and to increase antiviral efficacy is also needed.

Author Contributions: L.F.B. developed, designed, and wrote the review; R.J.G. and M.T.A. partici-
pated in the writing, edited, and revised the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank colleagues from the Center for Drug Design at the University of
Minnesota for helpful feedback.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sofia, M.J.; Bao, D.; Chang, W.; Du, J.; Nagarathnam, D.; Rachakonda, S.; Reddy, P.G.; Ross, B.S.; Wang, P.; Zhang, H.-R.; et al.

Discovery of a β-D. J. Med. Chem. 2010, 53, 7202–7218. [CrossRef] [PubMed]
2. Van Norman, G.A. Drugs, Devices, and the FDA: Part 1. JACC Basic Transl. Sci. 2016, 1, 170–179. [CrossRef]
3. Cenciarelli, O.; Pietropaoli, S.; Malizia, A.; Carestia, M.; D’Amico, F.; Sassolini, A.; Di Giovanni, D.; Rea, S.; Gabbarini, V.;

Tamburrini, A.; et al. Ebola Virus Disease 2013–2014 Outbreak in West Africa: An Analysis of the Epidemic Spread and Response.
Int. J. Microbiol. 2015, 2015, 1–12. [CrossRef] [PubMed]

4. Mackay, I.M.; Arden, K.E. MERS coronavirus: Diagnostics, epidemiology and transmission. Virol. J. 2015, 12, 222. [CrossRef]
[PubMed]

5. Drosten, C.; Günther, S.; Preiser, W.; van der Werf, S.; Brodt, H.-R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.;
Fouchier, R.A.M.; et al. Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. N. Engl. J. Med.
2003, 348, 1967–1976. [CrossRef]

6. Contini, C.; Di Nuzzo, M.; Barp, N.; Bonazza, A.; De Giorgio, R.; Tognon, M.; Rubino, S. The novel zoonotic COVID-19 pandemic:
An expected global health concern. J. Infect. Dev. Countries 2020, 14, 254–264. [CrossRef]

7. Chowell, G.; Echevarría-Zuno, S.; Viboud, C.; Simonsen, L.; Tamerius, J.; Miller, M.A.; Borja-Aburto, V.H.; Peiris, J.S.M.
Characterizing the Epidemiology of the 2009 Influenza A/H1N1 Pandemic in Mexico. PLoS Med. 2011, 8, e1000436. [CrossRef]

8. Salles, T.S.; da Encarnação Sá-Guimarães, T.; de Alvarenga, E.S.L.; Guimarães-Ribeiro, V.; de Meneses, M.D.F.; de Castro-Salles, P.F.;
Dos Santos, C.R.; do Amaral Melo, A.C.; Soares, M.R.; Ferreira, D.F.; et al. History, epidemiology and diagnostics of dengue in the
American and Brazilian contexts: A review. Parasites Vectors 2018, 11, 264. [CrossRef]

9. Zanluca, C.; Melo, V.C.A.d.; Mosimann, A.L.P.; Santos, G.I.V.D.; Santos, C.N.D.D.; Luz, K.; Dos Santos, G.I.V.; Dos Santos, C.N.D.
First report of autochthonous transmission of Zika virus in Brazil. Memórias Do Inst. Oswaldo Cruz. 2015, 110, 569–572. [CrossRef]

10. Rasmussen, S.A.; Jamieson, D.J.; Honein, M.A.; Petersen, L.R. Zika Virus and Birth Defects—Reviewing the Evidence for Causality.
N. Engl. J. Med. 2016, 374, 1981–1987. [CrossRef]

11. Barrett, A.D.T. West Nile in Europe: An increasing public health problem. J. Travel Med. 2018, 25. [CrossRef] [PubMed]
12. Mayer, S.V.; Tesh, R.B.; Vasilakis, N. The emergence of arthropod-borne viral diseases: A global prospective on dengue,

chikungunya and zika fevers. Acta Trop. 2017, 166, 155–163. [CrossRef]
13. Lindahl, J.F.; Grace, D. The consequences of human actions on risks for infectious diseases: A review. Infect. Ecol. Epidemiol. 2015,

5, 30048. [CrossRef] [PubMed]
14. Beyer, R.M.; Manica, A.; Mora, C. Shifts in global bat diversity suggest a possible role of climate change in the emergence of

SARS-CoV-1 and SARS-CoV-2. Sci. Total Environ. 2021, 767, 145413. [CrossRef] [PubMed]
15. Pronker, E.S.; Weenen, T.C.; Commandeur, H.; Claassen, E.H.J.H.M.; Osterhaus, A.D.M.E.; Vasilakis, N. Risk in Vaccine Research

and Development Quantified. PLoS ONE 2013, 8, e57755. [CrossRef] [PubMed]
16. Mercorelli, B.; Palù, G.; Loregian, A. Drug Repurposing for Viral Infectious Diseases: How Far Are We? Trends Microbiol. 2018, 26,

865–876. [CrossRef]
17. Sidwell, R.W.; Huffman, J.H.; Khare, G.P.; Allen, L.B.; Witkowski, J.T.; Robins, R.K.; Khare, L.G.P.; Allen, B.; Witkowski, R.J.T.;

Robins, K. Broad-Spectrum Antiviral Activity of Virazole: 1-f8- D-Ribofuranosyl- 1,2,4-triazole- 3-carboxamide. Science 1972, 177,
705–706. [CrossRef]

http://doi.org/10.1021/jm100863x
http://www.ncbi.nlm.nih.gov/pubmed/20845908
http://doi.org/10.1016/j.jacbts.2016.03.002
http://doi.org/10.1155/2015/769121
http://www.ncbi.nlm.nih.gov/pubmed/25852754
http://doi.org/10.1186/s12985-015-0439-5
http://www.ncbi.nlm.nih.gov/pubmed/26695637
http://doi.org/10.1056/NEJMoa030747
http://doi.org/10.3855/jidc.12671
http://doi.org/10.1371/journal.pmed.1000436
http://doi.org/10.1186/s13071-018-2830-8
http://doi.org/10.1590/0074-02760150192
http://doi.org/10.1056/NEJMsr1604338
http://doi.org/10.1093/jtm/tay096
http://www.ncbi.nlm.nih.gov/pubmed/30289526
http://doi.org/10.1016/j.actatropica.2016.11.020
http://doi.org/10.3402/iee.v5.30048
http://www.ncbi.nlm.nih.gov/pubmed/26615822
http://doi.org/10.1016/j.scitotenv.2021.145413
http://www.ncbi.nlm.nih.gov/pubmed/33558040
http://doi.org/10.1371/journal.pone.0057755
http://www.ncbi.nlm.nih.gov/pubmed/23526951
http://doi.org/10.1016/j.tim.2018.04.004
http://doi.org/10.1126/science.177.4050.705


Viruses 2021, 13, 667 9 of 12

18. Witkowski, J.T.; Robins, R.K.; Sidwell, R.W.; Simon, L.N.; Robins, R.K.; Sidwell, R.W.; Simon, L.N. Design, synthesis, and broad
spectrum antiviral activity of 1-.beta.-D-ribofuranosyl-1,2,4-triazole-3-carboxamide and related nucleosides. J. Med. Chem. 1972,
15, 1150–1154. [CrossRef]

19. Balzarini, J.; Keyaerts, E.; Vijgen, L.; Egberink, H.; De Clercq, E.; Van Ranst, M.; Printsevskaya, S.S.; Olsufyeva, E.N.; Solovieva, S.E.;
Preobrazhenskaya, M.N. Inhibition of feline (FIPV) and human (SARS) coronavirus by semisynthetic derivatives of glycopeptide
antibiotics. Antiviral Res. 2006, 72, 20–33. [CrossRef]

20. Szűcs, Z.; Naesens, L.; Stevaert, A.; Ostorházi, E.; Batta, G.; Herczegh, P.; Borbás, A. Reprogramming of the Antibacterial Drug
Vancomycin Results in Potent Antiviral Agents Devoid of Antibacterial Activity. Pharmaceuticals. 2020, 13, 139. [CrossRef]

21. Ji, X.; Li, Z. Medicinal chemistry strategies toward host targeting antiviral agents. Med. Res. Rev. 2020, 40, 1519–1557. [CrossRef]
[PubMed]

22. Saiz, J.-C.; Oya, N.J.d.; Blázquez, A.-B.; Escribano-Romero, E.; Martín-Acebes, M.A.; Oya, N.; Martín-Acebes, M. Host-Directed
Antivirals: A Realistic Alternative to Fight Zika Virus. Viruses 2018, 10, 453. [CrossRef]

23. Schaeffer, H.J.; Gurwara, S.; Vince, R.; Bittner, S.; Schaeffer, H.J.; Vince, R. Novel substrate of adenosine deaminase. J. Med. Chem.
1971, 14, 367–369. [CrossRef] [PubMed]

24. De Clercq, E. Antiviral therapy for human immunodeficiency virus infections. Clin. Microbiol. Rev. Cmr. 1995, 8, 200–239.
[CrossRef]

25. Balzarini, J. Effect of antimetabolite drugs of nucleotide metabolism on the anti-human immunodeficiency virus activity of
nucleoside reverse transcriptase inhibitors. Pharmacol. Ther. 2000, 87, 175–187. [CrossRef]

26. Clercq, E.D. Antivirals and antiviral strategies. Nat. Rev. 2004, 2, 704–720. [CrossRef] [PubMed]
27. Seley-Radtke, K.L.; Yates, M.K. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1:

Early structural modifications to the nucleoside scaffold. Antiviral Res. 2018, 154, 66–86. [CrossRef]
28. Yates, M.K.; Seley-Radtke, K.L. The evolution of antiviral nucleoside analogues: A review for chemists and non-chemists. Part II:

Complex modifications to the nucleoside scaffold. Antiviral Res. 2019, 162, 5–21. [CrossRef]
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