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Abstract: Middle East respiratory syndrome-related coronavirus (MERS-CoV) is a persistent zoonotic
pathogen with frequent spillover from dromedary camels to humans in the Arabian Peninsula,
resulting in limited outbreaks of MERS with a high case-fatality rate. Full genome sequence data
from camel-derived MERS-CoV variants show diverse lineages circulating in domestic camels with
frequent recombination. More than 90% of the available full MERS-CoV genome sequences derived
from camels are from just two countries, the Kingdom of Saudi Arabia (KSA) and United Arab
Emirates (UAE). In this study, we employ a novel method to amplify and sequence the partial MERS-
CoV genome with high sensitivity from nasal swabs of infected camels. We recovered more than
99% of the MERS-CoV genome from field-collected samples with greater than 500 TCID50 equivalent
per nasal swab from camel herds sampled in Jordan in May 2016. Our subsequent analyses of 14
camel-derived MERS-CoV genomes show a striking lack of genetic diversity circulating in Jordan
camels relative to MERS-CoV genome sequences derived from large camel markets in KSA and UAE.
The low genetic diversity detected in Jordan camels during our study is consistent with a lack of
endemic circulation in these camel herds and reflective of data from MERS outbreaks in humans
dominated by nosocomial transmission following a single introduction as reported during the 2015
MERS outbreak in South Korea. Our data suggest transmission of MERS-CoV among two camel
herds in Jordan in 2016 following a single introduction event.
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1. Introduction

Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic betacoro-
navirus with frequent spillover from dromedary camels into humans, primarily in the
Eastern Mediterranean Region. Human-to-human transmission is limited with the ex-
ception of hospital settings where nosocomial transmission leads to outbreaks of MERS
characterized by severe respiratory distress and a case-fatality rate of over 30% in confirmed
cases. The majority of confirmed MERS cases have occurred in the Kingdom of Saudi
Arabia (KSA) [1] where large camel markets have been shown to support endemic trans-
mission of diverse lineages of MERS-CoV among camels, including individuals infected
with multiple MERS-CoV variants simultaneously [2]. Analysis of full MERS-CoV genome
sequences sampled from large camel markets in the United Arab Emirates (UAE) revealed
a similar pattern in co-housed camels shown to be infected with MERS-CoV from diverse
genetic lineages [3]. Phylodynamic analyses supports that the evolution of MERS-CoV,
including extensive recombination, occurs primarily in camels rather than in humans [4],
suggesting that maintenance of MERS-CoV populations in camels is an important com-
ponent of generating viral diversity. Availability of additional camel-derived MERS-CoV
genomes will help to reveal further information about the diversity and epidemiology of
MERS-CoV in its reservoir, the dromedary camel.

In this study, we describe a long-range polymerase chain reaction (LRPCR) assay
to amplify the MERS-CoV genome from field-collected samples for next generation se-
quencing (NGS). We demonstrate the utility and sensitivity of this assay by sequencing the
genome of MERS-CoV from nasal swabs collected from infected camels in Jordan in May
2016 for which partial spike S2 sequences had been recovered for 16 of 28 camel swabs that
had tested positive for MERS-CoV by RT-PCR [5]. We then analyze the genomic sequences
from these camels to better understand the population dynamics of MERS-CoV in Jordan
where there have been sporadic human MERS outbreaks since 2012 [6,7]; however, as
of yet, no camel-derived full-length MERS-CoV genome sequences have been published
from Jordan.

2. Materials and Methods

Nasal swabs were collected from camels as described by van Doremalen et al., 2017 [5].

2.1. Amplification of MERS-CoV Genome

We designed a semi-nested LRPCR assay to produce 5 overlapping amplicons, ap-
proximately 6-kilobase pairs (kbp) each in length, spanning approximately 99% of the
MERS-CoV genome, including all protein-coding sequences (Figure 1). This method has
been applied to sequencing the Ebola virus [8] and henipavirus [9] genomes from complex
samples and is compatible with a variety of next generation sequencing platforms, includ-
ing the field-portable Oxford MinION [8,9]. Primers were designed targeting conserved
regions in order to amplify across all presently described MERS-CoV lineages (Table 1).
Following cDNA synthesis as described in Seifert et al. [8], 5 µL of template cDNA was
added to a reaction mix for each amplicon containing 10 µL of CloneAMP HiFi PCR PreMix
(Takara Bio USA, Inc., Mountain View, CA, USA), 0.4 µM of each primer, and H2O to 25 µL.
The reaction mix was then thermal cycled 35 times at 98 ◦C for 10 s, 56 ◦C for 15 s, and
72 ◦C for 30 s. The process was repeated, with 2 µL of the first-round LRPCR used as
template in a second round of LRPCR before visualizing by gel electrophoresis.
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Figure 1. Location of five, approximately 6 kb, overlapping LRPCR amplicons spanning 99% of the MERS-CoV genome. 
Nucleotide positions relative to the 2012 EMC variant MERS-CoV reference genome, NCBI Accession #JX869059, are listed 
under each amplicon name for the first and second round (A and B, respectively) of the semi-nested LRPCR. 

Table 1. Primer sequences for each of five, approximately 6 kb amplicons, spanning the MERS-CoV genome. Each am-
plicon is the product of a semi-nested LRPCR. 

Amplicon Forward Primer Sequence (5′–3′) Reverse Primer Sequence (5′–3′) Round of LRPCR 
1A AACGAACTTAAATAAAAGCCCTGTTGTTT GGGCATCTTCAAACATAACATCACTT 

Round 1 
2A CACTTTCACTGCTACCACTGCTGTA CGCGAAGTTTATTTGAAGCACA 
3A CGCCTATGAGAAGGATAAGGCAGT GATGCAGACGTTAATTCAAAGCCAT 
4A GCCAGTTGGTGTTGTAGACACTGA TTGCTAGGGTAATAACCAACATGCAT 
5A GCTCGTGATCTTATTTGTGCTCAA GCAGAGGTGACAGTCTTTAACATTCTCT 
1B AACGAACTTAAATAAAAGCCCTGTTGTTT ATACTTAAATCAACAGCAGCAGTGCAA 

Round 2 
2B CACTTTCACTGCTACCACTGCTGTA CTAAGAGGTATACAACCATTCCTAGCGTT 
3B CGCCTATGAGAAGGATAAGGCAGT ACGAGGTGCTTAAACTGTTCACCT 
4B GCCAGTTGGTGTTGTAGACACTGA CTGCTATGCTGCCAAGCAAA 
5B GCTCGTGATCTTATTTGTGCTCAA TGTGCAAGAGTGGACAAGCGAT 

2.2. Library Preparation and Sequencing 
LRPCR products were purified with AMPure XP beads as previously described in 

Seifert et al. [8], pooled at equal molar ratios, prepped for NGS using the TruSeq Nano 
DNA kit, and paired-end sequencing was completed on the MiSeq platform (Illumina, 
Inc., San Diego, CA, USA). The BBTools bioinformatics suite (https://sourceforge.net/pro-
jects/bbmap/, accessed on 1 February 2021) was used to trim adapter and indexing primer 
sequences, filter low-quality bases (<Q30), and remove duplicate reads before mapping to 
a reference MERS-CoV genome sequence (JX869059.2) using BBMap v 1.0. The average 
depth of coverage was greater than 50× for all samples. Variant calling was completed 
using FreeBayes v 1.1.0-50-g61527c5 using the following parameters: p, 1 pooled-continu-
ous; min-alternate-fraction, 0.3; min-alternate-count, 10 [10]. Sequences with greater than 
or equal to 80% of the MERS-COV genome recovered were annotated and deposited in 
GenBank under the accession numbers MW086527–MW086540. 

2.3. Phylogenomic Analyses 
All MERS-CoV genome sequences (≥20,000 bp in length, from 2012 through to March 

2021) available on GenBank were downloaded and curated to remove sequences repre-
senting serial sampling studies, sequences lacking metadata, and sequences from cell-cul-
ture adaptation studies. Fourteen full camel-derived MERS-CoV genome sequences and 
6 partial MERS-CoV genome sequences (ranging from 5–18 kb) from this study were then 
aligned with the remaining 464 MERS-CoV genomes, and the maximum likelihood phy-
logenetic tree was inferred with 1000 UltraFast bootstrap replicates implemented in IQ-
TREE v 2.1.2 [11], with integrated ModelFinder used to determine the best-fit substitution 
model, with GTR +F+R3 chosen with the Bayesian Information Criterion [12].  

As recombination may confound phylogenetic signal, recombination detection pro-
gram 4 (RDP4 [13]) was used to investigate the effect of recombination on the topology of 
the MERS-CoV phylogenomic tree pertaining to the placement of the Jordan camel-de-
rived variants sequenced for this study. Recombination analyses were performed in RDP4 
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Figure 1. Location of five, approximately 6 kb, overlapping LRPCR amplicons spanning 99% of the MERS-CoV genome.
Nucleotide positions relative to the 2012 EMC variant MERS-CoV reference genome, NCBI Accession #JX869059, are listed
under each amplicon name for the first and second round (A and B, respectively) of the semi-nested LRPCR.

Table 1. Primer sequences for each of five, approximately 6 kb amplicons, spanning the MERS-CoV genome. Each amplicon
is the product of a semi-nested LRPCR.

Amplicon Forward Primer Sequence (5′–3′) Reverse Primer Sequence (5′–3′) Round of LRPCR

1A AACGAACTTAAATAAAAGCCCTGTTGTTT GGGCATCTTCAAACATAACATCACTT

Round 1
2A CACTTTCACTGCTACCACTGCTGTA CGCGAAGTTTATTTGAAGCACA
3A CGCCTATGAGAAGGATAAGGCAGT GATGCAGACGTTAATTCAAAGCCAT
4A GCCAGTTGGTGTTGTAGACACTGA TTGCTAGGGTAATAACCAACATGCAT
5A GCTCGTGATCTTATTTGTGCTCAA GCAGAGGTGACAGTCTTTAACATTCTCT

1B AACGAACTTAAATAAAAGCCCTGTTGTTT ATACTTAAATCAACAGCAGCAGTGCAA

Round 2
2B CACTTTCACTGCTACCACTGCTGTA CTAAGAGGTATACAACCATTCCTAGCGTT
3B CGCCTATGAGAAGGATAAGGCAGT ACGAGGTGCTTAAACTGTTCACCT
4B GCCAGTTGGTGTTGTAGACACTGA CTGCTATGCTGCCAAGCAAA
5B GCTCGTGATCTTATTTGTGCTCAA TGTGCAAGAGTGGACAAGCGAT

2.2. Library Preparation and Sequencing

LRPCR products were purified with AMPure XP beads as previously described in
Seifert et al. [8], pooled at equal molar ratios, prepped for NGS using the TruSeq Nano
DNA kit, and paired-end sequencing was completed on the MiSeq platform (Illumina, Inc.,
San Diego, CA, USA). The BBTools bioinformatics suite (https://sourceforge.net/projects/
bbmap/, accessed on 1 February 2021) was used to trim adapter and indexing primer
sequences, filter low-quality bases (<Q30), and remove duplicate reads before mapping to a
reference MERS-CoV genome sequence (JX869059.2) using BBMap v 1.0. The average depth
of coverage was greater than 50× for all samples. Variant calling was completed using
FreeBayes v 1.1.0-50-g61527c5 using the following parameters: p, 1 pooled-continuous; min-
alternate-fraction, 0.3; min-alternate-count, 10 [10]. Sequences with greater than or equal
to 80% of the MERS-COV genome recovered were annotated and deposited in GenBank
under the accession numbers MW086527–MW086540.

2.3. Phylogenomic Analyses

All MERS-CoV genome sequences (≥20,000 bp in length, from 2012 through to March
2021) available on GenBank were downloaded and curated to remove sequences represent-
ing serial sampling studies, sequences lacking metadata, and sequences from cell-culture
adaptation studies. Fourteen full camel-derived MERS-CoV genome sequences and 6 par-
tial MERS-CoV genome sequences (ranging from 5–18 kb) from this study were then
aligned with the remaining 464 MERS-CoV genomes, and the maximum likelihood phylo-
genetic tree was inferred with 1000 UltraFast bootstrap replicates implemented in IQ-TREE
v 2.1.2 [11], with integrated ModelFinder used to determine the best-fit substitution model,
with GTR +F+R3 chosen with the Bayesian Information Criterion [12].

As recombination may confound phylogenetic signal, recombination detection pro-
gram 4 (RDP4 [13]) was used to investigate the effect of recombination on the topology of
the MERS-CoV phylogenomic tree pertaining to the placement of the Jordan camel-derived
variants sequenced for this study. Recombination analyses were performed in RDP4 us-
ing the 3seq, bootscan, genecov, maxchi, lard, and chimaera detection methods, and we

https://sourceforge.net/projects/bbmap/
https://sourceforge.net/projects/bbmap/
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considered recombination events to be reliable when detected by two or more methods.
The Jordan camel-derived MERS-CoV variants sequenced for this study were not flagged
as recombinants, nor were the KSA variants sharing a most recent common ancestor with
the Jordan sequences. We therefore removed recombinant sequences from the alignment
and reconstructed a second maximum likelihood tree with the remaining 425 MERS-CoV
genomes. In each phylogenetic tree, the Jordan camel-derived sequences most closely clus-
tered with contemporaneous lineage B.5 MERS-CoV variants identified in KSA. To infer a
time-resolved phylogenetic tree, lineage A and C MERS-CoV variants were removed from
the alignment containing 425 MERS-CoV genomes with recombinant sequences stripped,
and a timetree was inferred with the remaining 403 MERS-CoV genomes using TreeTime
v 0.7.6 [14] with a coalescent skyline and fixed clock rate of 9.57 × 10−4 subs/site/year
reflecting the evolutionary rate estimated by Dudas et al. [4].

3. Results

All 5 amplicons were recovered for samples with greater than 500 equivalent (eq)
50% tissue culture infectious dose (TCID50)/swab as reported in [5], with variable success
for samples with less than 500 TCID50eq/swab (Figure S1), resulting in 14 camel-derived
MERS-CoV sequences with more than 80% of the genome recovered and 6 camel-derived
MERS-CoV sequences with less than 80% of the genome recovered. The Jordan camel-
derived MERS-CoV sequences clustered most closely with lineage B.5 MERS-CoV variants
sampled in Riyadh, KSA in early 2016 (Figure 2, Figures S2 and S3). There have been
few studies to characterize whether diversification in MERS-CoV correlates to functional
variation in pathogenesis, environmental stability, or transmission efficiency. However, a
deletion in ORF4b has been linked to a decrease in interferon antagonism in MERS-CoV
variants derived from camels in Africa [15].

Our full-genome analysis contradicts the earlier placement of these sequences with
lineage B.1 which had low support in a maximum likelihood tree inferred from the partial
S2 subunit with few lineages represented [5]. Furthermore, these camel-derived MERS-CoV
variants do not cluster with the human cases reported in Jordan in 2015, suggesting that
these variants represent a separate introduction of MERS-CoV. While full genome analysis
can improve phylogenetic inference, we caution that lineage assignment with MERS-CoV
is complicated by a history of extensive recombination and may not be phenotypically
informative. The full genome sequences for these samples reveal that the May 2016 camel-
derived MERS-CoV variants lack the unique deletion variants identified in the 2015 MERS
outbreak in Jordan [7].

The Jordan camel-derived MERS-CoV genomes showed little genetic variation when
compared to a study of a large camel market in UAE, where the recovered MERS-CoV
genomes represented multiple MERS-CoV lineages in a single camel pen [3]. Average
evolutionary divergence over sequence pairs was estimated in MEGA7 [16] within each
of four groups: Jordan camel-derived MERS-CoV genome sequences from this study,
human-derived MERS-CoV sequences during an outbreak following a single introduction
event in South Korea, and large camel markets in UAE and KSA. Diversity within the
Jordan camel-derived MERS-CoV genomes (d = 1.04 × 10−4) was more reflective of the
limited diversity found during a nosocomial MERS outbreak following the introduction
of a single variant in South Korea in 2015 (d = 8.91 × 10−5) than the UAE camel market
study (d = 1.04 × 10−3) or the Jeddah camel market in KSA (d = 1.48 × 10−3). As more
individual camels were sampled in the UAE study, we conducted a rarefaction analysis
and determined that a sample size of 20 genomes from the UAE camel market study would
yield an average of 3.5 MERS-CoV lineages (σ2 = 0.6) detected, whereas only one lineage
was represented in the Jordan camel-derived genomes (Figure 3). Sabir et al. detected
MERS-CoV variants from three lineages, with partial genome sequences recovered for just
18 MERS-CoV positive samples collected from a large camel market in Jeddah, KSA in
December, 2014 [2].
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Figure 2. Time-resolved phylogenomic tree inferred from full genome sequences for 403 lineage B MERS-CoV genomes
with recombinant sequences removed. Variants from United Arab Emirates (UAE) in mustard yellow, South Korea (KOR)
in green, Saudi Arabia (KSA) in blue, and Jordan (JOR) in dark red. All MERS-CoV sequences originating from JOR
through time are highlighted. Odd years are shown in dark-gray bands. Fourteen camel-derived MERS-CoV genomes
from this study are highlighted with an inset showing bootstrap support at nodes in context of the most phylogenetically
similar variants.
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Figure 3. Rarefaction analysis of lineage assignment for 129 camel-derived full MERS-CoV genome
sequences from a large camel market in UAE, as reported in Yusof et al., 2018. The envelope reflects
variance, and the red dashed line at 20 samples reflects the number of MERS-CoV sequences recovered
in this study, all of which belong to lineage B.5.

Only a single MERS-CoV genome could be recovered from the Azraq camel herd, as
the majority of samples from this herd had less than 500 TCID50eq/swab, whereas 13 full
or partial genomes were recovered from the Ramtha herd [5]. The higher Ct values for the
Azraq herd are consistent with sampling at the tail-end of the outbreak in that population.
In a follow-up sampling mission, nasal swabs from 26 camels were collected from the
Ramtha herd in October 2017, and none of the samples were positive for MERS-CoV RNA
by RT-qPCR, compared to 17 of 22 camels testing positive for MERS-CoV RNA in May
2016 as reported in van Doremalen et al. 2017 [5].

4. Discussion

There have been comparatively few confirmed MERS cases in Jordan relative to
neighboring KSA despite a similar reliance on camels as livestock. An outbreak of MERS
in Jordan reported in 2015 led to a follow-up study in 2016 to determine the prevalence
of MERS-CoV in Jordan camel herds, revealing a high seroprevalence against MERS-CoV
and a high proportion of nasal swab samples which tested positive by qRTPCR for the
presence of MERS-CoV RNA [5]. However, full viral genomes could not be recovered from
the samples at the time, and the partial S2 sequences recovered were not phylogenetically
informative for delineating whether the 2016 MERS-CoV variants detected in Jordan
camels were closely related to the sequences from the 2015 MERS outbreak. In this study,
we reliably recovered nearly complete MERS-CoV genomes from nasal swabs collected
from camels, with viral titers as low as 500 TCID50eq/swab, using a novel LRPCR assay
(Figure S1). Our phylogenetic analyses support the hypothesis that the MERS-CoV variants
sequenced from humans in Jordan in 2015 stemmed from a separate introduction to Jordan
than the MERS-CoV variants circulating in camels in 2016 (Figure 2). Our analyses show a
striking lack of genetic diversity in the MERS-CoV variants circulating in Jordan camels in
2016, with a subsequent sampling mission in 2017 yielding no MERS-CoV RNA detected in
the Ramtha herd. Taken together, we hypothesize that MERS-CoV is not maintained in the
smaller camel herds of Jordan, but instead, is frequently introduced to the region through
camel trade or travel.
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While the majority of confirmed MERS cases have occurred in KSA and other countries
in the Arabian Peninsula, MERS-CoV genomic material has also been recovered from
camels throughout Africa [15,17,18]. MERS-CoV genome sequences described by Chu
et al. revealed discrete regional patterns of genetic diversity in Africa [15], suggesting
structured populations of MERS-CoV circulating in African camel herds. A recent study
reported a high incidence of MERS-CoV RNA detected in camels from eastern Africa on
import vessels destined for markets in Saudi Arabia, likely providing an opportunity for
mixing between previously geographically isolated lineages [19]. Consistent with these
observations, studies have shown extensive recombination between MERS-CoV lineages in
the large camel markets of KSA and UAE [2,3]. In contrast, camels in Jordan are primarily
maintained in smaller herds, with fewer, smaller camel markets in contrast to the large
camel markets found in KSA and UAE. We hypothesize that camel management practices,
including import and export and herd size, influence the diversity and maintenance of
MERS-CoV in the reservoir; however, longitudinal sampling of camel herds representative
of the diversity of camel management practices on a broad scale is needed to further
support this hypothesis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13040592/s1. Figure S1. Recovery of LRPCR amplicons across the MERS-CoV genome
relative to the TCID50eq/swab reported for the UpE gene in van Doremalen et al. [5]; Figure S2.
Phylogenetic tree of 484 MERS-CoV genomes estimated by maximum likelihood method in IQ-TREE
v. 2.1.2, showing the consensus of 1000 ultrafast bootstrap replicates and rooted at the midpoint;
Figure S3. Phylogenetic tree of 425 MERS-CoV genomes, with recombinant sequences stripped,
estimated by maximum likelihood method in IQ-TREE v. 2.1.2, showing the consensus of 1000
ultrafast bootstrap replicates and rooted at the midpoint.
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