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Abstract: Bacteriophage (phage) taxonomy has been in flux since its inception over four decades 

ago. Genome sequencing has put pressure on the classification system and recent years have seen 

significant changes to phage taxonomy. Here, we reflect on the state of phage taxonomy and provide 

a roadmap for the future, including the abolition of the order Caudovirales and the families Myoviri-

dae, Podoviridae, and Siphoviridae. Furthermore, we specify guidelines for the demarcation of species, 

genus, subfamily and family-level ranks of tailed phage taxonomy. 
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1. An Ongoing Revolution in Phage Taxonomy 

Historically, phages have been classified according to their morphology, dating from 

the time before the existence of PCR, sequencing or many of the molecular methods we 

know today [1–3]. For tailed phages, the formal taxonomy was derived from the pioneer-

ing classification work of David Bradley (Memorial University, Canada) who classified 

them into three morphotypes, A (contractile tail), B (long, non-contractile tail), C (short 

non-contractile tail, based on electron microscopy, a system that was subsequently en-

hanced by Ackermann and Eisenstark (1974) [4,5]. In 1971, this system was formally 

adopted by the International Committee on Nomenclature of Viruses (ICNV) but not with 

the names we are familiar with today. The names Myoviridae, Podoviridae and Siphoviridae 

were formally accepted by the International Committee on Taxonomy of Viruses (ICTV) 

in 1981 and 1984. The order Caudovirales, unifying all tailed phages, was proposed in 1998 

by Hans-Wolfgang Ackermann and approved by postal vote. Some of the other phage 

families have equally long histories with the families Inoviridae, Microviridae, Tectiviridae, 

Corticoviridae, Plasmaviridae, Leviviridae, and Cystoviridae all formalised by plenary session 

vote in 1978 (for a history of taxonomy releases see https://talk.ictvonline.org/taxon-

omy/p/taxonomy_releases, accessed Feb 2021). This >40-year-old family-level classifica-

tion system resulted in the classic textbook figures (Figure 1) on phage taxonomy, easily 

represented by line drawings. 
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Figure 1. Line drawing of bacteriophage morphotypes, adapted from Ackermann, 2005 [6]. 

As the age of genomics dawned in the early 2000s, the sequencing of phage genomes 

revealed a much higher genomic diversity than had previously been considered, espe-

cially in bacteriophages belonging to the order Caudovirales, leading to the creation of the 

first subfamilies within the existing three families Podoviridae [7], Myoviridae [8], and later 

on Siphoviridae [9]. As the number of phage genomes in databases rose, it quickly became 

apparent that these three families were not monophyletic and cohesive within a mono-

phyletic order. This paraphyly was illustrated by a number of tools and publications: The 

Phage Proteomic Tree [10,11], the first phage genome relatedness network representation 

[12], a bipartite network of shared genes [13], an updated network of shared predicted 

proteins (vConTACT) [14,15], a composite tool combining gene homologies and gene or-

der (GRAViTy) [16,17], a virus domain orthologous groups approach (VDOG) [18] and a 

concatenated protein phylogeny of members of the order Caudovirales (CCP77) [19]. Based 

on this evidence, the ICTV’s Bacterial and Archaeal Viruses Subcommittee started disen-

tangling the web of overlapping and complementary groups of tailed phages by defining 

new, genome-based families. At the time of writing, three new families of myoviruses 

have been officially ratified Ackermannviridae [20], Chaseviridae [21], Herelleviridae [22,23]; 

two for the siphoviruses, Demerecviridae [21], and Drexlerviridae [21], and one of podo-

viruses, Autographiviridae [21].  

If we look beyond the traditional tailed bacteriophages, we are observing a similar 

increase in genomic diversity in other phage clades, but interestingly, these expansions 

are mainly driven by metagenome-derived information. Using a combination of sequenc-

ing, isolation and imaging methods, a new major lineage of non-tailed dsDNA phages 

was identified in marine bacteria, named Autolykiviridae [24]. Similarly, isolation of a new 

ssDNA phage and description of the new family Finnlakeviridae links non-tailed icosahe-

dral ssDNA and dsDNA phages together [25,26]. Major lineages of presumed novel 

dsDNA tailed phages have also been inferred and isolated based on metagenomic/viromic 

assemblies, including the crAssphage lineage [27–29], Lak megaphage [30], and multiple 

other lineages of “huge phages” [31].  
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For the filamentous, ssDNA phages, the family Inoviridae has been split into two fam-

ilies, Inoviridae and Plectroviridae which are grouped together in the order Tubulavirales 

[21], with a potential further increase with five new families based on the analysis of cryp-

tic inoviruses from bacterial genome datasets [32]. In a similar vein, many additional sub-

families have been proposed in the ssDNA family Microviridae, beyond the existing sub-

families Bullavirinae [9] and Gokushovirinae based on the detection in virome data, i.e. the 

subfamilies “Alpavirinae” [33], “Pichovirinae” [34], “Stokavirinae” [35], and “Aravirinae” 

[35]. Recently, computational approaches identified a massive expansion in the number 

of ssRNA phage genomes of the Leviviridae family, first with 158 [36] then with a further 

1k complete and 15k partial genomes [37].  

Across all the different lineages of bacteriophages it has become clear that fundamen-

tal changes to classification are required in order to address this increasing genomic di-

versity. 

2. The Next Steps for Tailed Phage Taxonomy 

Within phage taxonomy, the most pressing issue remains the paraphyly of the tailed 

phage families, because they make up the majority of isolated and metagenomically-in-

ferred viruses, illustrated by a dendrogram of hierarchical relations of dsDNA bacterial 

and archaeal viruses generated by the GRAViTy pipeline (Figure 2, Figure S1) [16,17] and 

a network-based representation of shared genes generated by vConTACT2 (Figure S2) 

[15].  

In recent years, the ICTV expanded the taxonomic ranks, previously Species to Order, 

to include 15 divisions up to Realm to assist with describing higher order relationships 

between groups of viruses [38,39]. For the tailed phages, this has led to the introduction 

of the class Caudoviricetes comprising all tailed phages. With the creation of the class, we 

are now able to abolish the order Caudovirales and the families Myoviridae, Podoviridae, and 

Siphoviridae, and replace them with monophyletic, genome-based families. We have used 

the creation of the family Herelleviridae as a case study for the delineation and internal 

structuring of future new families [22] but have not addressed the wider implications for 

all tailed phages.  

2.1. Step 1: Abolish the Order Caudovirales 

As a first step we propose to abolish the order Caudovirales with all current members 

automatically assigned to the class Caudoviricetes. This creates the space to define new or-

ders that group families based on underlying evolutionary relationships. A first example 

of this is the creation of the order “Crassvirales”, currently under consideration by the 

ICTV, which groups six families of crAss-like viruses (Taxonomy Proposal 2020.039B, un-

der consideration). 

2.2. Step 2: Abolish the Families Myoviridae, Podoviridae and Siphoviridae 

The removal of the classical phage families will in the first instance create a large 

number of “unclassified Caudoviricetes” subfamilies and genera. While this is a situation 

that is unsustainable in the long term, in the short term, little taxonomically important 

information will be lost. For example, the genera Lederbergvirus and Myxoctovirus are both 

assigned to the family Podoviridae, but their members share no orthologues (verified by 

CoreGenes 5.0 (coregenes.ngrok.io, accessed Feb 2021) as in [40](CoreGenes 3.5  [41]). 

Therefore, their position as floating genera in the class Caudoviricetes, is a better represen-

tation of their genomic relatedness than grouping them together in the family Podoviridae.  

We do not suggest that the terms myovirus, podovirus, and siphovirus indicating the 

phage morphology get lost and suggest to use this terminology in publications and add 

this description in the annotated sequence records (e.g., note in the GenBank file of the 

genome). 
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Figure 2. Dendrogram generated by GRAViTy (http://gravity.cvr.gla.ac.uk, accessed Feb 2021) for DB-B: Baltimore Group 

Ib—Prokaryotic and archaeal dsDNA viruses (VMRv34) and annotated using iTOL [16,42]. The inside coloured ring indi-

cates the morphotype and the outside ring the new proposed and ratified families as of 2021. The distance from tip to 

node, indicated by the scale rings, represents the composite generalised Jaccard distance (0–1) between two genomes cal-

culated based on relatedness of the proteins and the genome organisation, where 0 is identical and 1 is no measurable 

relation between two genomes. The Jaccard distance of 0.8, unifying the majority of eukaryotic virus families is indicated 

in blue for illustration purposes. Bootstrap values (0–1) are indicated by branch colour on a greyscale, from light grey (0) 

to black (1), showing that the majority of branches are well-supported. Bootstrap values were calculated as described by 

Aiewsakun and Simmonds [16] by random resampling of the protein profile hidden Markov models that form the basis 

of the protein relatedness score, recomputing the pairwise distance matrix and then recomputing the dendrogram and 

repeating this 100 times. 

2.3. Step 3: Elevating Existing Subfamilies to Family Rank 

In the last decade, subfamilies have been created to account for monophyletic groups 

within the paraphyletic families. For example, the subfamily Tunavirinae has been used to 

create the new family Drexlerviridae and the subfamily Spounavirinae was the inspiration 

to create the family Herelleviridae. Going forward, there are a number of existing subfam-

ilies such as the Tevenvirinae and Peduovirinae that are currently being considered for fam-

ily status, given that their diversity is similar to those of the newly instated families. How-

ever, the elevation of subfamilies to families will be assessed on a case-by-case basis.  
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2.4. Step 4: Addressing the Unclassifieds 

While tailed phages exhibit huge genomic diversity, removing the traditional order 

and families will leave a significant fraction of sequenced phages unclassified at the fam-

ily-level. In a first instance, we will create floating genera in the class Caudoviricetes for 

these isolates. We propose that for under-represented groups, families should only be cre-

ated if a sufficient number of genomes, representing multiple genera, have been se-

quenced to allow the proposal/satisfaction of family-level demarcation criteria (discussed 

below). 

3. Rank-Specific Demarcation Criteria for Tailed Phages, Class Caudoviricetes 

3.1. Species 

Two phages are assigned to the same species if their genomes are more than 95% 

identical at the nucleotide level over their full genome length, tested reciprocally. These 

values can be calculated by a number of tools, such as BLASTn (% identity multiplied by 

% coverage) [43], VIRIDIC (intergenomic distance calculator, [44]), or CD-HIT-EST [45]. 

This threshold was first introduced in taxonomy proposals in 2012 [46] and has since been 

independently confirmed using global population-level analyses [47–49].  

In order to scale up these calculations for the exceedingly large numbers of genomes 

that are available through metagenomics studies, future studies will need to look into 

more high-throughput calculations using, for example, genome distance estimations us-

ing Mash [50]and appropriate thresholds determined.  

3.2. Genus 

In search for criteria that create cohesive and distinct genera that are reproducible 

and monophyletic, the Subcommittee has established 70% nucleotide identity of the full 

genome length as the cut-off for genera, calculated in the same way as the species cut-off. 

Pairwise genome comparisons can result in “edge-cases” where inclusion in the genus is 

only partially supported, needing additional evidence in support. Genomes comprising a 

proposed genus should be examined for the presence of homologous conserved ‘signature 

genes’ and evaluated using phylogenetics.  

Various tools have been developed for the assessment of pangenomes (identification 

of entire gene set of a group of organisms) and, while predominantly designed for the 

analysis of bacteria, can be employed for the assessment of phage gene products. Exam-

ples include Roary [51], Proteinortho [52], PIRATE [53], GET_HOMOLOGUES [54] and 

CoreGenes 3.5 [41] and 5.0 (https://coregenes.ngrok.io/, accessed Feb 2021). We recom-

mend less stringent criteria for the generation of phage pangenomes where sequence sim-

ilarity and sequence coverage of the proteins are set to >30% identity and >50% coverage, 

respectively. These approaches allow for hierarchical clustering of phages based on their 

gene content and demonstrate the presence of signature genes which are stable through-

out the genus, subfamily or family. We do encourage phage biologists to check the results 

of clustering by using multiple sequence alignments and through the use of domain 

searches (e.g., InterProScan/Pfam/CDD) and more sensitive HMM methods such as hmm-

scan against the VOGdb and HHPred [55–59].  

Genus-level groupings should always be monophyletic in these signature genes, as 

tested by phylogenetic analysis, i.e. the gene or genes chosen as signature(s) for this genus 

should produce a phylogenetic tree in which the genus is presented as a well-supported 

single clade. Ideally, phylogenetic trees of signature genes should be rooted using a more 

distant relative (outgroup) and be accompanied by bootstrap values, to ensure the group-

ings are robustly reproducible. The Subcommittee recommends Maximum Likelihood 

(ML) trees built with IQ-Tree, using ModelFinder for substitution model determination 

and UFBOOT for bootstrapping [60–62], but other equivalent tools are acceptable and the 

Subcommittee has made ample use of the quick and accessible phylogeny.fr webserver 

for ML-based phylogenetics [63]. 
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3.3. Subfamily 

The subfamily level is optional for bacteriophages. Subfamilies are to be created 

when two or more discrete genera are related below the family level. In practical terms, 

this usually means that they share a low degree of nucleotide sequence similarity and that 

the genera form a clade in a marker tree phylogeny.  

3.4. Family 

The family-level has not had any fixed demarcation criteria in the past. Here, we pro-

pose the following criteria for the establishment of a new family: 

 The family is represented by a cohesive and monophyletic group in the main pre-

dicted proteome-based clustering tools (ViPTree, GRAViTy dendrogram, vCon-

TACT2 network) 

 Members of the family share a significant number of orthologous genes (the number 

will depend on the genome sizes and number of coding sequences of members of the 

family), see genus section for methods. 

 If a family-level cluster shares orthologues with another family-level cluster, the fam-

ily cluster needs to be monophyletic in a phylogenetic analysis of the shared 

orthologue(s).  

3.5. Order 

Orders should be proposed when two or more families are related. The proposed 

order should again be monophyletic using the main clustering tools.  

4. Perspectives for Non-Tailed Phages 

Phages come in a wide variety of genome sizes and compositions. The criteria set out 

here cannot necessarily be translated for, for example, the small ssRNA genomes of levi-

viruses, for which a separate set of demarcation criteria are being implemented [37] or the 

non-tailed dsDNA autolykiviruses [24]. For each of these major groups, new genome-

based criteria will need to be developed by groups of experts, but the expectation is that 

these are broadly equivalent across the bacterial virosphere. We welcome studies that in-

vestigate cross-Realm rates of evolution and divergence.  

5. Concluding Statement 

The classical morphotype family-level taxonomy has been enormously useful for 

four decades in advancing our understanding of phage diversity. We express our extreme 

gratitude to those that developed it, in particular the late Hans-Wolfgang Ackermann, 

who was a supportive yet highly critical collaborator of the authors. For those concerned, 

while the morphology-based families will disappear, the morphotypes will continue to 

exist and descriptors such as myovirus and podophage will always remain useful.  

Driven by the renewed interest in phage-based applications, advances in sequencing 

technology, and the era of the microbiome, there is a dire need for a genome-based classi-

fication in which the family level represents a genomic unit of diversity. The first steps on 

the route towards a future-proof taxonomy have been taken. Here we have laid out our 

future plans to address the need for a stable and informed taxonomic approach to the 

viruses of bacteria (and archaea). Implementation of these plans will require the engage-

ment of and discussion between the scientific community and continued refinement of 

bioinformatics tools.  
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Supplementary Materials: The following are available online at www.mdpi.com/1999-

4915/13/3/506/s1. Figure S1: Heatmap and dendrogram output of the GRAViTy pipeline as compan-

ion information for Figure 2. The clusters corresponding to eukaryotic family level cut-offs were 

automatically indicated on the figure as part of the pipeline using genus, subfamily and our family 

information. Figure S2: vContact2 network illustrating families of the viruses of bacteria. Phage ge-

nomes were downloaded from GenBank on the 22nd of February 2021, representing a total of 14,462 

sequence records, and reannotated using Prokka via the INfrastructure for a PHAge Reference Da-

tabase perl script (https://github.com/RyanCook94/inphared.pl). vContact2 version 0.9.21 was used 

to cluster phage genomes using the parameters --rel-mode 'Diamond', db 'None', pcs-mode MCL 

and vcs-mode ClusterONE. The resultant network was visualised in Cytoscape v3.8.2 and annotated 

using a custom python script and Adobe Illustrator. ICTV-ratified families are shown in italic font, 

while pending proposals for new families are shown in Roman font. Putative phage genomes from 

metagenomic sequence data held in the Sequence Read Archive are not included, therefore, phages 

belonging to the classes Leviviricetes, Tokiviricetes, Laserviricetes and the proposed new order “Crass-

virales” are under-represented in this network and their depiction may not be an accurate represen-

tation. 
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