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Abstract: Nuclear egress is an essential process in the replication of human cytomegalovirus 
(HCMV), as it enables the migration of newly formed viral capsids from the nucleus into the cyto-
plasm. Inhibition of the HCMV core nuclear egress complex (core NEC), composed of viral proteins 
pUL50 and pUL53, has been proposed as a potential new target for the treatment of HCMV infec-
tion and disease. Here, we present a new type of small molecule inhibitors of HCMV core NEC 
formation, which inhibit the pUL50-pUL53 interaction at nanomolar concentrations. These inhibi-
tors, i.e., verteporfin and merbromin, were identified through the screening of the Prestwick 
Chemical Library® of approved drug compounds. The inhibitory effect of merbromin is both 
compound- and target-specific, as no inhibition was seen for other mercury-organic compounds. 
Furthermore, merbromin does not inhibit an unrelated protein–protein interaction either. More 
importantly, merbromin was found to inhibit HCMV infection of cells in three different assays, as 
well as to disrupt HCMV NEC nuclear rim formation. Thus, while not being an ideal drug candi-
date by itself, merbromin may serve as a blueprint for small molecules with high HCMV core NEC 
inhibitory potential, as candidates for novel anti-herpesviral drugs. 

Keywords: human cytomegalovirus; nuclear egress complex (NEC); core NEC inhibitor; antiviral 
activity; small molecule inhibitor  
 

1. Introduction 
Human cytomegalovirus (HCMV) is a ubiquitous human β-herpesvirus with a se-

roprevalence ranging from 40% to 95% in various regions of the world, establishing a 
life-long latent infection. While HCMV infection is typically asymptomatic in immuno-
competent individuals, immunonaïve hosts, as well as immunocompromised patients 
with stem cell or solid organ transplantation, AIDS, or cancer, often develop severe 
symptoms upon HCMV infection, such as fever, fatigue, muscle aches, enlarged lymph 
nodes, and sore throat [1]. More importantly, congenital HCMV infection acquired dur-
ing pregnancy frequently results in severe cytomegalovirus inclusion disease and de-
velopmental defects, such as sensorineural hearing loss (SNHL) and mental retardation 
or microcephaly, in the neonate [2]. Currently available drugs for the treatment of HCMV 
infections include ganciclovir, its oral prodrug valganciclovir, cidofovir, and foscavir, 
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which all target the viral DNA polymerase. While currently available anti-HCMV drugs 
are of great benefit for the management of HCMV infections in immunocompromised 
patients, they are also associated with undesirable side effects, poor oral bioavailability, 
and modest efficacy, as well as the development of virus drug-resistance [1]. More re-
cently, letermovir, which targets the HCMV-specific terminase complex, has been ap-
proved for the prevention of HCMV infection and reactivation, albeit for a limited patient 
population, i.e., hematopoietic stem cell transplant recipients [3]. In view of the still lim-
ited number of options for the treatment of HCMV infections, the search for novel ther-
apeutic strategies, including the exploration and validation of new drug targets in the 
virus entry and replication process, continues to be a strong biomedical and clinical re-
search focus [3–6]. 

Replication of HCMV involves a process termed nuclear egress, which enables mi-
gration of the newly formed viral capsids from the nucleus into the cytoplasm, and which 
entails a range of precisely tuned protein–protein interactions [7]. The formation of the 
core nuclear egress complex (core NEC), composed of viral proteins pUL50 and pUL53, 
which is anchored to the inner nuclear membrane, is a central component of nuclear 
egress, as it serves as a scaffold for the assembly of a multimeric NEC composed of viral 
and cellular proteins [8,9]. Extensive structural analysis of the pUL50-pUL53 interaction, 
through x-ray crystallography of the protein complex, has provided detailed information 
on the structural features of the proteins, as well as the protein interface [10–14]. While 
both proteins adopt a globular fold with mixed secondary structure elements, the hall-
mark element of the pUL50-pUL53 interaction is an N-terminal α-helical, hook-like ex-
tension in pUL53, which is independent of the overall globular protein fold, and con-
tributes approximately 80% to the total interface area with pUL50 [10]. Interestingly, the 
pUL50-pUL53 heterodimeric complex partially assembles into hexameric ring-like 
structures [10], and is also able to oligomerize in vitro [11]. We have recently shown that a 
29-mer synthetic peptide presenting the pUL53 N-terminal hook specifically interacts 
with soluble pUL50, i.e., it does not bind to BFRF1, which is the Epstein–Barr virus 
homolog of pUL50 [12,13]. Furthermore, the pUL53 hook peptide is able to inhibit the 
pUL50-pUL53 interaction in vitro at submicromolar concentrations. A similar N-terminal 
pUL53 peptide was previously shown to interfere, albeit at 100-fold higher concentra-
tions, with the pUL50-pUL53 interaction [15]. Based on these data, we have proposed 
inhibition of the pUL50-pUL53 interaction as a novel antiviral strategy against HCMV 
infections. Due to its size (molecular weight: approximately 4 kDa), as well as its suscep-
tibility to proteolytic degradation, however, the pUL53 hook peptide is a less than ideal 
candidate for inhibition of the pUL50-pUL53 interaction in vivo. This becomes even more 
apparent considering that a successful inhibitor of this interaction has to be taken up by 
the cell, as well as to penetrate the nuclear membrane. Based on these considerations, 
small molecule inhibitors would be more adequate, as they are more likely to passively 
pass through membranes. On the other hand, targeting protein–protein interactions with 
small molecules is generally thought to be challenging, due to the larger, more flat in-
terfaces involved in these interactions, as compared with the defined binding pockets of 
other drug targets, such as receptors and enzymes. It should be noted, however, that 
small molecules have been shown to indirectly interfere with protein–protein interac-
tions, e.g., by disrupting structural elements in the proteins that are essential for the in-
teraction [16]. This can be achieved through binding of the small molecule to so-called 
allosteric binding sites of the proteins that are not involved in the protein interface [17]. 

Therefore, we set out to search for small molecule inhibitors of the HCMV 
pUL50-pUL53 interaction as a blueprint for a novel antiviral strategy based on disrupting 
viral nuclear egress. As a source for such potential inhibitors, we selected the Prestwick 
Chemical Library® 
(https://www.prestwickchemical.com/screening-libraries/prestwick-chemical-library/, 
accessed on 03/02/2021), which is composed of a total of 1520 off-patent, approved, small 
molecule drug compounds, presenting a high chemical and pharmacological diversity, 
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and addressing more than 400 drug targets. As these compounds, in order to be ap-
proved for clinical use, have undergone thorough pre-clinical and clinical evaluation, 
re-purposing them for alternative medical indications is expected to require less exten-
sive studies, as compared with de novo designed compounds, facilitating their approval.  

2. Materials and Methods  
2.1. pUL50-pUL53 Inhibition Assay 

Recombinant pUL50 and pUL53 were produced and purified as previously de-
scribed [12]. High binding Immulon microtiter plates were coated with 100 µL pUL53 (1 
µg/mL) in sodium carbonate buffer pH 9.5, overnight at 4 °C. After blocking with 200 µL 
1% BSA in 0.1 M phosphate buffer, pH 7.2, for two hours, plates were incubated with 50 
µL library compound/mixture in serial dilutions, starting at 1.25 µM, together with 50 µL 
His-tagged pUL50 (0.25 µg/mL) for two and a half hours. His-tagged pUL50 was de-
tected using anti-His-HRP (Merck, Darmstadt, Germany, 1:40,000). All proteins and an-
tibodies were in 0.1 M phosphate buffer, pH 7.2, containing 0.1% BSA and 0.01% Tween 
20. Plates were washed four times with 0.01% Tween 20 in 0.1 M phosphate buffer, pH 
7.2, after each incubation step. Plates were developed with o-phenylenediamine (OPD) (1 
mg/mL) in the presence of 0.03% H2O2 for approximately 5 min in the dark. After the re-
action was stopped with 2 M H2SO4, absorbance was read at 492 nm. IC50 values were 
determined from the % inhibition data using the program GraphPad. Inhibition was 
calculated according to the following formula:  

 (1) 

in which “100%” is a sample without inhibitor, “blank1” is a sample without pUL53, and 
“blank2” is a sample without pUL53 and without inhibitor. 

2.2. HIV-1 gp120–mAb 447-52D Inhibition Assay 
High binding Costar microtiter half area plates were coated with 100 µL gp120HxBc2 

(Immune Technology, New York, NY, 0.5 µg/mL) in sodium carbonate buffer pH 9.5, 
overnight at 4 °C. After blocking with 1% BSA in 0.1 M phosphate buffer, pH 7.2, for two 
hours, plates were incubated with the CXCR4 mimetic peptide CX4M1 and merbromin, 
respectively, in serial dilutions, starting at 60 µM, together with mAb 447-52D, obtained 
through the NIH AIDS Research and Reference Reagent Program (0.2 µg/mL) for 3 h. 
Bound antibody was detected using anti-human IgG-HRP (Merck, Darmstadt, Germany, 
1:10,000). All proteins and antibodies were in 0.1 M phosphate buffer, pH 7.2, containing 
0.1% BSA and 0.01% Tween 20. Plates were washed four times with 0.01% Tween 20 in 
0.1 M phosphate buffer, pH 7.2, after each incubation step. Plates were developed, and 
IC50 values calculated, as described above (section 2.1.). 

2.3. Cytotoxicity Assay 
Human foreskin fibroblast (HFF) cells were cultivated in a 96-well plate with a den-

sity of 1.35 × 104 cells per well and incubated at 37 °C for 24 h. The cultured HFF cells 
were treated with merbromin and verteporfin, respectively, at concentrations ranging 
from 1.56 to 100 µM, and incubated at 37 °C for seven days. A sample without compound 
(DMSO) served as a negative control, and a sample with 1 µM staurosporine (STP) as a 
positive control. On day 7, neutral red solution (40 µg/mL, Merck, Darmstadt, Germany, 
N2889) was added to cultivated cells and incubated at 37 °C for 2–4 h, followed by addi-
tion of destaining solution (ethanol/water/acetic acid, 50:49:1). Fluorescence was read at 
excitation/emission at 560/630 nm to quantify the uptake of neutral red. 

2.4. Virus Infection, Plaque Reduction, and Viral Yield Assays 
Primary human foreskin fibroblasts (HFFs, own repository of primary cell cultures) 

were propagated as previously described [18]. Then, 2 × 105 HFFs were seeded in 12-well 
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plates for 1 day prior to infection with HCMV AD169 at a multiplicity of infection (MOI) 
of 0.1. After 90 min of viral absorption, cells were incubated with merbromin at concen-
trations ranging from 0.3 to 10 µM at 37 °C for 5 days. Viral supernatants were collected 
at 5 days post infection (d.p.i.). For the viral yield assay, HFFs were incubated with a se-
rial dilution of viral supernatants at 37 °C for 1.5 h. Subsequently, cells were overlaid 
with 2 mL of a 1:1 mixture of 0.6% agarose and medium (MEM containing 2× Gluta-
MAXTM, 20 μg/mL gentamicin, and 20% fetal bovine serum). For the plaque reduction 
assay, cells infected with HCMV AD169 at MOI 0.1 were overlaid with the 1:1 mixture of 
agarose:medium containing merbromin at concentrations ranging from 0.3 to 10 µM. In 
both assays, cells were further incubated at 37 °C for 5 to 7 days, followed by staining 
with 1% crystal violet in 20% EtOH to visualize viral plaque formation. Plaques were 
counted under a light microscope. In both assays, a sample containing DMSO instead of 
merbromin served as a negative control. 

2.5. Quantitative Polymerase Chain Reaction (qPCR) 
The viral genome equivalents of the supernatants of HCMV-infected HFFs treated 

with merbromin at concentrations ranging from 0.3 to 10 µM were quantified by qPCR. 
The supernatants were centrifuged at 1500× g and digested with proteinase K for 1 h at 56 
°C to release viral particles. The reactions were stopped at 95 °C for 5 min. The amount of 
extracellular viral genomic loads was measured in 5 mL of each sample by real-time PCR 
(TaqMan-PCR). Two primers, namely 5’CMV (AAGCGGCCTCTGATAACCAAG) and 
3’CMV (GAGCAGACTCTCAGAGGATCGG), which anneal to a sequence within the 
major immediate early gene region of HCMV, were utilized to amplify and quantify the 
viral genome. In addition, an FAM/TAMRA-labeled probe was used for detection. The 
viral load of a sample treated with DMSO only served as a negative control. HCMV ge-
nome equivalents from merbromin-treated viral supernatants were calculated as % of the 
negative control.  

2.6. Indirect Immunofluorescence Assay and Confocal Laser-Scanning Microscopy 
HFFs were cultivated in 6-well plates on cover slips, and used for HCMV infection at 

MOI of 0.1. After 90 min of viral absorption, cells were treated with the indicated con-
centrations and incubated at 37 °C for 5 days. On day 5, cells were fixed with 10% for-
malin (8 min, room temperature). Afterwards, HFFs were permeabilized using 0.2% 
Triton X-100 in PBS and were blocked with cohn II. Cells were incubated with the indi-
cated primary antibodies for 60 min at 37 °C prior to double staining with secondary an-
tibodies conjugated with Alexa Fluor® 555 and Alexa Fluor® 647. The nucleus was 
counterstained with DAPI Vectashield mounting medium. Data for immunofluorescence 
were collected using a TCS SP5 confocal laser-scanning microscope (Leica Microsystems, 
Wetzlar, Germany). Images of a confocal plane were taken with a line average of 3 at a 
magnification of 1664 × 1664.  

2.7. Antibodies 
Monoclonal (mAb) and polyclonal (pAb) antibodies were used to detect the fol-

lowing cellular proteins: rabbit mAb-lamin A/C (EPR4100, Abcam), mouse mAb-IE1p72 
(P63-27), mouse mAb-pp28, and mouse mAb-UL53.01 (kindly provided by Stipan Jonjic 
and Tihana Lenac Rovis, University of Rijeka, Croatia). Alexa Fluor 555- and 
647-conjugated antibodies were used as secondary antibodies for indirect immunofluo-
rescence staining (Molecular Probes, Eugene, OR).  

3. Results and Discussion  
3.1. Identification of HCMV Core NEC Inhibitors from the Prestwick Chemical Library® 

Testing a total of 1520 compounds for any kind of biological activity clearly requires 
the availability of a parallel assay format. We have recently developed a parallel 
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pUL50-pUL53 inhibition assay [12] (see section 2.1. for details), which is performed in 
96-well plates, and which can therefore be readily used for library screening. In order to 
simplify the screening procedure, the library compounds were pooled into mixtures, ra-
ther than testing each of the 1520 library compounds individually. The library com-
pounds were provided as 10 mM solutions in DMSO, organized in 19 96-well plates, with 
80 compounds to each plate. For the first screening round, the compounds of each plate 
were pooled, generating 19 mixtures (MP1 through MP19) (Figure 1A), each containing 
80 compounds, with each compound being present at 125 µM (10 mM / 80). The 19 mix-
ture solutions were further diluted in assay buffer to a concentration of 1.25 
µM/compound, generating solutions that contained only 1% DMSO, which were then 
tested in the pUL50-pUL53 inhibition assay. The peptide presenting the HCMV pUL53 
N-terminal helical hook fragment (HCMV hook) served as a positive control. Five of the 
19 library mixtures (MP10, MP13, MP14, MP17, and MP18) were found to inhibit the 
pUL50-pUL53 interaction by more than 70% (Figure 1B). These five mixtures were then 
tested at a lower concentration (0.42 µM), resulting in the identification of MP10 and 
MP14 as the mixtures with the strongest inhibitory activity (Figure 1C). 

 
Figure 1. Screening of the Prestwick Chemical Library® for inhibition of the human cytomegalo-
virus (HCMV) pUL50-pUL53 interaction. (A). Scheme of pooling the library compounds into 19 
mixtures (MP1 through MP19). (B). Inhibition of the HCMV pUL50-pUL53 interaction by the 19 
mixtures, as well as the peptide presenting the N-terminal helical hook of HCMV pUL53 (HCMV 
hook) at 1.25 µM/compound. (C). Inhibition of the HCMV pUL50-pUL53 interaction by selected 
mixtures at 0.42 µM/compound. Error bars present SEMs of at least two experiments. Statistical 
significance was calculated using the ANOVA test with a subsequent Bonferroni’s multiple com-
parison test. P-values ≤ 0.05 were considered significant, as indicated by ***. See section 2.1. for 
experimental detail. 

Plate mixtures MP10 and MP14 were selected for further evaluation. Combining the 
compounds of each row of plate 14, eight new mixtures (P14MR1 through P14MR8) of 10 
compounds each were generated and tested at 0.42 µM/compound, which resulted in the 
identification of P14MR7 as the most active mixture (Figure 2A). Finally, testing the 10 
component compounds of mixture P14MR7 (P14G02 through P14G11) yielded com-
pound P14G06 as the most active inhibitor of the pUL50-pUL53 interaction (Figure 2B). 
Notably, the inhibitory activity of this compound (IC50 = 4 nM) is approximately 25-fold 
stronger than that of the pUL53 hook peptide (IC50 = 98 nM) (Figure 2C), and thus well in 
the range of activities required for potential therapeutic applications. According to the 
provided library documentation, compound P14G06 is identical to verteporfin. This drug 
is used as a photosensitizer for photodynamic therapy to eliminate abnormal blood ves-
sels in the eye, which are associated with conditions such as the wet form of macular 
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degeneration [19]. Recently, verteporfin has also been shown to inhibit the function of the 
oncogene YAP1 through regulation of YAP1 SUMOylation, proposing verteporfin for 
clinical use to treat breast cancer [20], as well as myeloma [21]. 

 
Figure 2. Identification of the most active inhibitors of the pUL50-pUL53 interaction from plate 
mixtures MP14 (left) and MP10 (right). A, D. Screening of the row mixtures of plate 14 (A) and 
plate 10 (D). B, E. Inhibition of the pUL50-pUL53 interaction by the individual compounds making 
up the most active row mixtures of plate 14 (B) and plate 10 (E). C, F. Dose-dependent inhibition of 
the pUL50-pUL53 interaction by the most active inhibitors (P14G06 and P10G08), compared with 
the peptide presenting the N-terminal helical hook of HCMV pUL53 (HCMV hook). Error bars 
present SEMs of at least two experiments. See section 2.1 for experimental detail. 

The process of identifying the most active individual compounds was then repeated 
for plate 10 (Figure 2D and 2E), resulting in the identification of compound P10G08 as the 
most potent inhibitor of the pUL50-pUL53 interaction (IC50 = 38 nM, Figure 2F). This 
compound is identical to merbromin, an organomercuric compound, which was formerly 
used as a topical antiseptic to treat minor wounds, burns, and scratches [22], as well as for 
the antisepsis of the umbilical cord and wounds with inhibited scar formation, such as 
neuropathic ulcers and diabetic foot sores [23]. Due to the well-established toxicity of 
mercury compounds, however, clinical use of merbromin has largely been discontinued 
in the United States and most European countries. Considering these circumstances, it 
appears less promising to view merbromin as a candidate for new therapeutic ap-
proaches. It may, however, serve as a starting structure, which can be chemically modi-
fied to alleviate the toxicity, while maintaining the high core NEC inhibitory activity. 

In summary, screening of the Prestwick Chemical Library® resulted in the identifi-
cation of two drug compounds, i.e., verteporfin and merbromin, which were shown to 
exhibit nanomolar inhibitory activity against the HCMV pUL50-pUL53 interaction. This 
was possible using a very robust, parallel in vitro inhibition assay involving recombinant 
proteins, in conjunction with a compound pooling strategy that enabled the straightfor-
ward identification of the two candidate compounds within the library of 1520 com-
pounds. It should be noted that these two compounds are highly unlikely to have been 
identified as HCMV core NEC inhibitors using alternative approaches, illustrating the 
utility of library approaches for the de novo identification of bioactive compounds. Ongo-
ing and future studies include the chemical modification of merbromin with the aim of 
eliminating its toxicity, as well as the search for more small molecule inhibitors using ad-
ditional compound libraries. Furthermore, analysis of the molecular mechanism of the in-
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hibitory effect of merbromin will include the identification of its binding partner (pUL50 
or pUL53), as well as the binding site, through co-crystallization with the respective 
protein, and subsequent analysis of the complex crystal structures.  

3.2. Cytotoxicity and Selectivity of Merbromin 
As both verteporfin and merbromin have been associated with a considerable de-

gree of toxicity, we addressed the in vitro cytotoxicity of both compounds, prior to testing 
them in cell-based HCMV infection assays. Interestingly, verteporfin, but not merbromin, 
was shown to be toxic to human foreskin fibroblast (HFF) cells at 0.6 µM (Figure 3A), 
while no cytotoxicity was found for merbromin, even at concentrations as high as 25 µM 
(Figures 3A and 4). Therefore, only merbromin was selected for subsequent evaluation of 
its selectivity, as well as antiviral activity.  

Binding of mercury to cysteine residues in proteins mediates multiple toxic effects, 
in particular inhibition of enzymes and other proteins that contain free cysteine residues 
that are not involved in disulfide bridges [24]. Consequently, it appeared well possible 
that the inhibitory effect of merbromin on the pUL50-pUL53 interaction was not specific 
to merbromin, and that other mercury-containing compounds would have similar ef-
fects. Therefore, we tested two different mercury compounds, i.e., thimerosal and mer-
salyl, for inhibition of the pUL50-pUL53 interaction. Thimerosal is used as a preservative 
in pharmaceutical products, including ophthalmic solutions, otic drops, topical medicine, 
and vaccines, to protect them from microbial degradation [25]. Mersalyl, on the other 
hand, is a diuretic drug that is no longer in clinical use [26]. Closer inspection of the 
chemical structures of all three compounds (Figure 3B) reveals that mersalyl is more 
closely related to merbromin than thimerosal, as both merbromin and mersalyl contain 
an R-Hg-OH moiety, while the mercury atom in thimerosal is not bound to a hydroxyl 
group, but to a substituted thiol (R-Hg-S-R’). Regardless of these chemical features, nei-
ther thimerosal nor mersalyl is able to inhibit the pUL50-pUL53 interaction (Figure 3C), 
indicating that the inhibitory activity of merbromin is not solely due to its mercury atom, 
but that the chemical scaffold of the compound, i.e., a benzoic acid bound to a xanthene 
ring, plays a role as well.  

 
Figure 3. Cytotoxicity and selectivity of merbromin. A. Cytotoxicity of merbromin and verteporfin. 
B. Chemical structures of merbromin, thimerosal, and mersalyl. C. Effect of merbromin, thimerosal, 
and mersalyl o the HCMV pUL50-pUL53 interaction. D. Effect of the CXCR4 mimetic peptide 
CX4M1 and merbromin on the HIV-1 gp120–mAb 447 52D interaction. Error bars present SDs (A) 
and SEMs (B–D), respectively, of at least two experiments. See sections 2.3 (A), 2.1. (B) and 2.2. (D) 
for experimental detail. 
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The target selectivity of merbromin was addressed by testing its ability to interfere 
with an unrelated protein–protein interaction, i.e., the interaction of HIV-1 gp120 with 
the monoclonal antibody 447 52D, which recognizes the gp120 V3loop [27]. Unlike the 
CXCR4 mimetic peptide CX4M1 [28], which, similar to the HIV-1 coreceptor CXCR4, 
binds to the gp120 V3 loop [29], merbromin does not inhibit the gp120–447 52D interac-
tion (Figure 3D), indicating a target selectivity of the inhibition of the pUL50-pUL53 in-
teraction. In summary, based on the established compound and target selectivity, it can 
be concluded that the inhibitory activity of merbromin is not simply based on an unspe-
cific interaction of the merbromin mercury with the proteins, but a specific effect of 
merbromin on the pUL50-pUL53 interaction.  

3.3. Antiviral Activity of Merbromin 
To address the question of whether the inhibitory activity of merbromin on the 

pUL50-pUL53 interaction in vitro translates into an antiviral activity of the compound, it 
was tested in a standard plaque reduction assay (PRA) in conjunction with human fore-
skin fibroblast (HFF) cells and HCMV AD169 at an MOI of 0.01 (Figure 4). In this assay, 
merbromin was shown to dose-dependently inhibit HCMV intracellular replication and 
plaque formation, with an EC50 value of 1.0 ± 0.4 µM (Figure 4, blue curve), without visi-
ble adverse effects on cell morphology or viability. In addition to the plaque reduction 
assay, merbromin was also tested in a virus yield assay that measures the production and 
release of infectious virus. The inhibitory activity of merbromin in this assay (EC50 = 6.6 ± 
0.4 µM; Figure 4, green curve) was similar to that in the PRA assay. Finally, the antiviral 
effect of merbromin could also be confirmed by highly sensitive HCMV-specific qPCR 
(EC50 = 2.1 ± 1.1 µM; Figure 4, orange curve). In summary, the anti-HCMV activity of 
merbromin could be demonstrated in three different experimental settings, while the 
level of cytotoxicity remained very low, with a CC50 value of 41.6 ± 0.0 µM (Figure 4, 
black curve), i.e., cell viability was not affected by merbromin at concentrations relevant 
to antiviral activity.  

 
Figure 4. Anti-HCMV activity and lack of cytotoxicity (black curve) of merbromin in the plaque 
reduction assay (blue curve), virus yield assay (green curve), and genome-specific qPCR assay 
(orange curve). Error bars present standard deviations calculated from three or four different ex-
periments. See sections 2.3., 2.4. and 2.5 for experimental detail. 

3.4. Selective Effect of Merbromin on the HCMV Core NEC 
Having established an HCMV-inhibitory activity of merbromin, we then set out to 

explore the mechanism of this effect. Based on the previously demonstrated inhibition of 
the pUL50-pUL53 interaction by merbromin, we hypothesized that the compound 
should be able to interfere with NEC-typical nuclear rim localization in HCMV-infected 
fibroblasts, which is regulated by the pUL50-pUL53 interaction [13,30]. For this purpose, 



Viruses 2021, 13, 471 9 of 13 
 

 

HFFs were infected with HCMV at an MOI of 0.1 and fixed at 5 days p.i. for indirect 
immunofluorescence stainings (Figure 5). Colocalization of viral pUL53 with cellular 
lamin A/C was used as an indicator of viral core NEC formation. Here, we could show 
that merbromin dose-dependently effected a reduction in the number of HCMV-positive 
cells, as well as an alteration of nuclear rim NEC formation, with increasingly pro-
nounced intranuclear dot-like speckling of pUL53, within the HCMV-positive cell pop-
ulation (Figure 5A, panels 16–35). This effect ultimately resulted in complete abrogation 
of rim-like NEC localization, yielding a homogeneous staining pattern of pUL53 in the 
entire nucleoplasm, in the presence of 10 µM merbromin (Figure 5A, panels 31–40). In-
terestingly, this effect of merbromin was not seen for the known and approved HCMV 
drugs ganciclovir (GCV), letermovir (LMV), and cidofovir (CDV) (Figure 5B; drug con-
centrations were adjusted to their individual EC50 values). These drugs are known to 
address targets other than the viral core NEC, i.e., the viral DNA polymerase (GCV and 
CDV) and the HCMV terminase complex (LMV), respectively. Hence, the effect of mer-
bromin on pUL53 localization appears to be specific to this compound. Quantitation of 
this effect through microscopic counting confirmed a concentration-dependent inhibition 
of HCMV core NEC formation (Figure 5C). 

 
Figure 5. Merbromin (MBM, A), but not GCV, LMV, and CDV (B), interfere with HCMV nuclear 
egress complex (NEC) nuclear rim formation in HCMV-infected human foreskin fibroblasts 
(HFFs). A. Confocal imaging (indirect immunofluorescence staining) of viral pUL53 and cellular 
lamin A/C. Counterstainings of the autofluorescent merbromin and the nuclei (DAPI) are shown, 
and a merge of all signals is given. C. Quantitation of the concentration-dependent inhibition of 
normal pUL53 nuclear rim localization by merbromin. Error bars present SDs of three experiments. 
Scale bars indicate 10 µm. See section 2.6. for experimental detail. 

Finally, the target selectivity of merbromin for the core NEC, which had been shown 
in vitro by the lack of inhibitory activity on an unrelated protein–protein interaction 
(HIV-1 gp120–mAb 447 52D, Figure 3D), was also addressed at the level of infected cells. 
This was achieved by examining the impact of merbromin on the localization of viral 
proteins other than pUL53, i.e., immediate early protein (IE1, Figure 6, panels 1–10), early 
protein (pUL44, Figure 6, panels 11–20), and late protein (pp28, Figure 6, panels 31–40), 
respectively. pUL53 was included as a positive control (Figure 6, panels 21–30). Inter-
estingly, the localization of none of the other proteins was affected by merbromin at 5 
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µM, indicating that the antiviral effect of the compound shown in Figure 4 is brought 
about by an inhibitory effect on the intranuclear formation of the HCMV-specific core 
NEC, and based on the ability of merbromin to interfere with the pUL50-pUL53 interac-
tion. The target selectivity of merbromin will be further addressed in ongoing and future 
studies, by investigating its effect on other herpesviruses, as well as related viruses such 
as adenoviruses.   

 
Figure 6. Merbromin does not interfere with the localization of viral proteins other than the core 
NEC complex in HCMV-infected HFFs: confocal imaging (indirect immunofluorescence staining) 
of the intracellular localization of representative HCMV proteins (immediate early, IE1; early, 
pUL44 and pUL53; late, pp28) and cellular lamin A/C in the presence of merbromin (5 µM). 
Counterstainings of the autofluorescent merbromin and the nuclei (DAPI), as well as a merge of all 
signals (right column) are shown. Scale bars indicate 10 µm. See section 2.6. for experimental detail. 

In a related approach, the antiviral activity of merbromin was investigated by test-
ing its effect on the formation of cytoplasmic viral assembly complexes (cVACs), which 
correlates with the efficiency of viral nuclear egress. Three different human cell types, i.e., 
MRC-5, ARPE-19, and HFF, were infected with three different strains of HCMV, i.e., 
TB40 UL32-GFP, TB40E, and AD169 (Table 1) [11]. In this assay, merbromin was found to 
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dose-dependently reduce the cVAC count for all three viral strains, further substantiating 
the inhibitory effect of merbromin on HCMV nuclear egress. 

Table 1. Effect of merbromin on the formation of viral cytoplasmic assembly complexes (cVACs).a. 

Conditions of HCMV Infection b TB40 UL32-GFP 
on MRC-5 

TB40E  
on ARPE-19 

AD169  
on HFF  

DMSO  88 ± 0.17% 94.3 ± 2.73% 89 ± 1.39% 

merbromin 

1.25 µM 61 ± 1.24% 79.4 ± 1.29% 71 ± 4.28% 
2.5 µM 51 ± 1.84% 49.5 ± 0.87% 48 ± 0.05% 
5 µM 35 ± 1.28% 27.4 ± 2.38% 32 ± 0.41% 

10 µM 26 ± 0.51% 26.8 ± 0.97% 23 ± 1.01% 
a HCMV infection was performed with cells cultivated in 6-well plates on coverslips at a low multiplicity (MOI 0.1) for 5 
days. Cells were fixed and used for indirect immunofluorescence staining with an antibody against viral pp150 (pUL32) 
or for direct microscopic counting of the autofluorescent fusion protein expressed by a recombinant virus (TB40 
UL32-GFP). Merbromin was used at the indicated concentration range (1.25–10 µM; DMSO as solvent control), and the 
formation of pp150-positive cVACs was quantified through visual microscopic counting. All counts were performed in 
duplicate, and mean values ± standard error are given. b Three different human cell types and three different viral strains 
were used as follows: MRC-5, human lung fibroblasts reaching senescence after 45–60 passages; ARPE-19, human retinal 
epithelial cells; HFF, primary human foreskin fibroblasts; HCMV, recombinant TB40 UL32-GFP fibroblast-adapted; 
TB40E, epithelial cell-adapted strain; AD169, fibroblast-adapted laboratory reference strain. For primary data, see [11]. 

4. Conclusions  
Screening of the Prestwick Chemical Library® of approved drug compounds 

yielded small molecule inhibitors of HCMV core NEC formation. These compounds, i.e., 
verteporfin and merbromin, were found to inhibit the HCMV pUL50-pUL53 interaction 
at nanomolar concentrations; however, verteporfin was not further analyzed due to its 
cytotoxicity. The inhibitory effect of merbromin on the pUL50-pUL53 interaction was 
shown to be both compound- and target-specific. Although merbromin is a potentially 
toxic organomercuric drug that is no longer in clinical use, its lack of cytotoxicity at the 
concentrations required for effective core NEC inhibition enabled its evaluation in the 
context of HCMV infection. The demonstrated ability of merbromin to inhibit HCMV 
infection of cells, as well as to disrupt HCMV NEC nuclear rim formation, is the first in-
dication of the feasibility to inhibit the pUL50-pUL53 interaction by a small molecule, 
which is apparently able to be passively taken up by cells, as well as to penetrate the nu-
clear membrane. Thus, while not being an ideal drug candidate by itself, merbromin may 
serve as a blueprint for small molecules with high HCMV core NEC inhibitory potential 
as candidates for novel anti-herpesviral drugs. Ongoing studies are aimed at elucidating 
the molecular mechanism of inhibition of the pUL50-pUL53 interaction by merbromin, as 
well as the selectivity of this effect with respect to other herpesviruses and additional 
viruses.  
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